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ABSTRACT 

 

Some peculiar issues of photocatalytic reactions which may have 

been overlooked in many reports are reviewed. In the beginning, electron 

transfer (ET) initiated reactions at the solid surface, which is essential in 

photocatalysis, are classified to four types based on the extent of the 

interaction of the reactant with the solid surface. Those four ET reactions 

are reversible reactions, irreversible connected reactions, deposition, and 

dissolution. Most photocatalytic reactions are irreversible ET connected 

reactions and deposition of the products that strongly interact with the 

solid surface, while, in electrochemistry, reversible reaction for the 

reactants of weak interaction is mainly treated. Though the relationship 

between the reaction rate and the reaction energy has been discussed with 

the Marcus-Gerischer theory of electrochemistry, the acceptance of this 
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theory for photocatalysis may cause difficulties because the frequency of 

the ET is limited by the photon absorption and the ET reaction rate is 

compete with the carrier recombination. Namely, the usage of the 

reorganization energy may need careful consideration for the kinetic 

analysis in semiconductor photocatalysis. The electric potential near the 

photocatalyst surface was visualized and it was realized that the potential 

gradient was localized near the surface holes, whereas it was expanded 

to the whole surface of the flat electrode in electrochemistry. Since the 

semiconductor photocatalysts are not wired to an electric source, the 

charges stored in the semiconductor particle can be evaluated. Then, a 

precise energy band position could be obtained and it may be different 

from the measurements by electrochemical methods, which was 

discussed in terms of the band alignments of anatase and rutile TiO2 

crystals. The analysis of the reaction kinetics for heterogeneous 

photocatalysis should be different from that for the homogeneous 

solution because a pair of the redox reactions take place in the same 

particle. Then, the novel method for applying the Langmuir-

Hinshelwood equation was presented to describe the photocatalytic 

oxidation as a function of both the reactant concentration and the light 

intensity.  
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