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ABSTRACT 

Semiconductor photocatalysis has been recognized useful owing to the prominent functions on 

environmental cleaning and expected to be practically applied for the solar fuel production. 

Hydroxyl radical (•OH) has been believed to play a role of the key reactant in photocatalysis. 

However, no direct evidence of the presence of •OH has been presented. In gas phase we could 

confirm the presence of •OH as the finger print of rotational spectra using a laser-induced 

fluorescence spectroscopy technique. On the other hand, in aqueous solution the direct detection 

of •OH has been difficult. Recently, the fluorescence probe method was found to be convenient 

and could be applied to various reaction systems. To understand the reaction of •OH in detail at 

the surface of photocatalyst, electrochemical analysis of the irradiated semiconductors was 

attempted by a fluorescence probe method. For the single crystal rutile TiO2 electrodes, the facet 

dependence on the •OH formation could be observed along with oxygen evolution by the 

photooxidation of water. Besides the UV responsive TiO2, widely noticed visible-light-responsive 

photocatalysts, such as narrow bandgap BiVO4 and plasmon sensitized Au/TiO2, were also 

examined. Thus, we reviewed the detection procedures and the contribution of •OH in the 

reactions of the BiVO4 and TiO2 photoelectrodes, and the TiO2 and Au/TiO2 photocatalysts. As a 

result, the amount of •OH formed in the photocatalysis was found to be very small, and then the 

contribution in the oxidation reaction is not significant.  
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