770
The smallest squares containing k 770's :
    770884 = 8782,
    17701770304 = 1330482,
    1770687770770681 = 420795412.
7702 is the third square which is the sum of 10 seventh powers.
7702± 3 are primes.
7702 = (12 + 6)(22 + 6)(922 + 6) = (12 + 6)(42 + 6)(622 + 6) = (12 + 6)(42 + 6)(72 + 6)(82 + 6)
    = (22 + 6)(82 + 6)(292 + 6) = (42 + 6)(72 + 6)(222 + 6) = (82 + 6)(922 + 6).
Komachi Square Sum : 7702 = 82 + 942 + 1362 + 7522.
The 4-by-4 magic squares consisting of different squares with constant 770:
| 
 | 
 | 
 | 
7702 = 592900 appears in the decimal expression of π:
      π = 3.14159•••592900••• (from the 74418th digit)
by Yoshio Mimura, Kobe, Japan
771
The smallest squares containing k 771's :
    427716 = 6542,
    7710771721 = 878112,
    77187716207716 = 87856542.
84810k + 113337k + 135696k + 260598k are squares for k = 1,2,3 (7712, 3261332, 1492046912).
    78642k + 98688k + 119505k + 297606k are squares for k = 1,2,3 (7712, 3446372, 1717934492).
3-by-3 magic squares consisting of different squares with constant 7712:
| A2 | B2 | C2 | 
| D2 | E2 | F2 | 
| G2 | H2 | K2 | 
| where (A, B, C, D, E, F, G, H, K) = | |
| (2, 161, 754, 346, 674, 143, 689, 338, 74), | (14, 209, 742, 454, 602, 161, 623, 434, 134), | 
| (14, 226, 737, 278, 689, 206, 719, 262, 94), | (17, 86, 766, 194, 742, 79, 746, 191, 38), | 
| (17, 374, 674, 466, 542, 289, 614, 401, 238), | (26, 193, 746, 401, 634, 178, 658, 394, 79), | 
| (31, 82, 766, 158, 751, 74, 754, 154, 47), | (31, 326, 698, 394, 607, 266, 662, 346, 191), | 
| (36, 147, 756, 336, 684, 117, 693, 324, 96), | (62, 266, 721, 511, 526, 238, 574, 497, 134), | 
| (70, 415, 646, 446, 550, 305, 625, 346, 290), | (74, 214, 737, 319, 682, 166, 698, 289, 154), | 
| (74, 271, 718, 367, 646, 206, 674, 322, 191), | (74, 422, 641, 506, 511, 278, 577, 394, 326), | 
| (79, 290, 710, 490, 530, 271, 590, 479, 130), | (82, 266, 719, 431, 614, 178, 634, 383, 214), | 
| (86, 446, 623, 479, 458, 394, 598, 431, 226), | (94, 418, 641, 466, 481, 382, 607, 434, 194), | 
| (108, 444, 621, 501, 432, 396, 576, 459, 228) | 
7712 = 594441, 5 + 94 + 4 + 41 = 122,
    7712 = 594441, 5 + 94 + 44 + 1 = 122,
    7712 = 594441, 59 + 44 + 41 = 122.
7716 = 210051732678908121,
    and 22 + 12 + 02 + 02 + 52 + 172 + 32 + 22 + 62 + 72 + 82 + 92 + 02 + 82 + 122 + 12 = 771.
by Yoshio Mimura, Kobe, Japan
772
The smallest squares containing k 772's :
    77284 = 2782,
    23477287729 = 1532232,
    277281677257729 = 166517772.
7722 = 595984, 5 + 9 + 5 + 98 + 4 = 112,
    7722 = 595984, 5 + 95 + 9 + 8 + 4 = 112.
by Yoshio Mimura, Kobe, Japan
773
The smallest squares containing k 773's :
    677329 = 8232,
    37773477316 = 1943542,
    773750773773376 = 278163762.
7732 = 597529, 5 + 9 + 75 + 2 + 9 = 102,
    7732 = 597529, 59 + 7 + 5 + 29 = 102.
7732 + 7742 + 7752 + ... + 16362 = 361562.
7732 = 2522 + 3322 + 6512 : 1562 + 2332 + 2522 = 3772.
7732 = 93 + 163 + 843.
3-by-3 magic squares consisting of different squares with constant 7732:
| A2 | B2 | C2 | 
| D2 | E2 | F2 | 
| G2 | H2 | K2 | 
| where (A, B, C, D, E, F, G, H, K) = | |
| (12, 512, 579, 541, 408, 372, 552, 411, 352), | (27, 208, 744, 408, 636, 163, 656, 387, 132), | 
| (28, 309, 708, 501, 532, 252, 588, 468, 181), | (35, 420, 648, 540, 477, 280, 552, 440, 315), | 
| (48, 189, 748, 539, 528, 168, 552, 532, 99), | (72, 384, 667, 477, 548, 264, 604, 387, 288), | 
| (84, 413, 648, 512, 456, 357, 573, 468, 224), | (93, 296, 708, 516, 552, 163, 568, 453, 264), | 
| (136, 357, 672, 483, 568, 204, 588, 384, 323) | 
Page of Squares : First Upload October 11, 2005 ; Last Revised August 17, 2013
by Yoshio Mimura, Kobe, Japan
774
The smallest squares containing k 774's :
    7744 = 882,
    121774477444 = 3489622,
    110777477407744 = 105250882.
(443 / 774)2 = 0.327586149... (Komachic).
7742 = (12 + 5)(92 + 5)(342 + 5).
7742 = 599076, 5 + 9 + 9 + 0 + 7 + 6 = 62,
    7742 = 599076, 59 + 9 + 0 + 7 + 6 = 92,
    7742 = 599076, 59 + 9 + 0 + 76 = 122,
    7742 = 599076, 59 + 90 + 76 = 152.
Komachi Square Sum : 7742 = 23 + 43 + 83 + 163 + 593 + 733.
(13 + 23 + ... + 2243)(2253 + 2263 + ... + 2793)(2803 + 2813 + ... + 7743) = 2236406079600002.
The 4-by-4 magic square consisting of different squares with constant 774:
| 
 | 
Page of Squares : First Upload October 11, 2005 ; Last Revised December 7, 2013
by Yoshio Mimura, Kobe, Japan
775
The smallest squares containing k 775's :
    1577536 = 12562,
    75775775076 = 2752742,
    2775775397754384 = 526856282.
7752 = 600625, 600 + 625 = 352.
7752 + 7762 + 7772 + ... + 10132 = 138622.
(13 + 23 + ... + 993)(1003 + 1013 + ... + 1643)(1653 + 1663 + ... + 7753) = 187237650600002.
The square root of 775 is 27. 8 3 8 8 2 1 8 1 4 15 0 10 9 6 ...,
    and  272 = 82 + 32 + 82 + 82 + 22 + 12 + 82 + 12 + 42 + 152 + 02 + 102 + 92 + 62.
20k + 260k + 265k + 680k are squares for k = 1,2,3 (352, 7752, 187252).
3-by-3 magic squares consisting of different squares with constant 7752:
| A2 | B2 | C2 | 
| D2 | E2 | F2 | 
| G2 | H2 | K2 | 
| where (A, B, C, D, E, F, G, H, K) = | |
| (3, 210, 746, 546, 530, 147, 550, 525, 150), | (10, 141, 762, 195, 738, 134, 750, 190, 45), | 
| (10, 195, 750, 525, 550, 150, 570, 510, 125), | (10, 294, 717, 525, 530, 210, 570, 483, 206), | 
| (10, 483, 606, 525, 450, 350, 570, 406, 333), | (18, 174, 755, 330, 685, 150, 701, 318, 90), | 
| (35, 234, 738, 450, 595, 210, 630, 438, 109), | (45, 190, 750, 350, 675, 150, 690, 330, 125), | 
| (45, 298, 714, 350, 630, 285, 690, 339, 98), | (45, 350, 690, 486, 525, 298, 602, 450, 189), | 
| (66, 125, 762, 162, 750, 109, 755, 150, 90), | (78, 179, 750, 354, 678, 125, 685, 330, 150), | 
| (90, 370, 675, 514, 477, 330, 573, 486, 190), | (125, 330, 690, 510, 557, 174, 570, 426, 307), | 
| (150, 350, 675, 381, 630, 242, 658, 285, 294), | (195, 458, 594, 510, 531, 242, 550, 330, 435) | 
Page of Squares : First Upload October 11, 2005 ; Last Revised March 23, 2011
by Yoshio Mimura, Kobe, Japan
776
The smallest squares containing k 776's :
    5776 = 762,
    6776417761 = 823192,
    277624776629776 = 166620762.
The squares which begin with 776 and end in 776 are
    77604587776 = 2785762,   776027093776 = 8809242,   776294917776 = 8810762,
    776908267776 = 8814242,   7761372533776 = 27859242,...
7762 = 602176, a zigzag square.
7762 = 602176, 63 + 03 + 23 + 13 + 73 + 63 = 282,
    7762 = 602176, 602 + 17 + 6 = 252.
by Yoshio Mimura, Kobe, Japan
777
The smallest squares containing k 777's :
    277729 = 5272,
    39077777761 = 1976812,
    777777077709025 = 278886552.
7772 = 603729, a square with different digits.
7772 = 603729, 60 + 3 + 7 + 2 + 9 = 92,
    7772 = 603729, 60 + 3 + 72 + 9 = 122,
    7772 = 603729, 60 + 372 + 9 = 212.
7312 + 7322 + 7332 + ... + 7772 = 51702.
1 / 777 = 0.00128700128700128700128700128700128700128...,
    and the sum of the squares of its digits is 777.
81585k + 119658k + 133644k + 268842k are squares for k = 1,2,3 (7772, 3333332, 1551583532).
3-by-3 magic squares consisting of different squares with constant 7772:
| A2 | B2 | C2 | 
| D2 | E2 | F2 | 
| G2 | H2 | K2 | 
| where (A, B, C, D, E, F, G, H, K) = | |
| (1, 88, 772, 452, 628, 71, 632, 449, 52), | (6, 243, 738, 333, 666, 222, 702, 318, 99), | 
| (8, 124, 767, 383, 668, 104, 676, 377, 68), | (8, 311, 712, 361, 632, 272, 688, 328, 151), | 
| (14, 322, 707, 413, 602, 266, 658, 371, 182), | (16, 353, 692, 388, 596, 313, 673, 352, 164), | 
| (16, 472, 617, 503, 464, 368, 592, 407, 296), | (23, 328, 704, 512, 536, 233, 584, 457, 232), | 
| (31, 208, 748, 352, 671, 172, 692, 332, 121), | (32, 244, 737, 484, 583, 172, 607, 452, 176), | 
| (44, 328, 703, 428, 577, 296, 647, 404, 148), | (54, 237, 738, 522, 558, 141, 573, 486, 198), | 
| (65, 148, 760, 200, 740, 127, 748, 185, 100), | (68, 391, 668, 479, 548, 272, 608, 388, 289), | 
| (76, 353, 688, 508, 544, 223, 583, 428, 284), | (80, 223, 740, 415, 640, 148, 652, 380, 185), | 
| (80, 380, 673, 545, 452, 320, 548, 505, 220), | (88, 233, 736, 464, 608, 137, 617, 424, 208), | 
| (102, 387, 666, 531, 522, 222, 558, 426, 333), | (124, 368, 673, 412, 607, 256, 647, 316, 292), | 
| (127, 284, 712, 376, 652, 193, 668, 313, 244), | (127, 472, 604, 536, 383, 412, 548, 484, 263), | 
| (148, 263, 716, 296, 692, 193, 703, 236, 232), | (148, 481, 592, 508, 512, 289, 569, 332, 412), | 
| (152, 319, 692, 412, 628, 199, 641, 328, 292), | (162, 387, 654, 438, 594, 243, 621, 318, 342) | 
The 4-by-4 magic square consisting of different squares with constant 777:
| 
 | 
7772 = 603729 appears in the decimal expression of e:
      e = 2.71828•••603729••• (from the 5335th digit)
      (603729 is the third 6-digit square in the expression of e.)
by Yoshio Mimura, Kobe, Japan
778
The smallest squares containing k 778's :
    77841 = 2792,
    14778778624 = 1215682,
    1947789477877824 = 441337682.
7782 = 605284, a zigzag square with different digits.
7782 = 605284, 6 + 0 + 5 + 2 + 8 + 4 = 52,
    7782 = 605284, 60 + 52 + 84 = 142.
7782 = 93 + 323 + 833.
Page of Squares : First Upload October 11, 2005 ; Last Revised September 11, 2006by Yoshio Mimura, Kobe, Japan
779
The smallest squares containing k 779's :
    617796 = 7862,
    4327797796 = 657862,
    226977907797796 = 150657862.
3-by-3 magic squares consisting of different squares with constant 7792:
| A2 | B2 | C2 | 
| D2 | E2 | F2 | 
| G2 | H2 | K2 | 
| where (A, B, C, D, E, F, G, H, K) = | |
| (6, 454, 633, 498, 489, 346, 599, 402, 294), | (14, 87, 774, 249, 734, 78, 738, 246, 41), | 
| (14, 318, 711, 423, 594, 274, 654, 391, 162), | (14, 441, 642, 534, 462, 329, 567, 446, 294), | 
| (18, 274, 729, 311, 666, 258, 714, 297, 94), | (22, 174, 759, 489, 594, 122, 606, 473, 126), | 
| (39, 258, 734, 462, 599, 186, 626, 426, 183), | (41, 246, 738, 402, 626, 231, 666, 393, 94), | 
| (54, 231, 742, 546, 518, 201, 553, 534, 126), | (102, 391, 666, 441, 522, 374, 634, 426, 153), | 
| (105, 346, 690, 410, 615, 246, 654, 330, 265), | (150, 454, 615, 535, 510, 246, 546, 375, 410), | 
| (183, 414, 634, 454, 582, 249, 606, 311, 378) | 
7792 = 606841, 6 + 0 + 6 + 8 + 4 + 1 = 52,
    7792 = 606841, 60 + 68 + 41 = 132.
7792 = 173 + 663 + 683.
Page of Squares : First Upload October 11, 2005 ; Last Revised August 31, 2009by Yoshio Mimura, Kobe, Japan
