180
The smallest squares containing k 180's :
    91809 = 3032,
    180821809 = 134472,
    180591804018025 = 134384452.
The sum of the divisors of 1802 is 3412.
The integral triangle of sides 104, 657, 697 has square area 1802.
1802 = 103 + 243 + 263.
1802 = (72 - 1)(262 - 1) = (12 + 7)(652 + 7).
(132 - 2)(142 - 2) = (1802 - 2),
    (42 - 5)(62 - 5)(102 - 5) = (1802 - 5).
(1 + 2)(3)(4 + 5 + 6)(7 + 8 + 9)(10) = 1802,
    (1 + 2 + 3)(4)(5)(6)(7 + 8 + 9 + 10 + 11) = 1802,
    (1)(2)(3)(4)(5)(6)(7 + 8 + 9 + 10 + 11) = 1802,
    (1 + 2)(3)(4)(5 + 6 + 7)(8 + 9 + 10 + 11 + 12) = 1802,
    (1)(2 + 3)(4)(5 + 6 + 7 + 8 + 9 + 10)(11 + 12 + 13) = 1802,
    (1)(2)(3 + 4 + 5)(6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14)(15) = 1802,
    (1 + 2 + 3)(4 + 5 + ... + 12)(13 + 14 + ... + 17) = 1802,
    (1 + 2 + ... + 9)(10 + 11 + ... + 180) = 8552,
    (1 + 2 + ... + 10)(11 + 12 + ... + 44)(45 + 46 + ... + 180) = 280502,
    (1 + 2 + ... + 17)(18 + 19 + ... + 142)(143 + 144 + ... + 180) = 969002,
    (1 + 2 + ... + 32)(33 + 34 + ... + 143)(144 + 145 + ... + 180) = 1758242,
    (1 + 2 + ... + 63)(64 + 65 + ... + 119)(120 + 121 + ... + 180) = 3074402,
    (1 + 2 + ... + 98)(99 + 100 + ... + 147)(148 + 149 + ... + 180) = 3977822.
by Yoshio Mimura, Kobe, Japan
181
The smallest squares containing k 181's :
    181476 = 4262,
    7318118116 = 855462,
    181515181181049 = 134727572.
1812 = 32761, a square with different digits.
1812 = 32761, 32 + 7 + 61 = 102.
1813 - 1803 + 1793 - 1783 + ... + 13 = 17292.
Komachi equations:
    1812 = 9 * 8 * 7 * 65 - 4 + 3 + 2 */ 1 = 9 * 8 * 7 * 65 - 4 + 3 * 2 - 1
    = 9 * 8 * 7 * 65 - 4 - 3 - 2 + 10.
A 3-by-3 magic square consisting of different squares with constant 1812:
| 
 | 
(32 - 1)(642 - 1) = (132 - 1)( 142 - 1) = (1812 - 1),
    (22 - 1)(42 - 1)(272 - 1) = (1812 - 1),
    (32 - 7)(1282 - 7) = (1812 - 7),
    (12 + 7)(52 + 7)(112 + 7) = (1812 + 7).
1812 + 1822 + 1832 + ... + 2132 = 11332.
(12 + 22 + 32 + ... + 1812) = 1992991, which consists of 3 kinds of digits and the first 7-digit palindromic sum.
(1)(2 + 3 + ... + 16)(17 + 18 + ... + 181) = 14852,
    (1 + 2 + 3 + 4 + 5)(6 + 7 + ... + 16)(17 + 18 + ... + 181) = 54452,
    (1 + 2 + 3 + 4 + 5)(6 + 7 + ... + 60)(61 + 62 + ... + 181) = 199652,
    (1 + 2 + ... + 7)(8 + 9 + ... + 34)(35 + 36 + ... + 181) = 158762,
    (1 + 2 + ... + 30)(31 + 32 + ... + 128)(129 + 130 + ... + 181) = 1725152,
    (1 + 2 + ... + 31)(32 + 33 + ... + 61)(62 + 63 + ... + 181) = 1004402,
    (1 + 2 + ... + 45)(46 + 47 + ... + 71)(72 + 73 + ... + 181) = 1480052,
    (1 + 2 + ... + 45)(46 + 47 + ... + 115)(116 + 117 + ... + 181) = 2390852,
    (1 + 2 + ... + 152)(153 + 154 + ... + 170)(171 + 172 + ... + 181) = 2558162.
1812 = 32761 appears in the decimal expression of e:
      e = 2.71828•••32761••• (from the 1698th digit)
      (32761 is the eighth 5-digit square in the expression of e.)
by Yoshio Mimura, Kobe, Japan
182
The smallest squares containing k 182's :
    18225 = 1352,
    1829101824 = 427682,
    182182182310144 = 134974882.
182 = (12 + 22 + 32 + ... + 1952) / (12 + 22 + 32 + ... + 342).
1822 = 33124, a square every digit of which is non-zero and smaller than 5.
1822 = 33124, 33 + 12 + 4 = 72.
1822 is the 7th square which is the sum of 7 fifth powers : (3,4,4,5,5,6,7).
1822 = 33124, 3 * 31 * 2 - 4 = 182.
82k  + 182k  + 722k  + 1318k are squares for k = 1,2,3 (482, 15162, 516962).
    1794k  + 3250k  + 12402k  + 15678k are squares for k = 1,2,3 (1822, 203322, 24085882).
    1898k  + 4862k  + 5954k  + 20410k are squares for k = 1,2,3 (1822, 218922, 29723722).
    5330k  + 6682k  + 7514k  + 13598k are squares for k = 1,2,3 (1822, 177322, 18407482).
Komachi equation: 1822 = 12 / 22 * 32 / 42 * 562 * 782 / 92.
182 is the second integer which is the sum of a square and a prime in 6 ways :
      12 + 181, 32 + 173, 52 + 157, 92 + 101, 112 + 61, 132 + 13.
1822 = 252 + 262 + 272 + ... + 482.
(1 + 2 + 3 + 4)(5 + 6 + ... + 157)(158 + 159 + ... + 182) = 229502,
    (1 + 2 + ... + 11)(12 + 13 + ... + 87)(88 + 89 + ... + 182) = 564302,
    (1 + 2 + ... + 17)(18 + 19 + ... + 157)(158 + 159 + ... + 182) = 892502,
    (1 + 2 + ... + 24)(25 + 26 + ... + 47)(48 + 49 + ... + 182) = 621002,
    (1 + 2 + ... + 99)(100 + 101 + ... + 149)(150 + 151 + ... + 182) = 4108502.
(13 + 23 + ... + 773)(783 + 793 + ... + 1823) = 491891402.
1822 = 33124 appears in the decimal expression of e:
      e = 2.71828•••33124••• (from the 66855th digit)
by Yoshio Mimura, Kobe, Japan
183
The smallest squares containing k 183's :
    118336 = 3442,
    21831835536 = 1477562,
    1758183183183025 = 419306952.
183184 = 4282.
Komachi equations:
    1832 = - 9 - 87 * 6 + 54 * 3 * 210,
    1832 = 92 + 872 + 62 + 542 * 32 - 212 = - 982 + 72 * 62 * 52 + 42 - 322 + 12
    = - 92 - 872 - 62 - 542 - 32 + 2102,
    1832 = - 93 + 83 + 73 - 63 - 53 - 43 + 323 + 103.
A cubic polynomial :
      (X + 1832)(X + 2882)(X + 34162) = X3 + 34332X2 + 11668082X + 1800368642.
Three 3-by-3 magic squares consisting of different squares with constant 1832:
| 
 | 
 | 
 | 
(132 + 1)(142 + 1) = (1832 + 1),
    (32 + 1)(42 + 1)(142 + 1) = (1832 + 1),
    (12 + 1)(22 + 1)(42 + 1)(142 + 1) = (1832 + 1),
    (12 + 6)(72 + 6)(92 + 6) = (1832 + 6).
1832 + 1842 + 1852 + ... + 12402 = 251852,
    1832 + 1842 + 1852 + ... + 34382 = 1164022,
    1832 + 1842 + 1852 + ... + 573032 = 79197432,
    1832 + 1842 + 1852 + ... + 5892 = 81402.
(1 + 2 + 3)(4 + 5 + ... + 156)(157 + 158 + ... + 183) = 183602,
    (1 + 2 + ... + 6)(7 + 8 + ... + 111)(112 + 113 + ... + 183) = 371702,
    (1 + 2 + ... + 7)(8 + 9 + ... + 14)(15 + 16 + ... + 183) = 60062,
    (1 + 2 + ... + 14)(15 + 16 + ... + 113)(114 + 115 + ... + 183) = 831602,
    (1 + 2 + ... + 33)(34 + 35 + ... + 47)(48 + 49 + ... + 183) = 706862,
    (1 + 2 + ... + 35)(36 + 37 + ... + 75)(76 + 77 + ... + 183) = 1398602,
    (1 + 2 + ... + 40)(41 + 42 + ... + 103)(104 + 105 + ... + 183) = 2066402,
    (1 + 2 + ... + 108)(109 + 110 + ... + 143)(144 + 145 + ... + 183) = 4120202,
    (1 + 2 + ... + 125)(126 + 127 + ... + 154)(155 + 156 + ... + 183) = 3958502.
1832 = 33489 appears in the decimal expression of π:
      π = 3.14159•••33489••• (from the 14252nd digit).
by Yoshio Mimura, Kobe, Japan
184
The smallest squares containing k 184's :
    1849 = 432,
    184199184 = 135722,
    1844921841841 = 13582792.
The squares which begin with 184 and end in 184 are
    184199184 = 135722,   1842813184 = 429282,   18476421184 = 1359282,
    184102781184 = 4290722,   184408407184 = 4294282,...
1841 + 3451 = 232, 1842 + 3452 = 3912, 1843 + 3453 = 68772 (See 23).
1842 = (12 + 7)(652 + 7).
1842 = 25 + 25 + 45 + 85.
183184 = 4282.
1842 = 33856, 3 + 3 + 8 + 5 + 6 = 52.
1842 is the fourth square which is the sum of 4 fifth powers : 24 + 24 + 44 + 84.
713k + 5359k + 10511k + 17273k are squares for k = 1,2,3 (1842, 209302, 25434322).
(132 + 2)(142 + 2) = (1842 + 2),
    (12 + 2)(42 + 2)(252 + 2) = (12 + 2)(82 + 2)(132 + 2) = (12 + 2)(32 + 2)(322 + 2)
    = (32 + 2)(42 + 2)(132 + 2) = (1842 + 2),
    (12 + 2)(32 + 2)(52 + 2)(62 + 2) = (12 + 2)(22 + 2)(32 + 2)(132 + 2) = (1842 + 2).
(1 + 2)(3 + 4 + ... + 167)(168 + 169 + ... + 184) = 112202,
    (1 + 2 + ... + 32)(33 + 34 + ... + 156)(157 + 158 + ... + 184) = 1718642,
    (1 + 2 + ... + 33)(34 + 35 + ... + 167)(168 + 169 + ... + 184) = 1503482,
     (1 + 2 + ... + 49)(50 + 51 + ... + 166)(167 + 168 + ... + 184) = 2211302,
    (1 + 2 + ... + 62)(63)(64 + 65 + ... + 184) = 429662.
1842 = 33856 appears in the decimal expression of e:
      e = 2.71828•••33856••• (from the 13223th digit)
by Yoshio Mimura, Kobe, Japan
185
The smallest squares containing k 185's :
    185761 = 4312,
    18518582889 = 1360832,
    241851858218569 = 155515872.
1852 = 34225, 3 + 4 + 2 + 2 + 5 = 42.
3441k + 6290k + 10138k + 14356k are squares for k = 1,2,3 (1852, 189812, 20712972).
Komachi equation: 1852 = 13 * 23 * 33 + 43 * 563 / 73 + 83 + 93.
Two 3-by-3 magic squares consisting of different squares with constant 1852:
| 
 | 
 | 
(12 + 22 + 32 + ... + 342) + (12 + 22 + 32 + ... + 392) = 1852.
(132 + 3)(142 + 3) = (1852 + 3).
(1 + 2 + ... + 30)(31 + 32 + ... + 185) = 27902,
    (1 + 2 + ... + 33)(34 + 35 + ... + 66)(67 + 68 + ... + 185) = 1178102.
(13 + 23 + ... + 1473)(1483 + 1493 + ... + 1823)(1833 + 1843 + 1853) = 5929747916402.
1852 = 34225 appears in the decimal expressions of π and e:
      π = 3.14159•••34225••• (from the 22625th digit),
      e = 2.71828•••34225••• (from the 1245th digit)
      (34225 is the seventh 5-digit square in the expression of e.)
by Yoshio Mimura, Kobe, Japan
186
The smallest squares containing k 186's :
    186624 = 4322,
    186186025 = 136452,
    327318618618601 = 180919492.
1862 = 34596, a square with different digits.
1862 = 34596, 3 + 45 + 96 = 122,
    1862 = 34596, 345 + 96 = 212.
186k  + 234k  + 258k  + 478k are squares for k = 1,2,3 (342, 6202, 120682).
    48k  + 177k  + 186k  + 1614k are squares for k = 1,2,3 (452, 16352, 649352).
Komachi Fraction : 1862 = 2179548/63.
Komachi equations:
    1862 = 12 + 34567 + 8 + 9,
    1862 = - 92 * 82 + 72 - 652 - 42 * 32 + 2102.
(132 + 4)(142 + 4) = (1862 + 4).
    (12 + 4)(62 + 4)(132 + 4) = (1862 + 4).
(1 + 2 + ... + 5)(6 + 7 + ... + 174)(175 + 176 + ... + 186) = 222302,
    (1 + 2 + ... + 11)(12 + 13 + ... + 65)(66 + 67 + ... + 186) = 457382,
    (1 + 2 + ... + 26)(27 + 28 + ... + 168)(169 + 170 + ... + 186) = 1246052,
    (1 + 2 + ... + 35)(36 + 37 + ... + 156)(157 + 158 + ... + 186) = 1940402,
    (1 + 2 + ... + 37)(38)(39 + 40 + ... + 186) = 210902,
    (1 + 2 + ... + 38)(39 + 40 + ... + 56)(57 + 58 + ... + 186) = 1000352,
    (1 + 2 + ... + 45)(46 + 47 + 48)(49 + 50 + ... + 186) = 486452,
    (1 + 2 + ... + 86)(87 + 88 + ... + 128)(129 + 130 + ... + 186) = 3928052,
    (1 + 2 + ... + 122)(123 + 124 + ... + 182)(183 + 184 + ... + 186) = 2250902,
    (1 + 2 + ... + 125)(126 + 127 + ... + 179)(180 + 181 + ... + 186) = 2882252,
    (1 + 2 + ... + 161)(162 + 163 + ... + 181)(182 + 183 + ... + 186) = 2028602.
(13 + 23 + ... + 213)(223 + 233 + ... + 333)(343 + 353 + ... + 1863) = 20527214402.
1862 = 34596 appears in the decimal expressions of π and e:
      π = 3.14159•••34596••• (from the 82162nd digit),
      e = 2.71828•••34596••• (from the 37139th digit)
by Yoshio Mimura, Kobe, Japan
187
The smallest squares containing k 187's :
    18769 = 1372,
    18734491876 = 1368742,
    318718718763025 = 178526952.
1872 = 34969, 3 + 49 + 69 = 112,
    1872 = 34969, 35 + 495 + 695 = 429712.
If A = 1872, B = 10202, and C = 15842, then A + B = 10372, B + C = 18842 and C + A = 15952.
Komachi equation: 1872 = - 12 + 2342 * 52 / 62 - 72 * 82 + 92.
A 3-by-3 magic square consisting of different squares with constant 1872:
| 
 | 
(132 + 5)(142 + 5) = (1872 + 5).
(1 + 2 + ... + 38)(39 + 40 + ... + 57)(58 + 59 + ... + 187) = 1037402.
1872 = 34969 appears in the decimal expression of e:
      e = 2.71828•••34969••• (from the 36141st digit)
by Yoshio Mimura, Kobe, Japan
188
The smallest squares containing k 188's :
    11881 = 1092,
    18883431889 = 1374172,
    1881881881489 = 13718172.
1882 = 35344, a square with 3 kinds of digits.
1882 = 163 + 193 + 293 = 143 + 223 + 283.
1882 = 35344, 3 + 53 + 4 + 4 = 82,
    1882 = 35344, 3 + 53 + 44 = 102,
    1882 = 35344, 353 + 4 + 4 = 192.
10k  + 74k  + 98k  + 142k are squares for k = 1,2,3 (182, 1882, 20522).
    14k  + 58k  + 122k  + 130k are squares for k = 1,2,3 (182, 1882, 20522).
Komachi equation: 1882 = 9872 * 62 * 52 * 42 / 32 / 2102.
1882 is the second square which is sum of 2 cubs in 2 ways :
      1882 = 143 + 223 + 283 = 163 + 193 + 293.
If n ≥ 188, then n is the sum of k distinct nonzero squares with some k ≤ 6.
The third integer which is the sum of a square and a prime in 6 ways :
      188 = 32 + 179 = 52 + 163 = 72 + 139 = 92 + 107 = 112 + 67 = 132 + 19.
(132 + 6)(142 + 6) = (1882 + 6).
(1 + 2 + ... + 8)(9 + 10 + ... + 72)(73 + 74 + ... + 188) = 375842,
    (1 + 2 + ... + 10)(11 + 12 + ... + 43)(44 + 45 + ... + 188) = 287102,
    (1 + 2 + ... + 10)(11 + 12 + ... + 45)(46 + 47 + ... + 188) = 300302,
    (1 + 2 + ... + 10)(11 + 12 + ... + 99)(100 + 101 + ... + 188) = 587402,
    (1 + 2 + ... + 18)(19 + 20 + ... + 171)(172 + 173 + ... + 188) = 872102,
    (1 + 2 + ... + 23)(24 + 25 + ... + 45)(46 + 47 + ... + 188) = 592022,
    (1 + 2 + ... + 32)(33 + 34 + ... + 45)(46 + 47 + ... + 188) = 669242,
    (1 + 2 + ... + 48)(49 + 50 + ... + 72)(73 + 74 + ... + 188) = 1607762,
    (1 + 2 + ... + 55)(56 + 57 + ... + 153)(154 + 155 + ... + 188) = 3072302,
    (1 + 2 + ... + 170)(171)(172 + 173 + ... + 188) = 872102.
by Yoshio Mimura, Kobe, Japan
189
The smallest squares containing k 189's :
    189225 = 4352,
    18918902116 = 1375462,
    189118989218916 = 137520542.
1 / 189 = 0.00529..., 529 = 232.
1892 = 35721, a square with different digits.
1892 = 35721, 3 + 5 + 7 + 21 = 62,
    1892 = 35721, 3 + 5 + 72 + 1 = 92,
    1892 = 35721, 3 + 5 + 721 = 272,
    1892 = 35721, 3 + 57 + 21 = 92,
    1892 = 35721, 33 + 573 + 213 = 4412,
    1892 = 35721, 3 + 572 + 1 = 242.
413 - 403 + 393 - 383 + .. + 13 = 1892.
1617k  + 8106k  + 10290k  + 15708k are squares for k = 1,2,3 (1892, 205172, 23456792).
    2793k  + 4578k  + 13062k  + 15288k are squares for k = 1,2,3 (1892, 208112, 24329972).
    4998k  + 6468k  + 10542k  + 13713k are squares for k = 1,2,3 (1892, 191312, 20360972).
    4998k  + 6888k  + 8106k  + 15729k are squares for k = 1,2,3 (1892, 196352, 22080872).
Komachi Fraction : 576/321489 = (8/189)2.
Komachi equations:
    1892 = 12 * 22 * 32 * 42 * 5672 / 82 / 92 = 12 / 22 * 32 / 42 * 5672 * 82 / 92
    = 982 / 72 / 62 * 542 * 32 / 22 */ 12 = 92 * 82 * 72 * 62 * 52 * 42 / 322 / 102
    = 92 / 82 * 72 * 62 * 52 / 42 * 322 / 102.
Four 3-by-3 magic squares consisting of different squares with constant 1892:
| 
 | 
 | 
 | 
 | 
(132 + 7)(142 + 7) = (1892 + 7),
    (22 + 7)(32 + 7)(142 + 7) = (1892 + 7).
(1 + 2)(3 + 4)(5 + 6 + ... + 58) = 1892,
    (1 + 2 + ... + 17)(18 + 19 + ... + 68)(69 + 70 + ... + 189) = 723692.
1892 = 35721 appears in the decimal expression of e:
      e = 2.71828•••35721••• (from the 69165th digit)
by Yoshio Mimura, Kobe, Japan
