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Abstract

On algebraic quantum field theory, I will focus on the sector theory, the repre-
sentation theory of operator algebras (von Neumann algebras) related to it, and the
relationship with the theory of irreducible decomposition.
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1 General issues of sector theory

A sector is, in the general framework of algebraic quantum field theory, “ (the same
class) superpositionable subspace sorted by a superselection rule (superselective charge)”
[9]. Therefore, no superposition occurs between (vectors or representations of) two dif-
ferent sectors. In terms of the algebra of observables, sector can be described as the
decomposition of the observable algebra (self-adjoint representation) into factor represen-
tations (irreducible decomposition representations)1. Sectors are generally classified by
discrete superselective charges (projections), so situations in which continuous superse-
lective charges appear are not often assumed. However, from the standpoint of broadly
understanding the order parameter, which is a macro-indicator used in thermodynamics
and other fields, the problem of observation becomes clearer. Here, we will start with the
general part.

1As will be discussed later, in the case of type I factor, is not a problem because the representation
of factor has the same meaning as the irreducible representation. However, introductory texts, such as
H.Araki’s are written from the point of view of von Neumann algebras with sectors of type I, which is why
I chose irreducible decomposition here. From I.Ojima’s point of view, or from a broader non-I-type point
of view, it should be called “factorization”, but here, in the sense of showing the problems of irreducible
decomposition, the irreducible decomposition is also included in this paper. I followed a formula ”from
quantum mechanics with finite degrees of freedom to quantum field theory.” I will return to this point
at the end of this paper. One more thing to add here is that when we take the bounded linear operator
L(H) = (∪M(O))′′ as the global operator in the vacuum representation, C1 = (∪M(O))′ is the meaning
of the irreducible representation, which is the same as the uniqueness of the vacuum as described later,
but This is also related to the fact that the world of type I von Neumann algebras actually captures the
internal structure of the infinite quantum world largely (roughly). Although it cannot be arranged in this
note, the paradox concerning the excitation of RQFT that E. Fermi once presented (E.Fermi, Quantum
Theory of Radiation: in J, Math Phys 4, 87-132, 1932) is may be also caused.
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1.1 Summary from the text of R.Haag and H.Araki

Here, the texts of [9] and [15] are mainly organized. The superselection rule assumes
some charges that the excited state has as general charges as a quantity that distinguishes
different localized excitations from the vacuum, and calls it notions. Since it is a localized
excitation, charges in general electromagnetism are not localized according to Gauss’ law.
In general, the baryon number is often assumed.

[Vacuum sector]
Before considering the excited state, let us consider how to treat the “vacuum state”.
In quantum field theory, the vacuum plays an important role with respect to “sponta-

neous symmetry breaking”. In that case, how to select a vacuum becomes a problem. It
is not well understood whether the vacuum is absolutely unique, or whether degeneracy-
like states are common and there is no meaning in choosing a unique vacuum. There
is no problem in assuming global uniqueness when dealing with free fields, but vacuum
polarization occurs as soon as we assume interacting fields. A degenerate state can be
seen as a case where unique vacancies are superimposed, but since interactions are always
occurring in the real world, it is also possible to think that the degenerate vacancies are
decomposed into individual vacancies.

The (degenerate) vacuum disperses in the limit where the volume of space is infinite.
all of them are orthogonal even if a local operator is applied to them [4][5]. Therefore,
globally the superposition of the vacuums dissolves, and the mutual vacuums become non-
equivalent due to the orthogonality of the vacuums. In other words, it can be interpreted
that the vacuum sector appears here. On the other hand, if the volume is finite, the two
vacuum states are generally unitary equivalent2.

According to Reeh-Schlieder’s theorem, the vacuum is defined by the action dense in
the Hilbert space containing the values (A(D)Ω = AΩ). In other words, it becomes a
cyclic vector [13]. Moreover, it is a separable vector for the double commutative ring of
the representation of the action. i.e.

Theorem 2.1 Reeh-Schlieder� �
For the vacuum state ψ, if we assume weakly additivity a. the vacuum vector Ωψ is the
cyclic vector of π(A(D)) in any bounded region D, and π(A(D))

′′
. is the separation

vector.

asee [9: Def:4.13] for this.� �
In general, with respect to an arbitrary coordinate system and an arbitrary operator

Q ∈ A that reduces the energy in that coordinate system, the state of Q ∈ kerψ is called
the vacuum state. And about that vacuum,

2An analogy to this situation is the cluster decomposition of the factor states in algebraic quantum
field theory ( [15] and [17]) is a situation in which the Hilbert space is discretely separated by the vacuum
state, and for two spatially separated physical quantity regions D1,D2, the vacuum becomes in a product
state, that is, a cluster state Therefore, it is not directly related to the orthogonality of the vacuum above.
The spatially distant vacuum representation is noted as like lim

λ→∞
ψ(Q1(αλ,1ψ(Q2)) = ψ(Q1)ψ(Q2) for a

time automorphism α(λx,1) of the Poincar group. This notion is asymptotic equation from the entangled
state to the product state.
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Theorem 2.2� �
(Restricted inhomogeneous Lorentz group: i.e. Poincar group P

↑
+ does not have to be

assumed) The following are equivalent for the vacuum state ψ,
(a) The representaation πψ(A)

′′
is a factor; (πψ(A)

′′
πψ(A)

′
= C1)

(b) πψ(A) is irreducible: (πψ(A)
′
= C1)

(c) The translation invariant vector is proportional to the vacuum vector Ωψ.� �
Therefore, from the standpoint of sector theory, we can see that the (degenerate)

vacuum representation (distributed) exists for each irreducible decomposition, and that
A is separable (discrete ), the vacuum state ψ can be written as a direct integral (direct
sum) such that πψ(A)

′′
is a factor. It also follows that the vacuum representation in a

given region (not spatially separated in the sense of theory of relativity) is unique. It
is also possible to consider that the superselection rule is at work here. In other words,
considering the previous theory of physics, it can be regarded as being separated into
non-equivalent vacuum representations. However, it would depend on the type of von
Neumann algebra of the irreducible representation3.The situation is different for type I
and non-type I cases.

If the irreducible representation of the vacuum representation is von Neumann type
I, the cluster decomposition of the vacuum state is unique from the definition of the
irreducible representation4. However, for finite degrees of freedom, the irreducible rep-
resentation is unique than the unitary equivalence by Stone-von Neumann theorem. In
other words, there is only one vacuum sector.

A more detailed analysis of the vacuum sector can be found in [17]. It assumes three
conditions: relativistic causality, relativistic covariance, and energy-momentum spectral
condition (Araki-Hagg locality condition), and in the intersection with each coherence
subspace (H0.γ := H0∩Hγ ̸= 0), the von Neumann algebras with vacuum sector of typeI∞
is shown to decompose into a facto5(A = ⊕Aγ, H = ⊕Hγ). The sector of vacuum
superselection law is special in the above sense.

[general sector (excitation state)]
Next, we consider an excited state from vacuum. However, not all physical quantities

of excited states can be handled by the sector theory. Initially, the conditions were rather
tight, but the work of Buchholz-Fredenhagen extended the charge conditions involved in
the superselection rule. In general, physical quantities such as energy and momentum are
global observables. In addition to the general definition of vacuum, there are important

3According to Haag’s notation [15: p.144], If U is the total domain and O is the finite domain, then
(as like R( U) = (∪O ⊂ R)

′′
) they are noted as double commutative algebras of the sum of the vacuum

representations of the regions .
4When it comes to the type III argument, the vacuum representation becomes non-equivalent, but

this means that the sectors are on some projections (e.g., the relation between spatial regions), rather
than being compared, it probably depends on the volume of the space. This point is not very clear. This
may be because the vacuum itself does not consider a space-time that is not translation invariant because
the translation invariant vector is a constant multiple of the vacuum vector.

5Here, the I∞ type appears when a subsystem (local region) is considered to be contained in the
enclosing region. That is, when the von Neumann algebra A contains a weakly topological dense
AF(Approximately finite) C∗ algebra as a subalgebra. In this case A is said to be a hyperfinite von
Neumann algebra or an injective von Neumann algebra [7].
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criteria for how to organize deviations from the vacuum state into superselection rules.
That stands for DHR Analysis6. There are basically two criteria.

1) It is a criterion for selecting meaningful localized excited states from the vacuum.
If the excited states are localized in the spacetime region D, then in the relativistic
causal complement D′ which is not affected by D, the excitation representation πω gives
a criterion that is an equivalent representation (unitary equivalence) to the vacuum rep-
resentation π0. i.e,

πω|A(D′) ∼= π0|A(D′), (D′ : unbounded)

2) the requirement that the localized excitation be mobile; This means that what holds
in 1) also holds for space-time translation D + a.

Therefore, if we add 2) to 1), let Ua be the unitary operator from the Hilbert space H0

to Hω, and If we set one space-time region D, for each D and its space-time translation
Da := D + a, any region which is causally independent of Da, there exists a unitary
operator for D′

a ∈ K, resulting in the following equality.

πω(A) = Uaπ0(A)U
∗
a , (A ∈ A(D′

a))

From the above, it is a requirement that physical states with localizable charges excited
from the vacuum (superselective charges) appear to be vacuum-like in spatial regions
where the charge does not reach7.The sector theory considers each relation and structure
of the unitary equivalence class [π] of the representations π that satisfies 1) and 2) above.
The representation obtained by defining the automorphism of the representation on the
domain D in this equivalence class is called the sector. In terms of physics, it is “the
algebraic factor representation (irreducible representation) of the observable”.

In Araki’s text, two additional assumptions (A) and (B) are made to analyze the DHR
analysis based on 1) and 2) above.

（A)　Haag duality:
For any double cone region D, the following relation is required with respect to the

vacuum representation π0.　
　 π0(A(D))′ = [

∪
{π0(A(D1));D1⊂D′}]′′∼=π0(A(D′))′′

(Note D1 ⊂ D′, where D′ is the causal subset of D). The last ∼= is according to 1)
above. The symbol of (bi)commutant (bi)commutant means von Neumann ring theorem
(density theorem), but what is important is the vacuum region. The duality is that
considering the co-expression of the vacuum representation onD is the same as considering
the vacuum representation on D′.

For the open future cone D, D1(D̄ ⊂ D1) containing it, and any projection E of
A(D) ( ̸= 0), there exists an isometric operator W of A(D1) that satisfies WW ∗ = E.
Using the vacuum representation, this property can be rewritten as follows [10]. Let π0

6Doplicher-Haag-Roberts.
7However, in general, the electric charge responsible for the electromagnetic force is a long-range force

(against relativistic causality), so it does not apply according to Gauss’s law. Generally refers to localized
charge such as strong force (QCD).
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be a vacuum representation, assume the above D̄ ⊂ D1, and let D2 be D2⊂D
′∩D1, for a

non-zero projection in E∈π0(D), we have E∼I (mod π0(D1) ).

This Borcher property reflects the property of type III von Neumann algebras8.
Looking at [9] and [11], the above property is the Poincar invariance and the energy

condition (the analytic vector exists for the energy operator and the power action is a pos-
itive value). This point seems important when considering superselection, superposition,
and split property.

1.2 Supplement: Special features of vacuum

Here, we summarize the peculiarities of the vacuum state. The state of the vacuum, if
it is a degenerate state, is an important state in elementary particle theory, such as the
appearance of a vacuum in the direction of breaking the symmetry when the degeneracy
is loosen in spontaneous symmetry breaking.

The question of how many vacuums there are (non-equivalent vacancies), or in what
state they are unique, is not currently known without taking into account the size of the
Hilbert space and the nature of the operator taking the vacuum expectation. However,
from the point of view of algebraic quantum theory, there is a famous theorem for the
vacuum state.

In [Theorem 2.1], we arranged the Reeh-Schlider theorem as an representation based
on Araki’s text. In particular, the vacuum state is defined by the restricted inhomogeneous
Lorentzian group: when we assume the Poincar group P

↑
+ transformations and the spectral

condition (also by translation the closed set of the (forward) light cone ), we have a cyclic
and split vector. This is called the “standard state” of vacuum [10]. This standard
representation is derived as a special case of the representation of von Neumann algebras
when we consider the “Weight” is semi-finite, faithful and normal in the theory of operator
algebras, which is derived as a special case [1].

Also, as a philosophical problem, if the observable algebra is spatial, the vacuum is a
separating vector for each local algebra, which induces a nonlocal problem [16]. Since the
discussion around here is deep and delicate, I will omit it here.

2 The Meaning of Sector Theory

2.1 Relationship with superselective charge

A sector, as mentioned at the beginning of this paper, refers to a superpositionable sub-
space of equivalence classes sorted by superselective charges. Traditionally, pure states
are classified according to their equivalence classes. Today this sector is being analyzed
in detail, including excited states, and it makes no sense to expand on the whole here.
Here, I would like to organize only the points according to [9][10].

Sector theory is based on the vacuum representation. Fredenhagen calls a sector that
satisfies Haag’s duality a “simple sector”[13].I will explain this point briefly. On the

8If a von Neumann algebra M is nonfinite and has a nonzero projection, then M is of type III.
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vacuum representation π0(A), we define the homomorphism ρ which defines the represen-
tation of the excited state satisfying the previous first criterion for the DHR analysis, for
A ∈ A(D′), as ρ(A) = V π(A)V ∗9. In that case, instead of the equivalence class [π] for
the representation of excited states, we have ρ(A):= πρ(A).

By this, for an excited state, an endomorphism is defined, and ρ is said to be localized
when ρ(A) = A (making A invariant). The support of this ρ is the area D in question.
By investigation of the equivalence classes of multiple localized automorphisms and the
mobility of ρ with support within the domain, the classification of excited states and the
statistical properties of bosons and fermions can be explored in the sector theory (derived
as a statistic method). This ρ is taken as a charged quantum number by its equivalence
class, which corresponds to the superselective charge.

Returning to the vacuum representation, in this index ρ is said to be a simple sector
if it is an irreducible decomposition, i.e., one-dimensional, and thus the vacuum sector is
simple according to [Theorem 2.2].

2.2 Discrete Superselective Charges and Continuous Charges

We found that superselective charges are important in classifying superposition subspaces
into equivalence classes by superselectition rules. However, the classification by this su-
perselective charge is done in a discrete sense, and the classification of the representation
space is also discrete sum. I.Ojima has clearly stated this point [2], and in fact, in [12],
etc., the charge acting on the superselection rule must be localized, and continuous sectors
are hardly considered.

2.3 From Shigeru Machida’s interpretation

The requirement for continuous superselective charges associated with this continuous
sector in observational problems is found in [6]. According to Machida, contraction of
the wave packet occurs if we assume a continuous superselective charge between the
observation devices (eg, the array of films that detect the photons). In practice, this is
impossible due to the finite number of particles that make up the observation equipment,
but by increasing the accuracy, it is possible to observe the approximate contraction of
the wave packet. In other words, if the distribution of the particles in the film that
detects the photons is concentrated in one place like a delta function, the contraction of
the wave packets will not occur and a quantum interference effect called superposition
will be found. become.

This is related to what is written in [8], so I will explain it briefly. From the point
of view of algebraic quantum field theory, the superposition of wave functions (state
functions) is the superposition of “two states ω1 and ω2 and “The GNS representations
πω1 and πω2 associated with each are not disjoint intertwitting maps containing unitary
maps”10 or “they are not unrelated representations” are equivalent .That is, if two rep-

9V is a unitary operator and the right-hand side is bounded: V π(A)V ∗ = A: a unitary operator from
the representation space to the Hilbert space.

10In the case of irreducible representations, unitary non-equivalence is meaningful, but we also consider
cases where it is not. See [2] for this.
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resentations are not disjoint, they will not be separated into different subspaces, since no
orthogonal projections are attached to the representations. If a representation π(A) is an
irreducible representation, then u satisfying [u.π(A)] = 0 is CI = π(A)′, which represents
superposition (coherent).

Machida’s explanation seems to be somewhat confusing because there is no type clas-
sification of von Neumann algebras. Here, the superposition, limited to finite particle
systems, is described by a von Neumann algebras of type I, which (from the Stone-von
Neumann uniqueness theorem) is the sector is determined to be one11.

If we accept the continuous superselective charge, does it differ from the explanation
when the superselective charge exists discretely? If it exists discretely, in a finite particle
system, the uniqueness theorem says that superposition always requires one sector, so
there will be no contraction of the wavepacket. However, the observer is a classical
system, and in general the product state of the quantum system and the classical system
should give rise to a mixed state. A spot of light on the film and a trace of a spot on
another film gradually build up shadows and show interference fringes, which could be
interpreted as all the same sectors being observed in similar conditions. It is possible.
Since each of πi(A),(i ∈ N) representing infinite light points is unitary equivalent, it is
interpreted that it is preserved even after observation. There is also the possibility that
it could be done.

It seems that Machida brings up the continuous charge here in order to break this uni-
tary equivalence. But in fact, it would rather have to first set the type of von Neumann
algebra, or the infinite quantum system. In the case of type III, which commonly appears
in infinite particle systems, even if a continuous superselective charge can be introduced,
only a mixed state can be expected from the point of view of the traditional superselection
rule. If it is a finite particle system, it can be understood as type I, but in this case as
well, if we do not assume the mixed phase described by Ojima [2: 45], which is an inter-
mediate position between the pure state and the mixed state, interference will occur in an
asymptotic sense. The “observation” of the effect becomes incomprehensible. Machida’s
explanation was somewhat unclear on this point. However, the argument would change
if matrix elements (as order parameter) were taken into account, which indicate changes
in the number of particles as like in the superfluid phase transition.

To request continuous superselective charges or continuous sectors, a different ap-
proach seems necessary. In [2:37page], there is a clear interpretation; “we does not avoid
the appearance of continuous sectors in algebraic quantum field theory and we incorpo-
rates “order parameter” into the sector theory”.

2.4 Izumi Ojima’s Inquiry

Ojima’s proposal itself is written in [3], but it may seem a bit difficult to those who come
into contact with this theory for the first time. So if you take out only the points by
replacing the bones, it will be as follows. Extending the view of the pure state from the
standpoint of quantum field theory to the “pure phase” represented by the thermodynam-
ically pure phase, and the mixed state to the complementary concept of “mixed phase”.

11As seen in the Aharonov-Bohm effect, etc., there are exceptions that violate the uniqueness theorem
depending on external conditions such as boundary conditions.
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It’s a way of looking at it.
This view may not be just to connect quantum field theory to the concepts of quan-

tum statistical mechanics. Rather, it is a reversal of our way of thinking, bound by the
framework of quantum physics of finite particle systems. Finite particle systems basically
deal only with the world of type I von Neumann algebras. Then, the story ends with the
irreducible decomposition (representation) and reducible decomposition (representation)
of the expression π(A). However, in the case of type III, which usually appears in in-
finite particle systems, the representations are in principle non-equivalent to each other
when looking at the irreducible representations from the beginning. It may be in thermal
equilibrium where it cannot be decomposed further. Considering that the irreducible ex-
pression as mathematics is not directly linked to the thermal equilibrium state in physics,
the concept is expanded to cover the thermal state (mixed state).

Along with this, a macro index, i.e. the order parameter, is derived for superselective
charges and discrete ordinary sectors. An order parameter is generally an order parameter
possessed by the “phase” of a physical system [14]. For example, ”density” is one of the
indices for distinguishing the phases of substances (distinguishing phase transitions) such
as liquid, gas, and solid. In a magnetic material, macroscopically, it is a magnetized
structure, but since it is possible today by adding magnetic moments, the microscopic
spin becomes important. As an order parameter that appears in spontaneous symmetry
breaking in elementary particle theory [4], it is related to the conserved quantity Q when
calculating the vacuum expectation value. If the symmetry is not broken, Q|0 >= 0
for the vacuum state |0 >, and formally, Q|0 ≯= 0 is broken. But on the divergence of
the expected value, we consider the commutation relation i[Q,A(x)] = δQA(x)

12, with the
local operator A(x) as an index, and this δQA(x) is now the order parameter (δQA(x)|0 > ̸=
0 be the index of spontaneous symmetry breaking.).

While the order parameter has become a macro index in thermodynamics, today it also
has a connection with the micro. Also, due to the nature of the index, it is basically a con-
tinuous parameter. By using this as a sector classification index, continuous sectors can be
understood. In addition, as Machida argued, the difficulties of conventional observational
theory can also be understood consistently. Through this discussion, Ojima suggests that
pure phases (single-sector internal structure understanding: peculiar states of quantum
systems: pure coherence), mixed phases (probabilistic mixing of multiple sectors: quan-
tum systems and observational systems (macroenvironmental systems) coexistence with,
superselection rule (conventional mixed macrostate, but with order parameter).

3 Concluding Remarks: From the Viewpoint of Fac-

tor

Finally, we will organize what has been said so far from the point of view of factor.
For von Neumann ring A, let A∩A′ be the center of A (Z(A)) So, if Z(A) = C1, then

A is said to be a factor. Factor provide an important way of classifying von Neumann
rings through factor decomposition of von Neumann algebras [1], so to consider factor is

12This commutation relation follows from the infinitesimal transformation of Noether’s theorem.
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to consider properties of the von Neumann algebras in question. be the same.
By the way, when I organized the uniqueness of the vacuum earlier, I mentioned vac-

uum degeneracy and types of algebras. Using the theory of irreducible decompositions
of algebra, from the standpoint of algebraic quantum field theory, “a vacuum represen-
tation has a unique vacuum state Ω” is “an irreducibility of a vacuum representation”.
Furthermore, “the vacuum representation is the same as A = B(H): the right-hand side
is a bounded linear operator on some Hilbert space”. This is the case when A is a factor.

The irreducible decomposition is based on the quantum physical observational algebra
with finite degrees of freedom in the case of von Neumann algebras of type I. In this case,
the irreducible decomposition becomes unique, as we have said many times. Therefore, in
the case of type I, vacuum representations are all unitary equivalents, since in principle
there is only one irreducible representation. However, when it comes to infinite degrees
of freedom, there are an infinite number of different irreducible representations. There-
fore, since the equivalence between one irreducible representation and another irreducible
representation does not hold, we have representations of degenerate vacuums, and so on.
In other words, in the case of non-I type, even if we take irreducible representations, we
cannot connect each representation. No further analysis possible (The so-called “abun-
dance of irrelevance”: the covariance of vacuum expressions such as Goldstone’s theorem
is broken)13. Therefore, in the case of non-type I, it is important to analyze states with
non-trivial centers (Z(A) ̸= C1) as Ojima mentioned14. And according to Gelfand’s rep-
resentation theorem, a commutative algebra is equivalent to a continuous function ring
on a Hausdorff space. Therefore, from the viewpoint of spectral analysis, it is important
to diagonalize the non-trivial center and look at its structure algebraically.

As I wrote in the opening footnote, it is important to think of sector theory as “de-
composition into factor representations” rather than based on irreducible decomposition,
and I-type irreducible decomposition is an exception. , is important to understand. In
other words, when we consider the decomposition of the center (Z(A)), it is better to un-
derstand the sector as a ”partial representation” of each decomposed (in a broad sense)
in the non-I-type world (because most real world are non-type I).

13Note; the Reeh-Sclider theorem is not violated. Since irreducibility means the smallest unit of
decomposition, the vacuum is unique, cyclic and separable in some smallest vacuum representation.
There are (infinitely many) irreducible representations in non-I types. Also, the vacuum representation
and the vacuum vector are different concepts. However, since the vacuum representation shows how to
take the expected value, it is possible to interpret that the vacuum vector is different. After all, if we
do not observe something about the vacuum, we cannot obtain the vacuum expected value (observed
value). Since the vacuum vector is interpreted as a state in which there are no particles in Fock space,
it seems physically strange that it differs from place to place. Also, the vacuum cannot be considered to
be the same state spreading. There are worlds other than vacuum (excited worlds) everywhere in this
world. So what exactly is a pure vacuum remains a mystery. It should be emphasized, however, that in
algebraic quantum field theory the Hilbert space need not be set up first. A vector is constructed from
the observational algebra (GNS construction method). At this time, a vacuum vector is required as a
cyclic vector (as a minimum requirement). Physics is meaningless without taking into account the means
of observing the vacuum.

14Ojima describes factor representation in [2]. The importance of mixed phase analysis.
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