890
The smallest squares containing k 890's :
    28900 = 1702,
    2890890289 = 537672,
    289089028900 = 5376702.
(343 / 890)2 = 0.148527963... (Komachic).
890k + 12104k + 22873k + 35422k are squares for k = 1,2,3 (2672, 438772, 76279232).
8902 + 8912 + 8922 + ... + 107862 = 6466042,
    8902 + 8912 + 8922 + ... + 124012 = 7972062.
by Yoshio Mimura, Kobe, Japan
891
The smallest squares containing k 891's :
    198916 = 4462,
    89189136 = 94442,
    148911891078916 = 122029462.
Komachi square sum : 8912 = 1892 + 4322 + 7562.
Komachi cubic sum : 8912 = 13 + 33 + 53 + 263 + 493 + 873.
(1 + 2)(3 + 4 + 5 + 6 + 7 + 8)(9)(10 + 11 + 12)(13 + 14) = 8912.
8912 = 793881, 7 + 9 / 3 + 881 = 891.
3-by-3 magic squares consisting of different squares with constant 8912:
| A2 | B2 | C2 | 
| D2 | E2 | F2 | 
| G2 | H2 | K2 | 
| where (A, B, C, D, E, F, G, H, K) = | |
| (3, 384, 804, 624, 573, 276, 636, 564, 267), | (7, 94, 886, 626, 631, 62, 634, 622, 71), | 
| (7, 254, 854, 334, 791, 238, 826, 322, 89), | (10, 455, 766, 505, 634, 370, 734, 430, 265), | 
| (11, 308, 836, 484, 704, 253, 748, 451, 176), | (14, 151, 878, 487, 734, 134, 746, 482, 71), | 
| (18, 279, 846, 441, 738, 234, 774, 414, 153), | (24, 228, 861, 588, 651, 156, 669, 564, 168), | 
| (34, 298, 839, 514, 679, 262, 727, 494, 146), | (34, 521, 722, 554, 578, 391, 697, 434, 346), | 
| (41, 146, 878, 526, 713, 94, 718, 514, 119), | (41, 386, 802, 542, 626, 329, 706, 503, 206), | 
| (46, 182, 871, 377, 794, 146, 806, 361, 118), | (46, 503, 734, 599, 526, 398, 658, 514, 311), | 
| (48, 381, 804, 444, 708, 309, 771, 384, 228), | (50, 370, 809, 409, 710, 350, 790, 391, 130), | 
| (58, 329, 826, 574, 646, 217, 679, 518, 254), | (71, 158, 874, 214, 854, 137, 862, 199, 106), | 
| (71, 346, 818, 398, 746, 281, 794, 343, 214), | (71, 398, 794, 622, 526, 361, 634, 599, 182), | 
| (73, 326, 826, 554, 631, 298, 694, 538, 151), | (84, 501, 732, 579, 588, 336, 672, 444, 381), | 
| (106, 358, 809, 617, 554, 326, 634, 599, 182), | (122, 274, 839, 311, 806, 218, 826, 263, 206), | 
| (126, 423, 774, 522, 666, 279, 711, 414, 342), | (134, 262, 841, 314, 809, 202, 823, 266, 214), | 
| (134, 295, 830, 470, 734, 185, 745, 410, 266), | (137, 434, 766, 526, 662, 281, 706, 409, 358), | 
| (146, 409, 778, 617, 514, 386, 626, 602, 199), | (202, 521, 694, 601, 598, 274, 626, 406, 487), | 
| (204, 501, 708, 552, 636, 291, 669, 372, 456), | (214, 574, 647, 601, 578, 314, 622, 361, 526) | 
8912 = 793881, 7 + 9 + 3 + 8 + 8 + 1 = 62,
    8912 = 793881, 7 + 9 + 3 + 881 = 302.
by Yoshio Mimura, Kobe, Japan
892
The smallest squares containing k 892's :
    168921 = 4112,
    8928927049 = 944932,
    108923892828921 = 104366612.
8922± 3 are primes.
12 + 22 + ... + 8922 = 236975410, a consecutive square sum with distinct digits.
61352 = 8432 + 8442 + 8452 + ... + 8922.
10k + 218k + 542k + 674k are squares for k = 1,2,3 (382, 8922, 218122).
    154k + 222k + 258k + 810k are squares for k = 1,2,3 (382, 8922, 237322).
8922 = 795664, 79 + 5 + 6 + 6 + 4 = 102.
12 + 22 + 32 + ... + 8922 = 236975410, the first 9-digit sum with different digits,
    (there are 3 such sums in all.)
by Yoshio Mimura, Kobe, Japan
893
The smallest squares containing k 893's :
    389376 = 6242,
    52089389361 = 2282312,
    2388938938893529 = 488767732.
8932 = 797449, a square with 3 kinds of digits.
(828 / 893)2 = 0.859721436... (Komachic).
A cubic polynomial :
    (X + 196)(X + 528)(X + 693) = X3 + 8932X2 + 4037882X + 717171842.
517k + 893k + 3525k + 3901k are squares for k = 1,2,3 (942, 53582, 3225142).
3-by-3 magic squares consisting of different squares with constant 8932:
| A2 | B2 | C2 | 
| D2 | E2 | F2 | 
| G2 | H2 | K2 | 
| where (A, B, C, D, E, F, G, H, K) = | |
| (12, 173, 876, 264, 852, 43, 853, 204, 168), | (12, 173, 876, 524, 708, 147, 723, 516, 92), | 
| (12, 264, 853, 597, 632, 204, 664, 573, 168), | (16, 93, 888, 267, 848, 84, 852, 264, 43), | 
| (21, 92, 888, 412, 789, 72, 792, 408, 61), | (36, 488, 747, 587, 576, 348, 672, 477, 344), | 
| (43, 168, 876, 492, 736, 117, 744, 477, 128), | (43, 300, 840, 600, 632, 195, 660, 555, 232), | 
| (48, 331, 828, 448, 708, 309, 771, 432, 128), | (72, 384, 803, 484, 693, 288, 747, 412, 264), | 
| (83, 324, 828, 468, 723, 236, 756, 412, 237), | (93, 432, 776, 624, 587, 252, 632, 516, 363), | 
| (124, 237, 852, 348, 804, 173, 813, 308, 204), | (132, 588, 659, 621, 412, 492, 628, 531, 348), | 
| (216, 547, 672, 597, 408, 524, 628, 576, 267) | 
8932 = 797449, 7 + 97 + 4 + 4 + 9 = 112.
Page of Squares : First Upload January 9, 2006 ; Last Revised April 1, 2011by Yoshio Mimura, Kobe, Japan
894
The smallest squares containing k 894's :
    89401 = 2992,
    894189409 = 299032,
    8949894489469924 = 946038822.
Komachi square sum : 8942 = 52 + 692 + 3472 + 8212.
8942 = 53 + 523 + 873.
59898k + 167178k + 206514k + 365646k are squares for k = 1,2,3 (8942, 4559402, 2501608682).
(32 + 4)(52 + 4)(62 + 4)(72 + 4) = 8942 + 4,
    (12 + 4)(22 + 4)(32 + 4)(52 + 4)(72 + 4) = 8942 + 4.
The 4-by-4 magic squares consisting of different squares with constant 894:
| 
 | 
 | 
8942 = 799236, 7 + 9 + 9 + 2 + 3 + 6 = 62,
    8942 = 799236, 7 + 9 + 92 + 36 = 122,
    8942 = 799236, 7 + 99 + 2 + 36 = 122,
    8942 = 799236, 79 + 9 + 236 = 182.
8942 = 799236 appears in the decimal expression of π
      π = 3.14159•••799236••• (from the 65187th digit).
by Yoshio Mimura, Kobe, Japan
895
The smallest squares containing k 895's :
    5089536 = 22562,
    198950789521 = 4460392,
    8958958895104 = 29931522.
3-by-3 magic squares consisting of different squares with constant 8952:
| A2 | B2 | C2 | 
| D2 | E2 | F2 | 
| G2 | H2 | K2 | 
| where (A, B, C, D, E, F, G, H, K) = | |
| (5, 210, 870, 570, 670, 165, 690, 555, 130), | (5, 354, 822, 570, 635, 270, 690, 522, 229), | 
| (14, 405, 798, 555, 630, 310, 702, 490, 261), | (30, 130, 885, 171, 870, 122, 878, 165, 54), | 
| (30, 130, 885, 410, 789, 102, 795, 402, 86), | (30, 390, 805, 427, 714, 330, 786, 373, 210), | 
| (30, 390, 805, 630, 581, 258, 635, 558, 294), | (30, 410, 795, 630, 555, 310, 635, 570, 270), | 
| (54, 453, 770, 490, 630, 405, 747, 446, 210), | (75, 270, 850, 346, 795, 222, 822, 310, 171), | 
| (75, 294, 842, 450, 742, 219, 770, 405, 210), | (75, 450, 770, 518, 651, 330, 726, 418, 315), | 
| (130, 390, 795, 555, 662, 234, 690, 459, 338), | (130, 555, 690, 597, 570, 346, 654, 410, 453), | 
| (165, 570, 670, 618, 410, 501, 626, 555, 318), | (198, 486, 725, 570, 635, 270, 661, 402, 450), | 
| (210, 526, 693, 555, 630, 310, 670, 357, 474) | 
8952 = 801025, 8 + 0 + 1 + 0 + 2 + 5 = 42.
Page of Squares : First Upload January 9, 2006 ; Last Revised October 9, 2009by Yoshio Mimura, Kobe, Japan
896
The smallest squares containing k 896's :
    26896 = 1642,
    498896896 = 223362,
    88968962416896 = 94323362.
The squares which begin with 896 and end in 896 are
    8961272896 = 946642,   89602040896 = 2993362,   896172728896 = 9466642,
    896498410896 = 9468362,   8960060408896 = 29933362,...
12 + 22 + ... + 8962 = 240175936, a consecutive square sum with distinct digits.
(345 / 896)2 = 0.148259376... (Komachic).
8962 = (52 + 7)(72 + 7)(212 + 7).
8962 is the 6th square which is the sum of 7 sixth powers : 46 + 46 + 46 + 46 + 86 + 86 + 86.
A cuic polynomial :
    (X + 896)(X + 1269)(X + 2268) = X3 + 27492X2 + 37021322X + 25787704322.
Komachi equation: 8962 = - 92 * 82 + 72 * 62 * 52 * 42 + 322 * 102.
12 + 22 + 32 + ... + 8962 = 240175936, the second 9-digit sum with different digits (see 892).
8962 + 8972 + 8982 + ... + 65132 = 3031072.
8962 = 802816, 8 + 0 + 2 + 8 + 1 + 6 = 52,
    8962 = 802816, 82 + 02 + 22 + 82 + 12 + 62 = 132,
    8962 = 802816, 80 + 2 + 81 + 6 = 132,
    8962 = 802816, 802 + 22 + 82 + 162 = 822.
by Yoshio Mimura, Kobe, Japan
897
The smallest squares containing k 897's :
    678976 = 8242,
    95589798976 = 3091762,
    128974089768976 = 113566762.
8972± 2 are primes.
8972 = 253 + 683 + 783.
897k + 2806k + 9890k + 12328k are squares for k = 1,2,3 (1612, 160772, 16922712).
8972 + 8982 + 8992 + ... + 14252 = 269332,
    8972 + 8982 + 8992 + ... + 17602 = 397322.
3-by-3 magic squares consisting of different squares with constant 8972:
| A2 | B2 | C2 | 
| D2 | E2 | F2 | 
| G2 | H2 | K2 | 
| where (A, B, C, D, E, F, G, H, K) = | |
| (7, 152, 884, 268, 844, 143, 856, 263, 52), | (7, 524, 728, 616, 532, 377, 652, 497, 364), | 
| (18, 261, 858, 453, 738, 234, 774, 438, 117), | (21, 162, 882, 558, 693, 114, 702, 546, 117), | 
| (25, 172, 880, 628, 625, 140, 640, 620, 103), | (31, 208, 872, 488, 728, 191, 752, 481, 88), | 
| (32, 89, 892, 212, 868, 79, 871, 208, 52), | (32, 353, 824, 464, 712, 287, 767, 416, 208), | 
| (40, 455, 772, 620, 572, 305, 647, 520, 340), | (44, 292, 847, 487, 704, 268, 752, 473, 124), | 
| (52, 143, 884, 416, 788, 103, 793, 404, 112), | (52, 208, 871, 572, 679, 128, 689, 548, 172), | 
| (52, 416, 793, 527, 628, 364, 724, 487, 208), | (52, 472, 761, 572, 569, 392, 689, 508, 268), | 
| (54, 318, 837, 507, 702, 234, 738, 459, 222), | (65, 472, 760, 520, 640, 353, 728, 415, 320), | 
| (68, 199, 872, 532, 712, 121, 719, 508, 172), | (68, 256, 857, 364, 793, 208, 817, 332, 164), | 
| (88, 313, 836, 583, 616, 292, 676, 572, 143), | (89, 448, 772, 592, 551, 388, 668, 548, 241), | 
| (102, 486, 747, 549, 558, 438, 702, 507, 234), | (128, 359, 812, 409, 752, 268, 788, 332, 271), | 
| (136, 548, 697, 583, 476, 488, 668, 527, 284), | (143, 388, 796, 572, 656, 217, 676, 473, 352), | 
| (208, 383, 784, 416, 752, 257, 767, 304, 352), | (212, 497, 716, 584, 628, 263, 647, 404, 472) | 
8972 = 804609, 83 + 03 + 43 + 63 + 03 + 93 = 392,
    8972 = 804609, 8 + 0 + 4 + 60 + 9 = 92.
8972 = 804609 appears in the decimal expression of π
      π = 3.14159•••804609••• (from the 25022th digit).
by Yoshio Mimura, Kobe, Japan
898
The smallest squares containing k 898's :
    589824 = 7682,
    117089889856 = 3421842,
    2465898689889856 = 496578162.
8982 = 806404, a square with even digits.
(32 - 4)(42 - 4)(102 - 4)(122 - 4) = 8982 - 4.
2! + 2! + 8! + 8! + 9! + 9! = 8982.
Page of Squares : First Upload January 9, 2006 ; Last Revised October 2, 2006by Yoshio Mimura, Kobe, Japan
899
The smallest squares containing k 899's :
    148996 = 3862,
    18999589921 = 1378392,
    69899899899456 = 83606162.
8992 = 808201, 80 + 820 - 1 = 899.
8992 = 493 + 603 + 783.
8992 + 9002 + 9012 + ... + 11372 = 157742,
    8992 + 9002 + 9012 + ... + 12102 = 186942,
    8992 + 9002 + 9012 + ... + 24572 = 685962,
    8992 + 9002 + 9012 + ... + 28102 = 846062,
    8992 + 9002 + 9012 + ... + 86982 = 4681302.
(13 + ... + 8363)(8373 + ... + 8993) = 710619829922,
    (13 + ... + 1253)(1263 + ... + 4763)(4773 + ... + 8993) = 3463057003770002.
3-by-3 magic squares consisting of different squares with constant 8992:
| A2 | B2 | C2 | 
| D2 | E2 | F2 | 
| G2 | H2 | K2 | 
| where (A, B, C, D, E, F, G, H, K) = | |
| (1, 174, 882, 414, 783, 154, 798, 406, 81), | (15, 226, 870, 530, 705, 174, 726, 510, 145), | 
| (26, 225, 870, 495, 730, 174, 750, 474, 145), | (26, 303, 846, 342, 786, 271, 831, 314, 138), | 
| (33, 334, 834, 594, 618, 271, 674, 561, 198), | (54, 321, 838, 433, 726, 306, 786, 422, 111), | 
| (66, 161, 882, 273, 846, 134, 854, 258, 111), | (66, 294, 847, 609, 638, 174, 658, 561, 246), | 
| (78, 334, 831, 534, 687, 226, 719, 474, 258), | (98, 321, 834, 609, 638, 174, 654, 546, 287), | 
| (114, 593, 666, 622, 534, 369, 639, 414, 478), | (126, 522, 721, 566, 609, 342, 687, 406, 414), | 
| (134, 513, 726, 618, 474, 449, 639, 566, 282), | (161, 522, 714, 582, 609, 314, 666, 406, 447) | 
8992 = 808201, 82 + 02 + 82 + 202 + 12 = 232,
    8992 = 808201, 83 + 03 + 83 + 203 + 13 = 952,
    8992 = 808201, 80 + 8 + 201 = 172,
    8992 = 808201, 80 + 8201 = 912.
by Yoshio Mimura, Kobe, Japan
