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Abstract

A principal acquires information about a shock and then discloses it to an

agent. After the disclosure, the principal and agent each decide whether to take

costly preparatory actions that yield mutual benefits but only when the shock

strikes. The principal maximizes his expected payoff by controlling the quality

of his information, and the disclosure rule. We show that even when the ac-

quisition of perfect information is costless, the principal may optimally acquire

imperfect information when his own action eliminates the agent’s incentive to

take action against the risk.
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1 Introduction

Preparing for a variety of natural, social, and economic shocks is an important task

of every government. Many governments appropriate a large amount of money on

research into the forecasting of such natural shocks as hurricanes, snow storms and

other extreme weather conditions, earthquakes, epidemic outbreaks, and so on.1

Along with forecasting, a government’s strategies to prepare for those shocks

typically involve two forms of interventions. The first is a direct intervention that is

implemented at the government’s own cost. The second is an indirect intervention

that consists of raising public awareness of the risk of the shocks and advising the

public to take preparatory actions themselves. In the case of an epidemic outbreak,

for example, the direct interventions include stricter quarantine control, building

depressurized rooms at hospitals, increasing the stock of anti-virus medicines, and

so on. On the other hand, an indirect intervention consists of advice to the public

to receive vaccinations, avoid traveling and exercise hygiene practices. Likewise,

against earthquakes, direct interventions include enforcing stricter building codes

and reinforcing public buildings such as schools and highways, while indirect inter-

ventions include advice to the public to reinforce their own houses, prepare food

stocks, and purchase earthquake insurance. Unlike direct interventions, it is the

public themselves who bear the cost of the advised action.2 The essential feature of

many of these preparatory actions is that they are specific investment in the sense

that they have value only when the shock strikes.

It is argued by some that the policy of spending much money on forecasting

shocks and at the same time advising the public to take preparatory measures

is inconsistent.3 One interpretation of this claim is as follows: If the accurate

forecasting of a shock is possible, then the public is led to think that timely direct

1For example, National Oceanic and Atmospheric Agency (NOAA) of the United States budgeted

more than $2,000 million on weather services and satellites. Its joint polar satellite system (JPSS),

which is used for mid-range weather forecasts, alone cost US$382 million in FY2010 (“NOAA

warns weather forecasts will suffer from budget cuts,” Washington Post 03/31/2011). As another

example, the US Geological Survey budgeted more than US$90 million for research into geologic

hazard assessments in FY2010.
2Skoufias (2003) discusses the strategies employed by households and public agencies to mitigate

the damages of economic crises and natural disasters. Some indirect interventions involve public

expenditure as in the case of subsidies for vaccination programs, or those for the installation of

solar panels.
3See Saito (2008).
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interventions will save them costly efforts. On the other hand, from the point of

view of the government, indirect interventions are much less costly and the public’s

own action is often more effective in mitigating the damage.

The purpose of this paper is to provide a formal examination of the above logic

in a stylized model where a principal (government) acquires information and then

discloses it to an agent (the public). We show that acquiring perfect information

may indeed be suboptimal for the principal when the agent can free-ride on his

effort. A more detailed description of the model is as follows: Facing the risk of a

shock, the principal first chooses the technology that determines the quality of his

private information about the risk of the shock. The technology r can be any real

number between 0 and ∞, where r = 0 corresponds to perfect information, and

r > 0 corresponds to information with noise. Choice of any technology is costless.

Upon acquiring information, the principal determines whether to take a preparatory

action, and at the same time advises the agent on whether he should take a costly

preparatory action. The preparatory actions yield mutual benefits, but only when

the shock strikes. We specify the payoffs in the shock state as follows: For the

principal, taking action is a dominant strategy. That is, when the shock occurs for

sure, the principal cannot commit to not taking action. On the other hand, the

agent has a free-ride incentive in the sense that taking action is optimal if and only

if the principal does not.

We first show that when the prior probability of the shock is moderately high, ac-

quiring no information is better for the principal than acquiring perfect information.

When the prior probability is low, however, no information is dominated by perfect

information. This leads us to the question on whether there still exists an imperfect

information policy that outperforms perfect information even for low probability

shocks. For this, we suppose that the signal space is continuous and consider an

imperfect information policy that works according to the three risk categories as

follows: When the updated risk is high based on the acquired information, the prin-

cipal takes action but recommends no action to the agent. When the risk is medium,

the principal takes no action but recommends an action to the agent. When the risk

is low, the principal takes no action and also recommends no action to the agent.

With appropriate choice of the thresholds, we note that this policy is equivalent to

the full disclosure of private information. Our main result shows that such a full

disclosure policy with imperfect information dominates perfect information when

the marginal benefit of the agent’s action is sufficiently large for the principal, or
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when the agent’s utility from inaction by both parties is sufficiently low in the event

of the shock. These conditions are hence relevant when the public has significantly

more efficient ways to insure against the risk, or when the shock has a disastrous

consequence when no preparation is made. We further present a characterization of

the optimal (partial) disclosure rule for a given information quality.

The paper is organized as follows: After the discussion of the related literature in

the next section, we formulate a model of information acquisition and disclosure in

Section 3, and present some preliminary analysis in Section 4. Section 5 compares

the two extreme cases of perfect information and no information. Optimality of

imperfect information is illustrated in Section 6 using a simple model with finite

signals. Section 7 presents the main theorem establishing the optimality of imperfect

information with continuous signals. A characterization of an optimal disclosure rule

for a given signal quality is provided in Section 8. We conclude in Section 9. All

the proofs are collected in the Appendix.

2 Related Literature

Decision making in the face of a natural shock is a classical subject in both the

theoretical and empirical literature. Nelson and Winter (1964) study the weather

forecasting system that maximizes the welfare of its user who must decide whether

to take a protective action against rain. Howe and Cochrane (1974) study the

decision problem faced by authorities under a snow storm forecast. Their empirical

observation on the “reluctance on the part of snow removal authorities to be sensitive

to any but very severe forecasts in making operation decisions” is consistent with the

optimal policy in the current paper. Brookshire et al. (1985) show that the expected

utility hypothesis is a reasonable description of decision-making behavior facing a

low-probability, high-loss event of an earthquake. Lewis and Nickerson (1989) study

the interaction of self-insurance and public interventions against natural disasters.

Information acquisition and disclosure is an increasingly popular topic in the

theoretical literature. Combination of the following elements is a distinguishing

feature of the present model and has not been studied together to the best of our

knowledge.

• The principal engages in information acquisition and information disclosure.4

4Matthews and Postlewaite (1985) study a model of sales where a seller tests the quality of his

good and then discloses it to a buyer.
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• Information acquisition is costless.

• The principal has a continuous choice of information quality.5

Principal-agent models of information acquisition in the literature are divided

into two groups depending on who acquires information.6 Cremer et al. (1998a, b),

Kessler (1998), Lewis and Sappington (1993, 1997), Szalay (2005, 2009), and Dai

et al. (2006) study the design of an optimal contract when an agent can privately

invest resources to acquire information either before or after the contract is signed.

In these models, positive cost of information acquisition is a critical element that

determines the form of an optimal contract as well as the agent’s decision to become

informed. The second class of models assume information acquisition by the princi-

pal and examine whether ignorance helps the principal commit to some decision in

a subsequent interaction with the agent. Among others, Dewatripont and Maskin

(1995) show that simple contracts based on the limited observation of variables may

be superior to more complete contracts when renegotiation is possible, and Cremer

(1995) shows that the principal may choose to acquire no information about the

agent’s productivity in a dynamic model with adverse selection.7 Like these models,

we assume that the principal acquires information and then plays a game against

the agent.8 We show that even when complete ignorance cannot serve as a commit-

ment device, a variable degree of incomplete ignorance (i.e., acquisition of imperfect

information) may still be a useful commitment device.

The choice of signal quality in information disclosure problems is studied by

Lewis and Sappington (1994) and Bergemann and Pesendorfer (2007), who both

analyze a seller’s problem when he chooses the quality of buyers’ private signals.

In these models, hence, the player who controls the signal quality does not observe

the resulting information. Kamenica and Gentzkow (2011) study information ac-

quisition by a sender when the signal is publicly observable as in the case of full

disclosure in our model. When the sender has no action to take, they ask whether

or not acquisition of some information dominates no information. In contrast, our

5Szalay (2009) analyzes the continuous choice of information quality.
6Information acquisition is also studied in a more abstract mechanism design setting as well as

in auctions.
7Carrillo and Mariotti (2000) demonstrate strategic ignorance by a decision maker who has

time-inconsistent preferences.
8Lack of commitment by a mechanism designer is studied by Bester and Strausz (2000), and

Skreta (2006). Note that solicitation of agents’ private information is absent in our model.
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focus is on the comparison between the acquisition of imperfect information and

that of perfect information when the sender of information also has an action to

take.

Finally, it is also possible to relate our finding to the literature on government

transparency, which asks whether disclosure of a government’s private information

induces inefficient coordination by the public and creates uninsurable risks. Our

conclusion points to the possibility that even full disclosure takes place, the con-

tent of information may be less than what is potentially available if information

acquisition is endogenous.9

3 Model

There are a principal (player 1) and an agent (player 2) facing the risk of a shock.

The shock corresponds to one of the two states of the world ω ∈ Ω: The shock

occurs in state ω = 1 and does not in state ω = 0. The prior probability of the

shock equals p = P (ω = 1) ∈ (0, 1). Before the state is realized, each player i either

“takes action” (ai = 1) or not (ai = 0) against the shock. Denote by Ai = {0, 1}
the set of actions of player i. We suppose that actions are taken simultaneously

after the disclosure. The players’ payoffs depend on the action profile and the state.

Specifically, player i’s payoff under the action profile a = (a1, a2) in state ω is given

by

vi(a, ω) = ui(a)ω − ciai.

Hence, the players benefit from the actions only when there is a shock (ω = 1), but

incur the cost ci of taking action even when there is no shock. Let

d01 = u1(1, 0)− u1(0, 0), d11 = u1(1, 1)− u1(0, 1),

d02 = u2(0, 1)− u2(0, 0), d12 = u2(1, 1)− u2(1, 0),

m0
1 = u1(0, 1)− u1(0, 0), m1

1 = u1(1, 1)− u1(1, 0).

d01 is the marginal benefit of his own action a1 = 1 to the principal when it is

unilaterally taken, and d11 is the marginal benefit of a1 = 1 when the agent also

chooses a2 = 1. d02 and d12 are the corresponding quantities for the agent. m0
1 and

m1
1 are the marginal benefits of agent’s action to the principal when the principal

9The literature originates with Hirschleifer (1971), and subsequent developments include Morris

and Shin (2002), Svensson (2006) and Walsh (2007).
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himself chooses a1 = 0 and a1 = 1, respectively. We assume that

d01 ≥ d11 > c1 > 0, (1)

d02 > c2 > d12 > 0, (2)

m0
1 > d01 − c1. (3)

(1) and (2) show that the two players’ actions are strategic substitutes: The marginal

benefit of the own action is higher when it is unilateral. Furthermore, (1) says that

a1 = 1 is a dominant action for the principal in the event of a sure shock, and (2)

says that the agent’s best response is to take action when the principal does not,

and vice versa. (3) says that for the principal, the marginal benefit of the agent’s

unilateral action is higher than the net marginal benefit of his own unilateral action.

For concreteness, we also assume in what follows that

d02
c2

>
d01
c1

. (4)

In other words, when normalized by its cost, the agent’s unilateral action raises his

own utility more than the principal’s unilateral action raises his.

When the principal chooses to acquire information, he observes signal θ in set

Θ ⊂ R, which we assume to be either finite or continuous in our discussion. His

forecasting technology r determines the level of accuracy of θ in a sense made precise

below. Depending on whether Θ is finite or continuous, let fω,r(θ) denote either the

probability or density of signal θ in state ω when the forecasting technology is r.

Under any technology, the higher the signal θ, the more likely is ω = 1 as expressed

by the monotone likelihood ratio property below:

θ < θ′ ⇒ f0,r(θ)

f1,r(θ)
>

f0,r(θ
′)

f1,r(θ′)
. (5)

The timing of events is as follows. First, the principal chooses his forecasting tech-

nology r. Upon observing θ, he makes a non-binding advice to the agent on which

action to take. Both parties then choose actions simultaneously. The principal’s

action choice is based on his signal θ, while the agent’s action choice is based on the

principal’s advice. Finally, the state is realized and the players receive payoffs.

The principal’s choice of an advice given the observation of θ is expressed by

a disclosure rule g : Θ → {0, 1}: g(θ) is the action suggested to the agent when

θ is observed. The principal’s policy is a pair (r, g) of his forecasting technology
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and disclosure rule.10 We assume that the policy (r, g) is chosen in advance and

is publicly announced. Public observability of the forecasting technology r is a

reasonable assumption given that it usually entails publicly observable activities

such as launching a satellite, building a supercomputer or a network of sensors, and

so on. We also assume that the principal commits to his disclosure rule g in the

sense that for any signal θ, his advice equals g(θ).11

Given a policy (r, g), each player’s strategy is defined as follows. The principal’s

strategy σ1 : R → {0, 1} chooses an action as a function of the observed signal θ.

On the other hand, the agent’s strategy σ2 : {0, 1} → {0, 1} chooses an action as

a function of the principal’s advice. Let σ∗
2 denote the obedient strategy such that

σ∗
2(a2) = a2 for any a2 ∈ {0, 1}. Let πi(σ | r, g) denote player i’s ex ante expected

payoff under the strategy profile σ = (σ1, σ2) and the policy (r, g). Explicitly, they

are given by

π1(σ | r, g) = Eω,θ

[
u1 (σ1(θ), σ2(g(θ)))ω − c1σ1(θ)

]
,

π2(σ | r, g) = Eω,θ

[
u2 (σ1(θ), σ2(g(θ)))ω − c2σ2(g(θ))

]
.

(6)

The strategy profile σ is a (Bayes-Nash) equilibrium under (r, g) if πi(σ | r, g) ≥
πi(σ

′
i, σj | r, g) for any σ′

i and i ̸= j.12 A policy (r, g) is incentive compatible if

there exists a strategy σ1 of the principal such that (σ1, σ
∗
2) is an equilibrium under

(r, g). For an incentive compatible policy (r, g), if σ1 is understood, we simply write

πi(r, g) for the equilibrium payoff πi(σ1, σ
∗
2 | r, g).

An incentive compatible policy (r, g) is optimal if there exists no other incentive

compatible policy that yields a strictly higher equilibrium payoff. In other words,

(r, g) is optimal if there exists σ1 such that σ = (σ1, σ
∗
2) is an equilibrium under

(r, g), and for any policy (r′, g′) under which σ′ = (σ′
1, σ

∗
2) is an equilibrium for

10An alternative definition of a disclosure rule is to specify the message space Y along with

the mapping g : Θ → Y . For example, (g, Y ) such that Y = Θ and g(θ) = θ corresponds to full

disclosure, (g, Y ) such that Y = {0} corresponds to no disclosure, etc. By the generalized revelation

principle of Myerson (1982), however, no generality is lost when we assume that Y = {0, 1} and

hence that g generates an advice to the agent: Any message y ∈ Y is associated in equilibrium

with one of two actions of the agent, and the principal can suggest this action instead of y. Use of

random disclosure rules does not change the conclusions of Sections 7 and 8.
11This is a standard assumption in the information revelation literature, and is most likely justified

for disclosure by a public sector, where adherence to the publicly announced rule is verifiable through

official documents.
12Use of a stronger notion of equilibrium does not affect the conclusions of the paper.
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some σ′
1, we have

π1(σ | r, g) ≥ π1(σ
′ | r′, g′).

Let
δ01 =

d01
c1

− 1, δ11 =
d11
c1

− 1,

δ02 =
d02
c2

− 1, δ12 =
d12
c2

− 1,

µ0
1 =

m0
1

c1
, µ1

1 =
m1

1
c1

.

δ01 is the net marginal benefit for the principal of his own action normalized by its

cost when the agent does not take action, and δ11 is the corresponding quantity when

the agent takes action. δ02 and δ12 have similar interpretations for the agent. µ0
1 is

the normalized marginal benefit for the principal of the agent’s action.

4 Preliminary Analysis

It is instructive to consider first the equilibrium action profile when the principal’s

signal θ is publicly observable. Let the technology r be given. When the signal is

θ, the principal chooses a1 = 1 if

Eω [u1(1, σ2(θ))ω | θ]− c1 > Eω [u1(0, σ2(θ))ω | θ] .

Upon simplification, we see that this is equivalent to

f0,r(θ)

f1,r(θ)
<

pδ11
1− p

if σ2(θ) = 1,

f0,r(θ)

f1,r(θ)
<

pδ01
1− p

if σ2(θ) = 0.

Since δ11 ≤ δ01 by assumption, it follows that a1 = 1 is a dominant action for the

principal if the likelihood ratio
f0,r(θ)
f1,r(θ)

<
pδ11
1−p . Conversely, a1 = 0 is a dominant

action for the principal if the ratio is >
pδ01
1−p . For later reference, we define these

marginal values of θ by β0 and β as follows:

f0,r(β)

f1,r(β)
=

pδ11
1− p

and
f0,r(β

0)

f1,r(β0)
=

pδ01
1− p

. (7)

Since the likelihood ratio is strictly decreasing by (5), the principal has a dominant

action a1 = 1 if θ > β and a1 = 0 if θ < β0. As for the agent, he chooses a2 = 1 if

Eω,θ [u2(σ1(θ), 1)ω | θ]− c2 > Eω,θ [u2(σ1(θ), 0)ω | θ] ,
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or equivalently, if

f0,r(θ)

f1,r(θ)
<

pδ12
1− p

if σ1(θ) = 1,

f0,r(θ)

f1,r(θ)
<

pδ02
1− p

if σ1(θ) = 0.

Since δ12 < 0 by assumption, the agent never takes a2 = 1 when a1 = 1. Let α0
2 be

the marginal value of θ at which he is indifferent between a2 = 0 and a2 = 1:

f0,r(α
0)

f1,r(α0)
=

pδ02
1− p

. (8)

That is, when the principal chooses a1 = 0, the agent chooses a2 = 0 if θ < α0 and

a2 = 1 if θ > α0. Noting that α0 < β0 < β, we can summarize the equilibrium

action profile when θ is publicly observable as follows:

(σ1(θ), σ2(θ)) =



(1, 0) if
f0,r(θ)
f1,r(θ)

<
pδ11
1−p ⇔ θ > β,

(1, 0) or (0, 1) if
f0,r(θ)
f1,r(θ)

∈
(

pδ11
1−p ,

pδ01
1−p

)
⇔ θ ∈

(
β0, β

)
,

(0, 1) if
f0,r(θ)
f1,r(θ)

∈
(

pδ01
1−p ,

pδ02
1−p

)
⇔ θ ∈

(
α0, β0

)
,

(0, 0) if
f0,r(θ)
f1,r(θ)

>
pδ02
1−p ⇔ θ < α0.

(9)

This exercise shows that the likelihood ratio of the two states given the signal θ is

what determines the equilibrium behavior at θ.

Suppose next that θ is not publicly observed so that the agent must infer the

realization of θ through the advice given by the principal. Let a policy (r, g) and the

principal’s strategy σ1 be given. It is first clear that if (r, g) is incentive compatible

with an equilibrium (σ1, σ
∗
2), then the principal’s action σ1(θ) at θ is a best response

to his advice g(θ) to the agent. To see next the agent’s incentive to follow the

principal’s advice, define

A0 = {θ : σ1(θ) = 0}, A1 = {θ : σ1(θ) = 1},
B0 = {θ : g(θ) = 0}, B1 = {θ : g(θ) = 1}.

Given the action-advice pair (σ, g), A0 is the set of signals at which the principal

chooses no action, and A1 is the set of signals at which he takes action. B0 and B1

have similar interpretations. By (6), the agent follows the advice a2 = 1 if

Eω,θ

[
u2(0, 1)ω1{θ∈A0} + u2(1, 1)ω1{θ∈A1} | θ ∈ B1

]
− c2

≥ Eω,θ

[
u2(0, 0)ω1{θ∈A0} + u2(0, 1)ω1{θ∈A1} | θ ∈ B1

]
,
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and he follows the advice a2 = 0 if

Eω,θ

[
u2(0, 1)ω1{θ∈A0} + u2(1, 1)ω1{θ∈A1} | θ ∈ B0

]
− c2

≤ Eω,θ

[
u2(0, 0)ω1{θ∈A0} + u2(0, 1)ω1{θ∈A1} | θ ∈ B0

]
,

where 1Z is an indicator function of event Z. Simple algebra shows that these

inequalities are equivalent to (10) and (11) below.

p

1− p

[
P (θ ∈ A0 ∩B1 | ω = 1)δ02 + P (θ ∈ A1 ∩B1 | ω = 1)δ12

]
≥ P (θ ∈ B1 | ω = 0),

(10)

and

p

1− p

[
P (θ ∈ A0 ∩B0 | ω = 1)δ02 + P (θ ∈ A1 ∩B0 | ω = 1)δ12

]
≤ P (θ ∈ B0 | ω = 0).

(11)

5 Perfect Information and No Information

We now turn to the analysis of perfect information and no information policies.

In the no information case, the equilibrium is determined by the prior probability

alone. Since we can identify
f0,r(θ)
f1,r(θ)

= 1 under no information, (9) implies that the

equilibrium action is given by

(σ1, σ2) =



(1, 0) if
pδ11
1−p > 1 ⇔ p > c1

d11
,

(1, 0) or (0, 1) if
pδ11
1−p < 1 <

pδ01
1−p ⇔ p ∈

(
c1
d01
, c1
d11

)
,

(0, 1) if
pδ11
1−p < 1 <

pδ02
1−p ⇔ p ∈

(
c2
d02
, c1
d01

)
,

(0, 0) if
pδ02
1−p < 1 ⇔ p < c2

d02
.

Since u1(1, 0)− c1 < u1(0, 1) by (3), the principal is better off with (a1, a2) = (0, 1)

than with (a1, a2) = (1, 0). It follows that the optimal policy in the second case

above should have (a1, a2) = (0, 1). Hence, the action-advice pair under the optimal

no information policy is given by

(σ1, g) =


(0, 0) if p < c2

d02

(0, 1) if c2
d02

≤ p < c1
d11
,

(1, 0) if p ≥ c1
d11
,
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and the principal’s payoff is given by

π1(σ | r, g) =


pu1(0, 0) if p < c2

d02
.

pu1(0, 1) if c2
d02

≤ p < c1
d11
,

pu1(1, 0)− c1 if p ≥ c1
d11
.

(12)

Next, in the case of perfect information, θ = ω, and the likelihood ratio
fr,0(ω)
f1,r(ω)

= 0

in state ω = 1 and = ∞ in state ω = 0. Note from (9) that in neither case, the

agent chooses a2 = 1 in equilibrium. It follows that an incentive compatible policy

must advise no action whether θ = 0 or 1. Therefore, the action-advice pair under

the perfect information policy is given by

(σ1(θ), g(θ)) =

(1, 0) if θ = 1,

(0, 0) if θ = 0,

and the principal’s ex ante expected equilibrium payoff equals

π1(σ | r, g) = p{u1(1, 0)− c1} ≡ π0
1. (13)

Intuitively, if the agent knows that the principal knows the state, he will not choose

a2 = 1 because he knows that the principal chooses a1 = 1 in state 1. Note that

the above profile is equivalent to what happens when the principal acquires perfect

information θ ∈ {0, 1} and then fully discloses it to the agent.

Comparison of the principal’s payoff under no information in (12) and that

under perfect information in (13) is summarized in the following proposition and is

illustrated in Figure 1.

Proposition 1 1. If p < c2
d02

or p > c1
d01
, then perfect information yields the higher

expected payoff to the principal than no information.

2. If p ∈
(

c2
d02
, c1
d01

)
, then no information yields the higher expected payoff than

perfect information.

Intuitively, no information dominates perfect information if the prior p is in the

intermediate range so that under no information, the principal can commit to no

action and induce the agent to take action unilaterally. When p is above this range,

the shock is too likely for the principal to commit to no action, and when it is below

this range, the shock is too unlikely for the agent to take action even unilaterally.
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c2
d02

c1
d11 1

p

perfect information (π0
1)

no information

Figure 1: Principal’s payoffs under perfect information and no information

In these cases, perfect information is better than no information. We can interpret

the second observation in Proposition 1 as one expression of the value of strategic

ignorance mentioned in Section 2. Our focus in subsequent sections is hence on the

case where p is small so that complete ignorance is inferior to perfect information.

6 Obscurity with Finite Signals

In this section, we illustrate the benefit of imperfect information in simple models

with finite signals. These examples show that the principal chooses his forecasting

technology so as to control the likelihood ratio of the two states given each signal

realization. In particular, he is interested in creating a signal realization that works

as a commitment device to implement (a1, a2) = (0, 1).

Given the conclusion of the previous section, suppose that the prior probability

p of the shock state ω = 1 is low and satisfies

p <
c2
d02

⇔ pδ02
1− p

< 1. (14)

This in particular implies that the agent does not take action even unilaterally under

no information.
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Suppose first that the principal observes a binary signal θ ∈ Θ = {ℓ, h} (ℓ < h).

For r ∈
(
0, 12

)
, the distribution of θ conditional on ω is given by

ω = 1 ω = 0

θ = h 1− r r

θ = ℓ r 1− r

The monotone likelihood ratio property (5) holds since r < 1
2 . As

f0,r(ℓ)

f1,r(ℓ)
=

1− r

r
> 1 >

pδ02
1− p

>
pδ01
1− p

,

the principal never chooses a1 = 1 at θ = ℓ: σ1(ℓ) = 0. We hence consider the

following two cases depending on whether he takes action at θ = h or not.

1)
f0,r(h)
f1,r(h)

= r
1−r <

pδ11
1−p .

In this case, a1 = 1 is dominant for the principal at θ = h by (9), but he cannot

induce action a2 = 1 from the agent: If the agent learns that θ = ℓ, he will choose

a2 = 0 since
f0,r(ℓ)

f1,r(ℓ)
>

pδ02
1− p

,

and if he learns that θ = h, he will again choose a2 = 0 since

f0,r(h)

f1,r(h)
> 0 >

pδ12
1− p

.

Therefore, whether θ is (partially) revealed or not, the agent will choose a2 = 0, and

the principal cannot do better than choosing perfect information r = 0.

2)
pδ11
1−p ≤ f0,r(h)

f1,r(h)
= r

1−r ≤ pδ02
1−p .

In this case, the principal can commit to no action a1 = 0 and induce the agent

to choose a2 = 1 at θ = h. Suppose then that the action-advice pair is given by

(σ1(θ), g(θ)) =

(0, 1) if θ = h,

(0, 0) if θ = ℓ.

(r, g) is incentive compatible for the given range of r, and yields

π1(r, g) = p [u1(0, 1)(1− r) + u1(0, 0)r] .

14



Since π1(r, g) is decreasing in r, it is maximized when r
1−r is at the lower end of the

interval:

r

1− r
=

pδ11
1− p

⇔ r =

pδ11
1−p

1 +
pδ11
1−p

. (15)

It follows that (r, g) dominates perfect information if

u1(0, 1)(1− r) + u1(0, 0)r − u1(1, 0) + c1 > 0 ⇔ pδ11
1− p

<
µ0
1

δ01
− 1.

When this holds, the optimal technology r in (15) is approximately proportional to

the prior probability p when it is small.

In this problem, the principal chooses the technology r to directly control the

likelihood ratio
f0,r(h)
f1,r(h)

at signal h so that he would be just indifferent between taking

action or not at θ = h, and that a2 = 1 would be a best response for the agent against

a1 = 0.13 This way, the principal uses θ = h as a commitment device and induces

the agent to take action. In reality, however, no forecasting technology is likely to

place a bound on the likelihood ratio. In other words, under any kind of technology,

there typically exists a signal realization that indicates the occurrence of a shock

very strongly. Consider next a model with three signals ℓ, m and h (ℓ < m < h)

that captures such a possibility. Let a constant κ ∈ (0, 1) be given, and suppose that

the technology r consists of two variables x and y with 0 ≤ x ≤ 1 and 0 ≤ y ≤ κ.

The distribution of θ conditional on ω is given by

ω = 1 ω = 0

θ = h 1− x 0

θ = m κx y

θ = ℓ (1− κ)x 1− y

The technology parameters x and y both control the accuracy of the signals m and

ℓ. On the other hand, θ = h perfectly indicates ω = 1 regardless of x and y. Note

that x = 0 corresponds to perfect information since ω = 0 results in θ = ℓ or m,

13The optimal policy when we allow random disclosure would advise a2 = 1 with positive proba-

bility at θ = ℓ so that the agent’s incentive conditions would hold with equality. We do not consider

such policies partly because they lack credibility. In the continuous signal model considered in Sec-

tions 7 and 8, this omission places no restriction since no random policies are optimal: for any

random policy, there exists a superior deterministic policy that advise a2 = 1 with the same ex

ante probability but for higher signal realizations.
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and ω = 1 results in θ = h. The monotone likelihood ratio property (5) holds when

y ≤ κ. Since

f0,r(h)

f1,r(h)
= 0 <

pδ11
1− p

and
f0,r(ℓ)

f1,r(ℓ)
=

1− y

(1− κ)x
≥ 1 >

pδ01
1− p

,

the principal chooses σ1(h) = 1 and σ1(ℓ) = 0 as his dominant actions. If σ1(m) = 1,

the agent has no incentive to choose a2 = 1 for each signal realization since

f0,r(h)

f1,r(h)
,
f0,r(m)

f1,r(m)
≥ 0 >

pδ12
1− p

and
f0,r(ℓ)

f1,r(ℓ)
>

pδ02
1− p

.

It follows that if σ1(m) = 1, no disclosure rule can induce the agent to choose a2 = 1.

Hence, let σ1(m) = 0, and suppose that the action-advice pair is given by

(σ1(θ), g(θ)) =


(1, 0) if θ = h,

(0, 1) if θ = m,

(0, 0) if θ = ℓ.

Since g(θ) = 1 reveals that θ = m, (r, g) is incentive compatible if

f0,r(m)

f1,r(m)
=

y

κx
∈
[

pδ11
1− p

,
pδ02
1− p

]
,

and the principal’s expected payoff under (r, g) is given by

π1(r, g) = π0
1 + pc1x

(
κµ0

1 − δ01
)
.

Therefore, it dominates perfect information when κ >
δ01
µ0
1
.14 In this scheme, the

principal uses the medium risk signal θ = m as a commitment device. Furthermore,

since his payoff is increasing in x, the principal would set x as high as possible: He

attempts to minimize the probability of observing the perfect signal θ = h. Note

that the argument does not rely on the pooling of observed information since the

strategy profile (σ1, σ
∗
2) is implementable when θ is fully disclosed.

7 Obscurity with Continuous Signals

With a continuous signal, we can describe a more realistic environment in which

the likelihood ratio is unbounded, but is finite and strictly positive so that no signal
14The optimal policy with random disclosure would advise a2 = 1 with positive probability when

θ = ℓ and/or θ = h.
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perfectly reveals the state. In this section, we suppose that the signal θ is given by

θ = ω + rϵ,

where ϵ is a random noise term independent of ω. For concreteness, we suppose

that ϵ has the standard normal distribution N(0, 1) whose cumulative distribution

and density are denoted by Φ and ϕ, respectively. It follows that when the principal

adopts technology r > 0, his signal θ has the normal distribution with mean ω and

variance r2 in state ω. We will identify a sufficient condition for the existence of an

imperfect information policy (r, g) that dominates perfect information.

Theorem 2 Suppose that

µ0
1 − δ01 − δ11 >

(
δ11
δ02

) 1
2

µ0
1. (16)

Then there exists r > 0 such that for the action advice pair (σ1, g) specified below,

the incomplete information policy (r, g) is incentive compatible with an equilibrium

(σ1, σ
∗
2), and dominates perfect information.

(σ1(θ), g(θ)) =


(1, 0) if θ ≥ β,

(0, 1) if θ ∈ [α0, β),

(0, 0) if θ < α0,

where β and α0 are as defined in (7) and (8), respectively.

The information policy in the theorem is illustrated in Figure 2.

(0,0) (0,1) (1,0)

θ

α0 ββ0

Figure 2: Action-advice pairs in Theorem 2

This policy is equivalent to the full disclosure of θ since it advises a2 = 1 if

and only if θ ∈ (α0, β). Hence, pooling of information is not essential for the

obscurity result and even when the principal is constrained to full disclosure, he

should optimally acquire imperfect information.
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Corollary 3 Under the conditions of the theorem, there exists r > 0 such that full

disclosure of θ = ω + rϵ yields a strictly higher payoff to the principal than perfect

information.

The intuition behind the theorem and its corollary is as follows: As is the case

with the three-signal model of the previous section, the principal in the continuous

signal model uses the medium risk signal as a commitment device to implement

(a1, a2) = (0, 1). Unlike before, however, the exact range of the medium risk signals

is endogenously determined by the technology parameter r. The cost of imperfect

information for the principal is the cost of wasted effort in state 0. On the other

hand, the benefit is the existence of such medium risk signals. The condition (16)

ensures that the probability that the signal falls in this medium risk range is suf-

ficiently large compared with the probability of observing a high signal in state 0.

Note that (16) is strictly in terms of the payoffs and independent of the prior proba-

bility p. It tends to hold (1) when δ02 is large so that the agent has a strong incentive

to make effort in the absence of the principal’s effort, or (2) when the agent’s action

has a significant positive impact on the principal’s payoff. For the latter, suppose

for example that the principal’s payoff is written in the form:

u1(a1, a2) = k1a1 + k2a2 − a1a2,

where the cross product term represents strategic substitution. Then the benefit of

the agent’s action for the principal equals µ0
1 = u1(0,1)−u1(0,0)

c1
= k2

c1
, whereas that

of his own action δ01 or δ11 does not depend on k2. Hence, (16) tends to hold as we

increase k2 while holding other parameters fixed.

The above conclusion extends to alternative setups where the principal and the

agent move sequentially: Suppose first that the agent moves first. In this case, the

agent’s inaction would force the principal to take action for the medium risk signals.

However, if the agent is in fact a continuum of individuals none of whom can influence

the principal’s decision, then the above conclusion holds as is. Such interpretation

of the agent is appropriate for the type of shock considered in this paper. Suppose

next that the principal moves first. In this case, the principal’s action may signal his

private information in addition to what is revealed through information disclosure.

This problem, however, is not relevant as long as full disclosure is considered.15

15The optimal disclosure rule considered in the next section requires some modification since

(a1, a2) = (1, 1) cannot be implemented for θ > γ.
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When full disclosure of θ is assumed as in the corollary above, we can see under

(14) and (16) that the principal’s payoff is single-peaked as a function of r2, and

hence that there exists a unique r > 0 that maximizes his payoff. Specifically, the

optimal r is characterized as a solution to the following equation, which is the first-

order condition with respect to r2 for the maximization of the principal’s payoff π1

in (20) in the Appendix:

(
δ11
δ02

) 1
2

(
1+r2 log

(
p

1−p

)2
δ02δ

1
1

)
=

µ0
1 − δ01 − δ11 − 2r2(µ0

1 − δ01 + δ11) log
pδ1
1−p

µ0
1

(
1− 2r2 log

pδ02
1−p

) . (17)

The LHS is convex in r2 while the RHS is concave in r2. Moreover, the LHS > RHS

at r2 = 0 under (16). These imply that the principal’s payoff π1 is quasi-concave in

r2, and hence that there exists a unique r2 > 0 which maximizes his payoff. It is

interesting to compare this observation with the no-existence of an interior optimum

in a single-person information acquisition problem as implied by the theory of the

value of information.16 Another interesting observation concerns the comparative

statics with respect to p. First, r → 0 as p → 0 since otherwise, the principal’s

payoff under (r, g) in (20) will become smaller than π0
1. Let

z =
1

2
− r2 log

p

1− p
,

which is > 1
2 when p < 1

2 . The first-order condition (17) can be written in terms of

r2 and z as: (
µ0
1 − δ01

) (
z − r2 log δ11

)
− δ11

(
1− z + r2 log δ11

)
− µ0

1

(
z − r2 log δ02

)(δ11
δ02

)1−z+ 1
2
r2 log δ11δ

0
2

= 0.

Suppose that p → 0 so that r2 → 0. Then in the limit, z should satisfy

(
µ0
1 − δ01

)
z − δ11 (1− z)− µ0

1z

(
δ11
δ02

)1−z

= 0,

which is seen to have a solution in the interval
(
1
2 , 1

)
under (16). In other words,

when p is small, z is close to the solution to this equation. Put differently, for p

small,

r2 log
p

1− p
16The theory states that the value of information is fundamentally non-concave. See Radner and

Stiglitz (1984).
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is approximately constant, and hence

r ∝
(
log

p

1− p

)− 1
2

.

It also follows from this that the thresholds α0 and β are held approximately constant

as p → 0.

8 Optimal Disclosure with Imperfect Continuous Sig-

nals

Given the conclusion of the previous sections that an imperfect information tech-

nology may be optimally chosen, we characterize an optimal disclosure rule when

the imperfect signal θ of given precision is continuously distributed over the real

line Θ = R. In other words, we examine how the principal should optimally pool

his private information. By solving for the optimal disclosure rule for each r > 0

using Theorem 4 below, we can in principle solve for the optimal technology r∗ at

least numerically. The theorem is of interest in its own right when acquiring perfect

information is technologically infeasible.

Assume that the likelihood ratio strictly decreases from ∞ to 0 as θ varies from

0 to 1 so that α0, β0 and β defined in (7) and (8) uniquely exist. The following

theorem characterizes an optimal disclosure rule g and the associated equilibrium σ

given r > 0.

Theorem 4 Suppose that (r, g) is an optimal incentive compatible policy with im-

perfect information, and admits an equilibrium σ = (σ1, σ
∗
2). Let α and γ be the

solutions to the following minimization problem:

min
α,γ

µ0
1F1,r(α) + µ1

1F1,r(γ)

subject to : α ≤ α0, γ ≥ β
p

1− p

[
P (θ ∈ [α, β) | ω = 1)δ02 + P (θ ∈ [γ,∞) | ω = 1)δ12

]
= P (θ ∈ [α, β) ∪ [γ,∞) | ω = 0).

(18)
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Then the pair (σ1, g) is given by

(σ1(θ), g(θ)) =



(0, 0) for almost every θ ∈ (−∞, α),

(0, 1) for almost every θ ∈ [α, β),

(1, 0) for almost every θ ∈ [β, γ),

(1, 1) for almost every θ ∈ [γ,∞).

(0,0) (0,1) (1,0) (1,1)

θ
α γβα0 β0

Figure 3: Action-advice pairs under the optimal imperfect information policy

Proposition 4 is illustrated in Figure 3. Although its formal proof in the Ap-

pendix is lengthy, the intuition behind the proposition is very simple. To see this,

suppose that the principal fully reveals θ. When α0 < θ < β, the agent is willing

to take action as a best response to no action by the principal. In other words,

the principal can induce a2 = 1 for free over this range. When θ < α0 or when

θ > β, on the other hand, the agent does not take action since in the first case,

the implied probability of ω = 1 is too low and in the second case, he knows that

the principal takes action. Hence, with full disclosure, the agent can be induced to

take action if and only if θ ∈ (α0, β). In order to have the agent take action even

when θ < α0 or θ > β, the principal must garble information appropriately. The

extent of garbling is determined by the agent’s incentive condition (10), and at the

optimum, the constraint should bind as expressed by the equality constraint in the

(18). Furthermore, in each of the two intervals (−∞, α0) and [β,∞), the agent is

advised to take action when the signal is in its upper portion. Intuitively, this is

because the higher the signal θ, the more effective is the agent’s action in increas-

ing the principal’s payoff. Finally, given such specification of the action-advice pair
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(σ1, g), the principal’s payoff can be written as

π1(r, g) = p
[
u1(1, 1){1− F1,r(γ)}+ u1(1, 0){F1,r(γ)− F1,r(β)}

+ u1(0, 1){F1,r(β)− F1,r(α)}+ u1(0, 0)F1,r(α)
]

− c1

[
p{1− F1,r(β)}+ (1− p){1− F0,r(β)}

]
= p{u1(1, 1)− c1} − c1(1− p){1− F0,r(β)}

− pc1
[
µ1
1F1,r(γ) + (δ01 − µ0

1)F1,r(β) + µ0
1F1,r(α)

]
.

(19)

Since β is uncontrolable, π1 is maximized when we minimize the objective function

in (18) with respect to α and γ subject to the inequality constraints.

9 Conclusion

In a model of information acquisition and disclosure, we show that endogenous

information about the risk of a shock may be imperfect when the agent may free

ride on the principal’s preparation efforts. For a shock with moderately high prior

probability, the principal prefers no information to perfect information. On the

other hand, for a shock with small prior probability, the principal prefers perfect

information to no information, but the optimal policy may entail a strictly positive

degree of imperfection. Specifically, we show that the full disclosure of imperfect

information may outperform perfect information.

The model adopts an extreme assumption that a perfectly informative signal

is costlessly available to the principal. Of course, if acquisition of more accurate

information is more costly, then it only reinforces the main conclusion of the paper.

When acquisition of perfect information is technologically infeasible, the relevant

question is whether the optimal information is less precise than what is techno-

logically feasible. The answer naturally depends on the parameters, but the basic

intuition of the present analysis continues to be valid.

The scientific assessment of a risk is often very difficult to communicate to non-

experts. Furthermore, it is often observed that individuals overreact to a small

probability risk in some cases, and undermine a moderately high probability risk in

other cases. In this sense, the biggest challenge for the sender of information may

be to induce the right action from the receivers taking into account the imperfection

and bias in their information processing.17 Theoretical investigation into such a

17See, for example, Eggers and Fischhoff (2004) and Fischhoff (1994, 2011) for the discussion of
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process would be an interesting topic of future research.

Appendix

Proof of Theorem 2 It is clear that (r, g) is incentive compatible since it advises

a2 = 1 if and only if θ ∈ (α0, β) where the principal chooses a1 = 0. The principal’s

expected payoff under (r, g) is given by

π1(r, g)

= p
[
u1(1, 0) {1− F1,r(β)}+ u1(0, 1) {F1,r(β)− F1,r(α

0)}

+ u1(0, 0)F1,r(α
0)
]
− c1

[
p{1− F1,r(β)}+ (1− p){1− F0,r(β)}

]
.

(20)

Recalling that π0
1 = p{u1(1, 0) − c1} is the principal’s payoff under the perfect

information policy, we hence have

π1(r, g)− π0
1 = c1p

{
(µ0

1 − δ01)F1,r(β)− µ0
1F1,r(α

0)
}
− c1(1− p) {1− F0,r(β)} .

(21)

We now show that under (16),

lim
r→0

π1(r, g)− π0
1

c1F1,r(β)
> 0.

This would imply that π1(r, g) > π0
1 for r > 0 sufficiently small, showing the sub-

optimality of the perfect information policy. Given that the noise term ϵ has the

standard normal distribution, α0 and β in (7) and (8) are explicitly given by

α0 =
1

2
− r2 log

pδ02
1− p

, β =
1

2
− r2 log

pδ11
1− p

,

where log denotes the natural logarithm. It follows that as r → 0,

f1,r(α
0)

f1,r(β)
= e

(
− 1

2
log

δ02
δ11

){
1+r2 log

(
p

1−p

)2
δ11δ

0
2

}
→

(
δ11
δ02

) 1
2

. (22)

We now show that

lim
r→0

1− F0,r(β)

F1,r(β)
=

pδ11
1− p

. (23)

Since

lim
r→0

r2
(
β

r

)′
= −1

2
and lim

r→0
r2

(
β − 1

r

)′
=

1

2
,

communication strategies when the receivers have limited capabilities.
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the definition of β in (7) implies that

lim
r→0

1− F0,r(β)

F1,r(β)
= lim

r→0

1− Φ(βr )

Φ(β−1
r )

= lim
r→0

−rf0,r(β)
(
β
r

)′

rf1,r(β)
(
β−1
r

)′

=
pδ11
1− p

lim
r→0

−r2
(
β
r

)′

r2
(
β−1
r

)′ =
pδ11
1− p

,

where the second equality uses L’Hospital’s rule as well as the fact that ϕ(βr ) =

rf0,r(β) and ϕ(β−1
r ) = rf1,r(β). Since

F1,r(α
0)

F1,r(β)
=

∫ α
−∞ f1,r(θ) dθ∫ β
−∞ f1,r(θ) dθ

<
f1,r(α

0)

f1,r(β)
,

it follows from (22) and (23) that as r → 0,

π1(r, g)− π0
1

c1F1,r(β)
= p

{
(µ0

1 − δ01)− µ0
1

F1,r(α
0)

F1,r(β)

}
− (1− p)

1− F0,r(β)

F1,r(β)

> p

{
(µ0

1 − δ01)− µ0
1

f1,r(α
0)

f1,r(β)

}
− (1− p)

1− F0,r(β)

F1,r(β)

→ p

{
(µ0

1 − δ01)− µ0
1

(
δ11
δ02

) 1
2

− δ11

}
.

The limit is > 0 if and only if (16) holds. ■

Proof of Theorem 4 Recall that the principal has a dominant action a1 = 1 if

θ > β, and a1 = 0 if θ < β0. Recall also that the best response is a1 = 1 − a2 if

θ ∈ (β0, β). It follows that the action-advice pair (σ1(θ), g(θ)) should satisfy

(σ1(θ), g(θ)) =


(1, 0) or (1, 1) if θ > β,

(1, 0) or (0, 1) if θ ∈ (β0, β),

(0, 0) or (0, 1) if θ <, β0,

(24)

We first show that (σ1(θ), g(θ)) = (0, 1) for almost every θ ∈ (α0, β). Suppose that

(r, g) is an incentive compatible policy such that D0 = B0 ∩ (α0, β) has positive

measure. Consider an alternative policy (r, ĝ) such that

ĝ(θ) =

1 if θ ∈ (α0, β),

g(θ) otherwise.
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Let also σ̂1 be given by

σ̂1(θ) =

0 if θ ∈ (α0, β),

σ1(θ) otherwise.

We then have B̂1 ≡ {θ : ĝ(θ) = 1} = B1 ∪D0 and B̂0 ≡ {θ : ĝ(θ) = 0} = B0 \D0.

Since θ ∈ D0 implies θ > α0, we have

f0,r(θ)

f1,r(θ)
<

pδ02
1− p

,

and hence

P (θ ∈ D0 | ω = 1) =

∫
D0

f1,r(θ)dθ >
1− p

pδ02

∫
D0

f0,r(θ)dθ =
1− p

pδ02
P (θ ∈ D0 | ω = 0).

Using the incentive compatibility condition (10) for (r, g), we see that

δ02P (θ ∈ B̂1 ∩ (−∞, β) | ω = 1) + δ12P (θ ∈ B̂1 ∩ (β,∞) | ω = 1)

= δ02P (θ ∈ B1 ∩ (−∞, β) | ω = 1) + δ12P (θ ∈ B1 ∩ (β,∞) | ω = 1)

+ δ02P (θ ∈ D0 | ω = 1)

≥ 1− p

p
P (θ ∈ B1 | ω = 0) +

1− p

p
P (θ ∈ D0 | ω = 0)

=
1− p

p
P (θ ∈ B̂1 | ω = 0).

(25)

Likewise, the incentive compatibility condition (11) for (r, g) implies that

δ02P (θ ∈ B̂0 ∩ (−∞, β) | ω = 1) + δ12P (θ ∈ B̂0 ∩ (β,∞) | ω = 1)

= δ02P (θ ∈ B0 ∩ (−∞, β) | ω = 1) + δ12P (θ ∈ B0 ∩ (β,∞) | ω = 1)

− δ02P (θ ∈ D0 | ω = 1)

≤ 1− p

p
P (θ ∈ B0 | ω = 0)− 1− p

p
P (θ ∈ D0 | ω = 0)

=
1− p

p
P (θ ∈ B̂0 | ω = 0).

(26)

(25) and (26) show that (r, ĝ) is incentive compatible. The principal’s payoff under

(r, ĝ) differs from that under (r, g) only when θ ∈ D0: (r, ĝ) yields pu1(0, 1) while

(r, g) yields pu1(1, 0)− c1 if θ ∈ D0 ∩ (β0, β) and pu1(0, 0) if θ ∈ D0 ∩ (α, β0). Since

u1(0, 1) > u1(1, 0)−c1 > u1(0, 0) by assumption, (r, ĝ) yields a strictly higher payoff.
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Formally,

π1(r, ĝ)− π1(r, g) = p
[
u1(0, 1)P (θ ∈ D0 | ω = 1)

− u1(0, 0)P (θ ∈ D0 ∩ [α, β0) | ω = 1)

− u1(1, 0)P (θ ∈ D0 ∩ [β0, β) | ω = 1)
]

+ c1P
(
θ ∈ D0 ∩ (β0, β)

)
> 0.

This shows that (r, g) is suboptimal.

We next show that there exists γ ∈ [β,∞) such that g(θ) = 0 for almost every

θ ∈ (β, γ) and g(θ) = 1 for almost every θ ∈ (γ,∞). The proof of the existence of

α ∈ (−∞, α0] such that g(θ) = 0 for almost every θ ∈ (−∞, α) and g(θ) = 1 for

almost every θ ∈ (α, α0) is similar and is omitted.

We first claim that if (r, g) is optimal, then for any x ∈ (β,∞),

P (θ ∈ (β, x) ∩B1) > 0 ⇒ P (θ ∈ (x,∞) ∩B0) = 0. (27)

Intuitively, (27) states that when g advises a2 = 1 for some signal θ, then it should

advise a2 = 1 for almost every signal above θ. When (27) holds, there exists

ν ∈ [β,∞) such that g(θ) = 1 for almost every θ ∈ (ν,∞) and g(θ) = 0 for almost

every θ ∈ (β, ν) as follows: First, if P ((β,∞)∩B1) = 0, then let ν = β. Otherwise, if

P (θ ∈ (β, x)∩B1) > 0 for some x > β, then let ν = inf {x : P (θ ∈ (β, x)∩B1) > 0}.
By the definition of ν, we have P (θ ∈ (β, ν)∩B1) = limn→∞ P (θ ∈ (β, ν− 1

n)∩B1) =

0. Furthermore, by (27), we have

P (θ ∈ (ν +
1

n
,∞) ∩B0) = 0 for every n = 1, 2, . . .

so that P (θ ∈ (ν,∞) ∩B0) = limn→∞ P (θ ∈ (ν + 1
n ,∞) ∩B0) = 0.

Suppose that (r, g) is an incentive compatible policy such that P (θ ∈ [β, x) ∩
B1) > 0 but P (θ ∈ (x,∞)∩B0) > 0 for some x ∈ (β, 1). Take any D0

1 ⊂ [β, x)∩B1

and D0 ⊂ (x,∞) ∩B0 such that

P (θ ∈ D0 | ω = 1) = P (θ ∈ D0
1 | ω = 1) > 0. (28)

Since every element of D0 is larger than any element of D0
1, the monotone likelihood

ratio property (5) implies that

P (θ ∈ D0 | ω = 0)

P (θ ∈ D0 | ω = 1)
<

P (θ ∈ D1 | ω = 0)

P (θ ∈ D1 | ω = 1)
.
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It then follows from (28) that

P (θ ∈ D0 | ω = 0) < P (θ ∈ D0
1 | ω = 0).

Hence,

0 = pδ12
{
P (D0 | ω = 1)− P (D0

1 | ω = 1)
}

> (1− p)
{
P (D0 | ω = 0)− P (D0

1 | ω = 0)
}
.

Now consider for any ϵ ∈ (−∞, x−β) a subsetDϵ
1 ofD

0
1 such thatDϵ

1 = D0
1∩(β, x−ϵ).

Since both P (θ ∈ Dϵ
1 | ω = 1) and P (θ ∈ Dϵ

1 | ω = 0) are continuous functions of ϵ,

for ϵ > 0 small enough, we have

pδ12 {P (θ ∈ D0 | ω = 1)− P (θ ∈ Dϵ
1 | ω = 1)}

> (1− p) {P (θ ∈ D0 | ω = 0)− P (θ ∈ Dϵ
1 | ω = 0)} .

(29)

Let ϵ > 0 satisfy (29), and define D1 = Dϵ
1. Note that we also have

P (θ ∈ D1 | ω = 1) < P (θ ∈ D0 | ω = 1). (30)

Consider now an alternative policy (r, ĝ) such that

ĝ(θ) =


1 if θ ∈ D0,

0 if θ ∈ D1,

g(θ) otherwise,

and let σ̂1 be given by

σ̂1(θ) =


0 if θ ∈ D0,

1 if θ ∈ D1,

σ1(θ) otherwise.

In other words, ĝ and g advise the opposite actions when θ ∈ D0 ∪ D1. It follows

that

B̂1 ≡ {θ : ĝ(θ) = 1} = B1 ∪D0 \D1,

B̂0 ≡ {θ : ĝ(θ) = 0} = B0 ∪D1 \D0.

To see that (r, ĝ) is incentive compatible, note that the incentive compatibility
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condition (10) for (r, g) and (29) together imply that

δ02P (θ ∈ B̂1 ∩ (−∞, β) | ω = 1) + δ12P (θ ∈ B̂1 ∩ (β,∞) | ω = 1)

= δ02P (θ ∈ B1 ∩ (−∞, β) | ω = 1) + δ12P (θ ∈ B1 ∩ (β,∞) | ω = 1)

+ δ12 {P (θ ∈ D0 | ω = 1)− P (θ ∈ D1 | ω = 1)}

>
1− p

p
P (θ ∈ B1 | ω = 0) +

1− p

p
{P (θ ∈ D0 | ω = 0)− P (D1 | ω = 0)}

=
1− p

p
P (θ ∈ B̂1 | ω = 0).

(31)

Likewise, it follows from (11) and (29) that

δ02P (θ ∈ B̂0 ∩ (−∞, β) | ω = 1) + δ12P (θ ∈ B̂0 ∩ (β,∞) | ω = 1)

= δ02P (θ ∈ B0 ∩ (−∞, β) | ω = 1) + δ12P (θ ∈ B0 ∩ (β,∞) | ω = 1)

+ δ12 {P (θ ∈ D1 | ω = 1)− P (θ ∈ D0 | ω = 1)}

<
1− p

p
P (θ ∈ B0 | ω = 0) +

1− p

p
{P (θ ∈ D1 | ω = 0)− P (D0 | ω = 0)}

=
1− p

p
P (θ ∈ B̂0 | ω = 0).

(32)

(31) and (32) show that (r, ĝ) is incentive compatible.　

The principal’s payoff under (r, ĝ) differs from that under (r, g) only when θ ∈
D0 ∪ D1: (r, g) yields pu1(1, 1) on D1 and pu1(1, 0) on D0, whereas (r, ĝ) yields

pu1(0, 1) on D1 and pu1(1, 1) on D0. Hence, by (30),

π1(r, ĝ)− π1(r, g)

= p
[
P (θ ∈ D0 | ω = 1) {u1(1, 1)− u1(1, 0)}

+ P (θ ∈ D1 | ω = 1) {u1(1, 0)− u1(1, 1)}
]

= p {P (θ ∈ D0 | ω = 1)− P (θ ∈ D1 | ω = 1)} {u1(1, 1)− u1(1, 0)}

> 0.

This shows that (r, g) is suboptimal. If the agent’s incentive constraint holds with

strict inequality, then the principal can lower either α or γ to increase his payoff as

seen in (19). ■
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