エクセル VBA による地球の極運動と章動の検討

はじめに

地球の極運動は章動と別物のように言われることが多いが、現実には極運動と章動は不可分の関係にある。

従って、本稿の地球のシミュレーションプログラムもそのような構成となる。

ここでは、第3章のコマのエクセル VBA を地球用に改編して、極運動と章動の原理的な関係を求める。

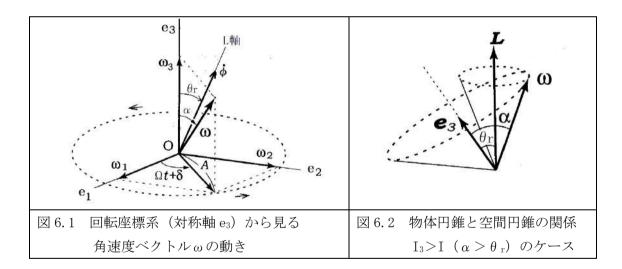
1 地球の対称軸 e3の回転半径と角運動量

第6章で述べたように、無重力状態において地球の角速度 ω は対称軸 e_3 の回りを角速度 Ω で回転している。

地球の場合は $I_3>I$ となるので、その様子は図 6.1、図 6.2 のようになる。

地球の慣性モーメント (文献1) は

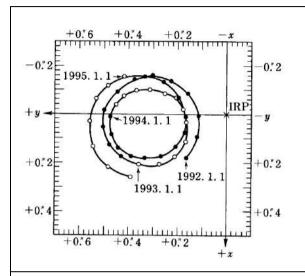
極軸まわり I_3 =8.0359× 10^{37} kgm²、 赤道まわり I=8.0096× 10^{37} kgm² である。



ここで瞬間自転軸ωが地球の極を一周するに要する日数 T を求めると

$$T = \frac{2\pi}{\Omega} = \left(\frac{2\pi}{\omega_3}\right) \frac{I}{(I_3 - I)}$$
 (6.1)式となる。

 ω_3 を地球の自転の角速度とすると $\omega_3 = 7.292 \times 10^{-5} \text{rad/s}$ となる。(文献 1) 上式の $(2\pi/\omega_3)$ は地球の自転周期で約 1 日、正確には恒星日の 23 時間 56 分 4.1 秒である。地球の慣性モーメント I_3 、I を (6.1) 式に代入すると、 $T=303.7 \Rightarrow 305$ 日が算出できる。これはオイラーが 1736 年に発表したオイラー周期 T と呼ばれるものである。 それはその後、チャンドラーによって約430日のチャンドラー周期に補正された。 305日と430日の差はオイラーが地球を剛体としたためで、弾性体とすれば観測値にほぼ 合致することが分かった。次の図6.3は極運動の観測結果を示したものである。



左図は1992年1月から1995年7月ま での北極の観測結果である。

座標は角度の"で表示。

0.1" は地球表面の距離に換算すると約3mである。

瞬間自転軸は左回りに回転していることがわかるが、真円からは多少のずれがある。

尚、図中の IRP は基準極原点と呼ばれている地球上の固定点である。

図 6.3 地球の瞬間自転軸の地球に対する運動の様子(文献 2)

図のデータが真円からずれているのは、大気や水の質量分布の季節的変動による年周変化やゆっくりと長期間にわたって変動する成分などが含まれているためで、これらの解明が地球物理学の重要な課題となっている。

今仮に、図 6.3 の平均直径を 0.3'' と見積もると、それは距離に換算して直径約 $9 \mathrm{m}$ となる。これは物体円錐の直径と見なされ、図 6.2 における α は α = 0.15'' となる。

Lと対称軸 e_3 との角度を θ_r とすると、

$$an heta_r = rac{IA}{I_3\omega_3} = rac{L_r}{L_3} = R_L = rac{I}{I_3} anlpha$$
 (6.17)式となる。

ここで Lr は図 6.1 の ω_1 と ω_2 を合成した角速度 A に対応した付加的角運動量で Lr=IA で定義される。 R_L は Lr の L_3 に対する比で Lr / L_3 である。

上式 α =0.15″を代入して計算すると

 $\tan\theta_{\rm r}$ =(8.0096/8.0359) $\tan\alpha$ =0.9967×7.272×10⁻⁷=7.248×10⁻⁷ $\theta_{\rm r}$ =0.1495″ となる。また L_3 = L_3 = U_3 =8.0359×10³⁷ U_3 =8.0359×10³⁸ U_3 =8.0359 U_3 =8.0359×10³⁸ U_3 =8.0359 U_3

付加的角運動量 Lr は、Lr= $L_3 an heta_r$ =5. $860 imes 10^{33} ext{ kgm}^2 imes 7$. $248 imes 10^{-7}$ =4. $247 imes 10^{27} ext{ kgm}^2$

2 Excel VBA 入力画面

図3.1にエクセル入力画面を、3章を改編する形で示す。

用語や記号の詳細については、1~3章を参照願いたい。

4	А	В	С	D	Е	F	G	Н	1
1	計算条件			初期条件			計算結果グラフ	7	
2	積分区間_init	0	恒星日	t0=	0	s	時間 t	秒s	J列10
3	積分区間_end	258492	3	$x0(\theta_1)=$	0.408407045	rad	変位 θ	rad表示	K列11
4	刻み幅h	10		$v0(\theta dot) =$	0		速度 θ dot	rad表示	L列12
5	出力幅h2	10		p0=	0		加速度 θ 2dot	rad表示	M列13
6	エクセル行数	2585		u0=	0		変位Φ	rad表示	N列14
7							速度Φdot	rad表示	0列15
8	地球の基本条件						変位 φ	度表示	P列16
9	I	8.0096E+37		4.1			変位 θ	度表示	Q列17
10	13	8.0395E+37		u	kyu		速度 θ dot	度表示	R列18
11	$\omega 3 = w3$	7.292E-05		計算カウンター	25849		速度 ϕ dot	回転/s	S列19
12	L3	5.860E+33					コマ速度	回転/s	T列20
13	潮汐偶力平均值	1.793E+22					コマ回転	回転数	U列21
14							加速度 ø 2dot	rad表示	V列22
15	地球の運動						コマ角加速度	rad表示	W列23
16	黄道傾斜角 θ Orad	0.408407045	23.4	度			正距方位 ø	″表示	X列24
17	付加的角運動量La	1.692E+27	4.262E+27	0.3	極運動直径 "		正距方位 θ	″表示	Y列25
18	潮汐偶力Mt	1.793E+22	1.793E+22	1	偶力係数				
0									

図 7.1 エクセル入力画面

注

- 1入力画面の数字が記載されたセルの位置は、VBA とリンクしているので位置を変えないこと。
- 2 出力は $J \sim Y$ 列の 1 行目から B6 の回数分まで行われる。
- 3グラフは J~Y 列のアルファベットの部分をクリックすれば範囲指定ができる。

座標系とグラフ

慣例に従い黄道座標とし、これまでのコマの z 軸を黄道面に垂直な軸(黄道の北極)とする。従って、コマの傾斜角の初期値である θ_1 は黄道傾斜角 23.4° となる。

 θ_2 は地球に働く潮汐偶力が地軸を立てるように作用するため θ_2 < θ_1 となる。

これはコマの重力モーメントとは逆の方向である。

章動の変化量は角度の "になるため、グラフの目盛りは変化量のみを"単位で表示する。

<図 3.1 エクセル入力画面の解説>

[A1:C6 ブロック] 数値積分の計算条件

積分区間はB2の0秒からB3の258492秒の間である。

これは C3 の恒星日を秒に換算したもので 3 恒星日に相当する。

恒星日は自由に変更することができる。

B4は数値積分の刻み幅で 10 秒である。これも特に細かく計算したいところでは刻み幅を 短くすることができる。

B5 の出力幅は、グラフのプロット数に相当するもので計算回数の 1/10 とした。

B6 のエクセル行数は、B5 に対応した計算出力のエクセル画面上の最終行数を示す。

関数は小数点以下切り上げの=ROUNDUP(B3/B4/B5,0)を使用した。

[A8:B13 ブロック] 地球の基本条件

B9~B13 は地球の基本条件を示すもので計算の基本条件を示すものである。

地球の慣性モーメント(赤道まわり)I

 $8.0096 \times 10^{37} \text{kgm}^2$

地球の慣性モーメント (極軸まわり) I₃

 $8.0359 \times 10^{37} \text{kgm}^2$

地球の自転の角速度ω3

 $7.292 \times 10^{-5} \text{rad/s}$

地球の角運動量 L₃ 5.860×10³³kgm²/s

 $L_3 = I_3 \omega_3 = 8.0359 \times 10^{37} \text{kgm}^2 \times 7.292 \times 10^{-5} \text{rad/s} = 5.860 \times 10^{33} \text{kgm}^2/\text{s}$

潮汐偶力の平均値 1.793×10²²Nm

地球は宇宙空間で重心を支点として回転するコマに見立てることができる。

そのためコマのような重力モーメントはかからないが、第 I 部「これならわかる地球の歳差 運動」にて述べたように月と太陽によると潮汐偶力がかかる。

1.793×10²²Nm は第 I 部「これならわかる地球の歳差運動」の精密な計算値を採用

[A15:B18 ブロック] 地球の運動

C16 は黄道傾斜角 θ_1 (初期値) 23.4° 、B16 はこれを rad に換算。

付加的角運動量 La 1.692×10²⁷kgm²/s

極運動の直径を $\theta_d=2\times\theta_r=0.3$ "に設定、D17により可変可能。

計算式 La= L₃tan($\theta_d/2$) · sin θ_1 (7.1)式

C12 kt L₃tan($\theta_d/2$)=5.860×10³³×tan(0.3/2/3600)=4.262×10²⁷ kgm²/s

B12 はこれに $\sin \theta_1 = \sin 23.4$ ° を乗じて La を算出したもの。

VBA にはこれが入力されるので、直接入力も可能。

Mt 潮汐偶力の平均値 C18 は 1.793×10^{22} Nm であるが、これは月と太陽より周期的に $0 \sim 2$ 倍まで変動する。(第 I 部「これならわかる地球の歳差運動」参照) D16 はこのための係数で自由に変化させることができる。

[D1: E6 ブロック] 初期条件

それぞれ時間 t=0 における値で、t0 時間 0s、 $x0(\theta_1)$ コマの傾斜角 23.4° の rad 表示である。 $v0(\theta_1)$ は、コマの傾斜角の角速度 $\dot{\theta}$ で初期値は 0rad/s である。

これは、コマの傾斜角 θ の初期値が章動の波高値になることによる。

また p0 は歳差運動 ϕ の初期位置で 0rad、u0 はコマの回転角 φ の初期位置で 0rad に設定した。

[D9:E11 ブロック]計算実行ボタンと計算カウンター

E11 に計算のステップがリアルタイムで表示される。 その上にあるのは、計算実行ボタン

[G1:I17 ブロック] 計算結果グラフ

エクセルの J 列~Y 列のところに B6 に対応した計算結果が表示される。

列の後ろの数字はエクセル画面の列番である。

任意の列を組み合わせて、グラフを作成することができる。

時間 t は秒。コマの傾斜角の変位 θ 、角速度 $\dot{\theta}$ 、角加速度 $\ddot{\theta}$ 、歳差の変位 ϕ 、角速度 $\dot{\phi}$ は rad で表示。次の ϕ 、 θ 、 $\dot{\theta}$ は度で表示。

続いてØとコマの速度øは秒あたりの回転数で表示した。

次のコマ回転とあるのは B3 の計算時間に対応したコマの総回転数φである。

次の加速度 ϕ 2dot とあるのは歳差の角加速度 $\ddot{\phi}$ 、次のコマ角加速度とあるのはコマの角加速度 $\ddot{\phi}$ で、rad で表示してある。

最後のG16とG17は ϕ 、 θ を正距方位図で示したもので、角度の単位は "である。

(詳細第6章参照)

3 地球の極運動と章動のエクセル VBA

Public An, L3, Ir, La, w3, mgzr As Double Sub tikyu() 'T. Egashira 地球正距方位図付き 2022

Dim init, ed, h, h2, x0, v0, p0, u0, kx(4), kv(4), kp(4), ku(4), d3 As Double Dim i, j As Integer

init = Cells(2, 2): ed = Cells(3, 2): h = Cells(4, 2): h2 = Cells(5, 2)

'定数

An = Cells(16, 2): L3 = Cells(12, 2): Ir = Cells(9, 2): La = Cells(17, 2): w3 = Cells(11, 2): Mt = Cells(18, 2)

'初期值

x0 = Cells(3, 5): v0 = Cells(4, 5): x = x0: v = v0: t = init p0 = Cells(5, 5): p = p0 ' $\phi = 0$: u0 = Cells(6, 5): u = u0 'コマの回転数の初期値 0 ell = Cells(16, 3)

k = F2(t, x0, v0) 'θ2dotの初期値

g = F3(t, x0) 'φ dot の初期値

q = F4(t, x0, g) 'コマの角速度の初期値

a = F5(v0, x0) 'φ2dotの初期値

b = F6(g, v0, x0, a) 'コマの角加速度の初期値

Range ("J:Y"). Clear Contents 'J列~Y列の数値を clear する

For i = 0 To ((ed - init) / h)

j = 1 + i / h2

Cells(11, 5) = i

If $i \mod h2 = 0$ Then

Cells(j, 10) = t: Cells(j, 11) = x: Cells(j, 12) = v

Cells(j, 13) = k: Cells(j, 14) = p: Cells(j, 15) = g: Cells(j, 19) = g /

6. 2831853: Cells(j, 20) = q / 6. 2831853: Cells(j, 21) = u / 6. 2831853: Cells(j,

22) = a: Cells(j, 23) = b

Cells(j, 16) = Application. WorksheetFunction. Degrees(p) * 3600

Cells(j, 17) = Application. WorksheetFunction. Degrees(x) * 3600 - e11 * 3600

Cells (j, 18) = Application. WorksheetFunction. Degrees (v)

```
d1 = Application. WorksheetFunction. Acos (Cos (Cells (j, 11)) * Cos (Cells (16, 2) +
0.000001) + Sin(Cells(j, 11)) * Sin((Cells(16, 2) + 0.000001)) * Cos(Cells(j, 11)) *
14))) '正距方位図 距離 (rad)
c = Application. WorksheetFunction. Asin(Sin((Cells(j, 11))) * Sin(Cells(j, 14)) /
Sin(d1)) '正距方位図 方位角 (rad)
Cells(j, 24) = Application. WorksheetFunction. Degrees(d1 * Sin(c)) * 3600 '正距方
位図 ø 座標(度)
Cells(j, 25) = -(Application. WorksheetFunction. Degrees(d1 * Cos(c)) * 3600 -
0.206) '正距方位図 θ 座標 (度) 補正値-0.206
End If
kx(1) = h * F1(t, x, v)
kv(1) = h * F2(t, x, v)
kp(1) = h * F3(t, x)
ku(1) = h * F4(t, x, kp(1) / h)
kx(2) = h * F1(t + h / 2, x + kx(1) / 2, v + kv(1) / 2)
kv(2) = h * F2(t + h / 2, x + kx(1) / 2, v + kv(1) / 2)
kp(2) = h * F3(t + h / 2, x + kx(1) / 2)
ku(2) = h * F4(t + h / 2, x + kx(1) / 2, kp(2) / h)
kx(3) = h * F1(t + h / 2, x + kx(2) / 2, v + kv(2) / 2)
kv(3) = h * F2(t + h / 2, x + kx(2) / 2, v + kv(2) / 2)
kp(3) = h * F3(t + h / 2, x + kx(2) / 2)
ku(3) = h * F4(t + h / 2, x + kx(2) / 2, kp(3) / h)
kx(4) = h * F1(t + h, x + kx(3), v + kv(3))
kv(4) = h * F2(t + h, x + kx(3), v + kv(3))
kp(4) = h * F3(t + h, x + kx(3))
ku(4) = h * F4(t + h, x + kx(3), kp(4) / h)
nx = x + (kx(1) + 2 * kx(2) + 2 * kx(3) + kx(4)) / 6
nv = v + (kv(1) + 2 * kv(2) + 2 * kv(3) + kv(4)) / 6
np = p + (kp(1) + 2 * kp(2) + 2 * kp(3) + kp(4)) / 6
nu = u + (ku(1) + 2 * ku(2) + 2 * ku(3) + ku(4)) / 6
nt = t + h
```

```
t = nt: x = nx: v = nv:
nk = F2(t, nx, nv): ng = F3(t, nx): nq = F4(t, nx, ng):
k = nk: g = ng: p = np: q = nq: u = nu: a = na: b = nb
na = F5(nv, nx): nb = F6(ng, nv, nx, na)
Next
```

End Sub

Function F1(ByVal t As Double, ByVal x As Double, ByVal v As Double) As Double F1 = v ' θ dot

End Function

Function F2(ByVal t As Double, ByVal x As Double, ByVal v As Double) As Double F2 = (-Mt - ((La + L3 * Cos(An) - L3 * Cos(x)) / Sin(x) ^ 2) * (L3 - ((La + L3 * Cos(An) - L3 * Cos(x)) / Sin(x) ^ 2) * Cos(x)) * Sin(x) / Ir) / Ir ' θ 2dot End Function

Function F3(ByVal t As Double, ByVal x As Double) As Double F3 = (La + L3 * Cos(An) - L3 * Cos(x)) / (Ir * (Sin(x) ^ 2)) ' ϕ dot End Function

Function F4(ByVal t As Double, ByVal x As Double, ByVal g As Double) As Double F4 = w3 - g * Cos(x) 'コマの角速度

End Function

Function F5(ByVal v As Double, ByVal x As Double) As Double F5 = (v / (Ir * Sin(x) ^ 3)) * (L3 * (1 + Cos(x) ^ 2) - 2 * (L3 * Cos(An) + La) * Cos(x)) ' ϕ 2dot

End Function

Function F6(ByVal g As Double, ByVal v As Double, ByVal x As Double, ByVal a As Double) As Double

F6 = g * v * Sin(x) - a * Cos(x) 'コマの角加速度

End Function

4 プログラム解説

プログラムの計算は4次精度ルンゲ・クッタ法にて実行する。 ルンゲクッタ法については下記のサイトがわかりやすい。

「数値計算を使って常微分方程式を解く~ルンゲクッタ法の解説~」

http://shimaphoto03.com/science/rk-method/

 $F1 = v'\theta dot$ (地球の黄道傾斜角 θ の角速度 $\dot{\theta}$)

$$F2 = (-Mt - ((La + L3 * Cos(An) - L3 * Cos(x)) / Sin(x) ^2) *_{-}$$

$$(L3 - ((La + L3 * Cos(An) - L3 * Cos(x)) / Sin(x) ^ 2) * Cos(x)) * _$$

 $Sin(x) / Ir) / Ir' \theta 2dot$

 $x=\theta$ An= θ_1 (初期条件におけるコマの軸の傾斜角 定数)

角加速度 $\ddot{\theta}$ を導く(2.2)式をコード化したもの。

$$\ddot{\theta} = -\left(\frac{L_3}{I}\right)^2 \left\{ \left(\frac{(\cos\theta_1 + z) - \cos\theta}{\sin^2\theta}\right) \left(1 - \left(\frac{(\cos\theta_1 + z) - \cos\theta}{\sin^2\theta}\right) \cos\theta\right) \sin\theta \right. \\ \left. - \frac{1}{S} \left(\frac{g_z}{g}\right) \sin\theta \right\} \right\} (2.2)$$

上式の最後の項に着目し演算を行うと $\ddot{\theta} = -\left(\frac{L_3}{I}\right)^2 \left\{\cdot\cdot\cdot\cdot-\frac{1}{s}(\frac{g_z}{g})sin\theta\right\} = mg_z r sin\theta/I$ となる。

 $mg_z r sin \theta$ は重力モーメントであることがわかる。

地球の場合、これが潮汐による偶力 Mt となる。方向は地軸を立てるように働くことからコマとは逆になる。

F3 = $(La + L3 * Cos(An) - L3 * Cos(x)) / (Ir * (Sin(x) ^ 2)) ' \phi dot$ 歳差運動の角速度 $\dot{\phi}$ を導く(2.1)式をコード化したもの。

$$\dot{\emptyset} = \frac{1}{\sin^2 \theta} \left(L_Z - L_3 \cos \theta \right) \qquad (2.1) \vec{\Xi}$$

F5 = (v / (Ir * Sin(x) ^ 3)) * (L3 * (1 + Cos(x) ^ 2) - 2 * (L3 * Cos(An) + La) * Cos(x)) ' φ 2dot 歳差の角加速度 $\ddot{\varphi}$ を求める式

$$\ddot{\emptyset} = \frac{\dot{\theta}}{I\sin^3\theta} (L_3(1+\cos^2\theta) - 2L_Z\cos\theta) \qquad (2.25) 式をコード化したもの。$$

F6 = g * v * Sin(x) - a * Cos(x) 'コマの角加速度を求める式 $\ddot{\varphi} = \dot{\varphi}\dot{\theta}sin\theta - \ddot{\varphi}cos\theta$ (2.25)式をコード化したもの。

以下は θ と φ を正距方位図で表現するための数式である。(詳細第 6 章参考 3 参照)

d1 = Application. WorksheetFunction. Acos (Cos (Cells (j, 11)) * Cos (Cells (16, 2) + 0.000001) + Sin (Cells (j, 11)) * Sin (Cells (16, 2) + 0.000001)) * Cos (Cells (j, 14))) '正距方位図 距離 (rad)

正距方位図の距離を求める(6.45)式をコード化したもの。

 $cosd = cos\theta_1 cos\theta_2 + sin\theta_1 sin\theta_2 cos(\emptyset_2 - \emptyset_1)$

d1 は初期値 θ_1 の黄道傾斜角 Cells (16, 2)=23. 4° の距離であるが、d1=0 になると次の 方位角が 0/0 となり計算できないため 0.000001 だけずらしてある。

c = Application. WorksheetFunction. Asin(Sin((Cells(j, 11))) * Sin(Cells(j, 14)) / Sin(d1)) '正距方位図 方位角 (rad) 分母にSin(d1)があることに注意。

Cells(j, 24) = Application. WorksheetFunction. Degrees(d1 * Sin(c)) * 3600 '正距方位図 φ 座標(度)

Cells(j, 25) = -(Application. WorksheetFunction. Degrees(d1 * Cos(c)) * 3600 - 0.206) '正距方位図 θ 座標(度)補正値-0.206

-0.206 は 0.000001 だけずらしたことにより、グラフが移動するのを補正したもの。これにより、初期値 θ_1 は 23.4° に設定される。

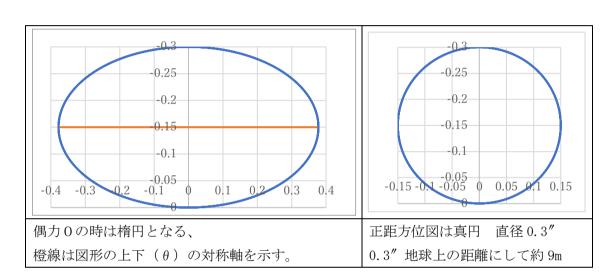
グラフの θ は初期値 θ_1 からの変位を示している。

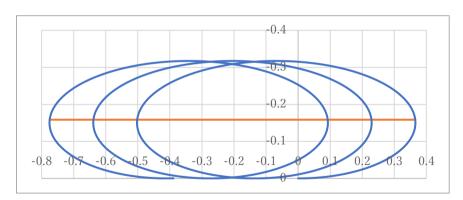
5 計算結果

シミュレーションにより様々な結果が得られるが、ここでは代表的な特性である θ (章動の変位) と ϕ (歳差の変位) を示す。

計算時間 3 恒星日 縦軸 θ 横軸 ϕ 角度の単位は $^{\prime\prime}$ 縦軸の θ は初期値 23.4° からの変位を $^{\prime\prime}$ で示している。

グラフは地軸の立ち上がり(黄道傾斜角の減少)をイメージして縦軸を反転させている。 偶力の働かない状態では角運動量ベクトルは座標(0,0.15)の位置にあって不動である。

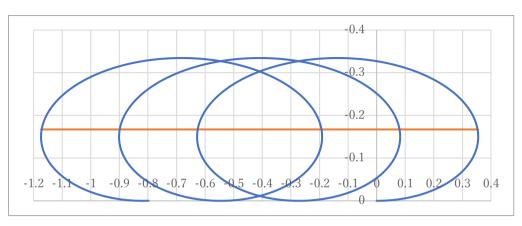




偶力 1.793×10²²Nm (平均值)

角運動量ベクトルは偶力により上下左右に動いているがその平均位置は橙の中央線となる。 角運動量ベクトルは歳差により1恒星日につき1.37″左にシフトしていることがわかる。 これは、地球の北極側から見て歳差が右回転していることを示している。

(注) 分点の歳差運動速度 50. 291″/年=7. 7260×10⁻¹²rad/s (文献 1) 7. 7260×10⁻¹²× (180/ π) ×3600×86164. 10s (恒星日)=1. 373″/恒星日



偶力 1.793×10²²Nm×2 (平均値の 2 倍)

歳差速度は偶力にほぼ比例するので約2.746″/恒星日となる。

第 I 部「これならわかる地球の歳差運動」(11式)参照

参考文献

- 1 『地球の物理学事典』p450~451 朝倉書店 2013
- 2『こまはなぜ倒れないか(物理学演習 One Point3)』安井久一 p40~53 共立出版 1998
- 3 『一般力学』山内恭彦 p127~141 岩波書店 1959