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Abstract
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When a seller of a good trades with multiple buyers, he often employs a dynamic
sales strategy. That is, instead of serving all the buyers at once, the seller par-
titions them into smaller markets and supplies each market at a different timing.
Examples abound in the entertainment industry where the sellers of books, video
games, and movies introduce their products in one market and move on to another
after generating hype in the first market. For example, on Sony’s announcement on
the release of its PS3 game console, a BBC article remarks that “[n]ormally Sony
staggers the release of a new console, releasing in Japan and America, with Europe
coming a belated third.”1 We also observe similar sales strategies used in automobile
and electronics industries.2

There is perhaps more than one reason why a seller employs such a dynamic sales
strategy. For example, the seller may engage in staggered sales simply because of a
constraint on logistics and other physical constraints.3 In many cases, however, we
believe that it is based on strategic motives. For example, in his classical textbook
on marketing, Philip Kotler (1988, ch. 14) states that a firm of a new product should
choose a particular subset of consumers as first targets, noting that those “[e]arly
adopters tend to be opinion leaders and helpful in “advertising” the new product
to other potential buyers.” That is, a good sales strategy should use the adoption
decisions of a small group of consumers with certain characteristics as a signal to
other consumers.

In this paper, we explore the possibility of a dynamic sales strategy when there
is interdependence among buyers’ valuations. More specifically, when buyers’ valua-
tions of the seller’s good are determined in part by the publicly observable behavior
of other buyers, we analyze whether the seller is better off trading with different
buyers at different timings. When successful, such a trading strategy can create a
success-breed-success process: successful transactions with the initial set of buyers
raise the valuations of the next line of buyers, success with the latter raises even
further the valuation of the buyers to follow, and so on. Once in such a cycle, the
seller can continually increase his offer price and raise more revenue than from static

1“PlayStation 3 Euro launch delayed,” BBC News, September 6, 2006. It was announced that

PS3 is launched on Nov 11, 2006 in Japan, Nov 17 in the U.S. and March 30, 2007 in Europe. A

similar staggering strategy was observed for the Nintendo Wii.
2One recent example is Toyota’s introduction of the Lexus brand to Japan after its well-

publicized success in the U.S.
3For example, translation is required before best-sellers in English are released in non English

countries, producers of electronic devices want to identify program bugs before a launch at a wider

scale, etc.
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sales. Of course, the seller adopting such a scheme also faces the risk of a down-
ward spiral where a failure in the initial markets leads to a sequence of failures in
subsequent markets.

In our model of dynamic trading, a seller faces multiple buyers each endowed with
private information about the seller’s good. Each buyer demands one unit of the
good, which is produced at no cost to the seller. The private signals are independent
across buyers and a buyer’s valuation of the seller’s good is a weighted sum of all
buyers’ signals. As in the classical monopoly pricing problem, the seller’s trading
with each buyer takes the form of price posting. The outcomes of transactions are
publicly observable to subsequent buyers, and used to update the expected value
of the good to them. Each buyer meets the seller once and leaves the market after
accepting or rejecting the offer.

The nature of the problem can be best illustrated in a model where there are
only two buyers. The seller can either trade with both at once or trade with one of
them first and the other next. In the first scheme, referred to here as a simultaneous
scheme, the seller provides the buyers no opportunity to learn about each other’s
private signals. In other words, each buyer must make a purchasing decision only on
his own signal. In the second scheme, referred to as a sequential scheme, the seller
allows the second buyer to infer the private signal of his predecessor: Acceptance by
the first buyer raises the second buyer’s valuation, while rejection lowers it. Note
that the exact amount by which the second buyer’s valuation changes depends on
the level of the price offer to the first buyer: If the first buyer accepts a high price,
then the increase in the second buyer’s valuation will be large, while if the first buyer
accepts a low price, then the increase will be small. In this sense, the seller should
choose his price offer in stage 1 so as to balance the rent to extract from buyer 1 and
the information to reveal to buyer 2. If the two buyers are not ex ante identical, then
the seller must also choose which buyer to serve first. With three or more buyers, the
seller’s problem is similar but significantly more complex. First, besides sequential
and simultaneous schemes, there are a number of intermediate schemes. Second,
the choice of buyers at each stage can be contingent on the history of transactions.
For example, the buyer(s) with whom the seller may wish to trade in stage 2 may
be different depending on the outcome of transaction in stage 1.

The first main conclusion of the paper is that it is optimal for the seller to employ
a sequential scheme. The conclusion is based on the construction of a sequential
scheme that replicates any given non sequential scheme. In the two-buyer model,
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for example, suppose that the seller originally employs a simultaneous scheme which
offers price x1 to buyer 1 and x2 to buyer 2. The alternative sequential scheme offers
x1 to buyer 1 in period 1, and makes contingent offers to buyer 2 in period 2. In
particular, the offer to buyer 2 is higher than x2 when 1 accepts his offer and lower
otherwise. The adjustment in the offer to buyer 2 is such that he will accept it
with exactly the same probability as he would accept x2 under the original scheme.
Those contingent offers yield the same expected revenue as x2, and we can also show
that even if there are more buyers after buyer 2, their valuations are not affected
by this change in the sales scheme and hence the seller’s revenue from them can be
made unchanged as well.

Given the optimality of a sequential scheme, the second question we address is
on the optimal ordering of buyers. For this, we suppose that the buyers’ private
signals have an identical distribution, and that their valuation equals the own signal
plus some constant times the sum of all other buyers’ signals. The constant is the
unique source of ex ante heterogeneity among the buyers and called the dependence
weight as it measures how dependent the buyer is on others’ information. We look
for conditions under which the optimal sales scheme trades in an increasing order
of the dependence weights: The first buyer has the smallest weight, the second
buyer has the second smallest weight, and so on. When the buyers’ private signals
have a uniform distribution, we show that a sequential scheme with the monotone
ordering is optimal if those weights are similar in size. When the dependence weights
have an increasing order, the buyers who are more heavily influenced by public
information are given a chance to observe more information. From the perspective
of classical monopoly theory, this scheme presents an efficient way to extract the
buyers’ informational rents since given any public information, the reduction in the
rents is higher for a buyer with a larger dependence weight.

The present paper is closely related to the models of social learning and monopoly
pricing in sequential sales problems. The models of social learning as studied by
Sushil Bikhchandani, David Hirschleifer and Ivo Welch (1992), and Abhijit Banerjee
(1992) suppose that infinitely many agents make sequential decisions when they are
ex ante identical but have correlated private signals about the underlying state of
the world. These models may be interpreted as describing the behavior of buyers
who all receive the same take-it-or-leave-it offers from a seller. In contrast, the
sequential sales models of Marco Ottaviani (1999), Christophe P. Chamley (2004,
Chap. 4), and Subir Bose et al. (2006, 2007) suppose that the seller controls the
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price offered to each buyer. These papers study how optimal pricing by the seller
affects the buyers’ learning about the true value of the good. Bose et al. (2006)
for example identifies the range of prior beliefs that allow for complete learning
by the buyers. Daniel Sgroi (2002) studies a dual problem of a monopolist under
social learning when the seller, who knows the quality of his product and offers a
fixed price, partially controls public information by choosing the number of buyers
to serve in period 1.4 The framework of the present paper is different from those
of the above in that private signals are independent, valuations are interdependent
rather than common, and the buyers are ex ante heterogeneous. The independence
of private signals simplifies the analysis significantly and allows us to ignore the
seller’s learning problem which is central to the analysis of many of the earlier
models. The buyer heterogeneity raises the new question of buyer ordering, and
provides one possible explanation for the frequent occurrence of consumption fads
in some markets not explored by the existing models.

By adopting the sequential scheme, the seller is committed to publicly revealing
information about all past transactions to every buyer. Our finding hence parallels
the well-known linkage principle in auction theory (Paul R. Milgrom and Robert J.
Weber (1982)), which states that the auctioneer’s expected revenue is maximized
when he commits to fully revealing his private information provided that the bid-
ders’ private signals are affiliated with that of the auctioneer. The principle also
shows that an English auction, which publicly releases the buyers’ private informa-
tion through their actions as in the sequential scheme, generates a higher revenue
than a sealed-bid second-price auction.5 Marco Ottaviani and Andrea Prat (2001)
present an alternative version of the linkage principle that is most closely related to
our results. They relax the assumption of unit demand and suppose that a seller
posts to a single buyer a price-quantity schedule for his good. They show that the
seller should optimally commit himself to publicly revealing any information before
trading as long as it is affiliated with a buyer’s type and the value of the good. Their
theorem also implies the optimality of sequential trading against two buyers in an

4Trades with other buyers take place sequentially after period 1. Sgroi (2002) shows that the

optimal number of the initial buyers varies non monotonically with the size of the market.
5The linkage principle in its original form is limited to the standard auction framework. It

may fail, for example, when the public information consists of the bids of the first-stage bidders

in two-stage auctions (Maria-Angeles de-Frutos and Robert Rosenthal (1998)), when bidders are

asymmetric (Vijay Krishna (2002, Ch. 8)), or when they demand multiple units (Motty Perry and

Philip J. Reny (1999)).
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alternative environment, and our conclusion complements this result.6

In marketing, the sequential sales scheme is sometimes called the “waterfall strat-
egy,” while the simultaneous sales scheme is called the “sprinkler strategy.” When
a firm adopts a waterfall strategy, the lead effect refers to the effect that consumer
decisions in the first market have on those in subsequent markets. For example,
Shlomo Kalish, Vijay Mahajan and Eitan Muller (1995) discuss the relative advan-
tages of the two types of strategies by directly assuming the form of intertemporal
dynamics of the lead effect. The present paper, on the other hand, can be seen as
an attempt to generate the lead effect through value interdependence. Empirical re-
search in the marketing literature also looks at the dynamic sales strategies used by
multinational firms. In particular, much attention is focused on the motion picture
industry where movie makers draw a detailed plan on when and how to release their
products in international markets.7 According to the aforementioned textbook by
Kotler (1980), consumers are classified by their willingness to adopt a new product.
Upon emphasizing that a firm’s first target should be the innovators, those who are
the most willing to adopt, he notes that the role of personal influence is stronger on
those who are less willing than the more willing. Taken together, they can be inter-
preted as a statement on the desirable ordering of consumers based on the degree of
influence they receive from other consumers’ behavior. Our analysis on the optimal
ordering of buyers provides one formal restatement of this theory.

The paper is organized as follows: The next section formulates a model of
monopoly. In Section 3, we present an example with two buyers. Section 4 proves
the optimality of a sequential scheme. In Section 5, we identify the conditions under
which the optimal sequential scheme entails the increasing order of the dependence
weights. Section 6 concludes with a discussion.

6See Section 4 for more discussion. Masaki Aoyagi (2007) also discusses the optimal information

revelation in a model of a dynamic tournament with a privately informed organizer. Discussion of

simultaneous versus dynamic schemes is also seen in the literature on network externalities where

agents choose whether to subscribe to a network or not. See, e.g., Jack Ochs and In-Uck Park

(2008).
7For example, see Anita Elberse and Jehoshua Eliashberg (2003) and the references therein.
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I. Model

A seller of a good faces the set I = {1, . . . , I} of I buyers each of whom has private
information about the valuation of the good.8 Let si denote buyer i’s private signal
and s = (s1, . . . , sI) be the signal profile. We assume that s1, . . . , sI are independent
and distributed over the set of real numbers. Let μi be the mean value of si. When
the signal profile is s = (s1, . . . , sI), buyer i’s valuation of a single unit of the seller’s
good is given by

vi(s) = ci0 + ciisi +
∑
j �=i

cij(sj − μj),

where cij ∈ R are constants. In other words, the valuations are linearly interdepen-
dent, and buyer i places weight cij on buyer j’s signal.9 For every i ∈ I, cii > 0
and cij ≥ 0 for j �= 0, i. In other words, the valuation is strictly increasing in
the own signal, and the buyers’ preferences are aligned in the sense that any buyer
having a high signal is good news for any other buyer.10 Subtraction of the mean μj

from sj for every j �= i is introduced to simplify the representation of the expected
valuation.11

We normalize the marginal cost of producing the good to zero, and assume that
every buyer demands at most one unit. As discussed in the Introduction, a buyer in
this model can also be interpreted as a segment of the market which has a uniform
taste about the seller’s good.

The seller trades with each buyer by posting him a price. The buyer then accepts
or rejects the price and leaves the market. The price posted to each buyer and their
response to it are both publicly observable.

In every period, the seller chooses target buyers and prices to offer to them as a
function of past trades. Formally, denote by It ⊂ I the set of buyers who are made
offers in period t. An outcome yt in period t is a partition (At, Bt) of the set It: At

represents the set of buyers who have accepted their offers, and Bt represents those
who have rejected their offers. For any subset J of buyers, let Y (J) denote the set

8Note that I represents both the set and number of buyers.
9The additive specification of the valuation function, which is common in the auction literature,

can also be interpreted as a first-order approximation to a more general function.
10Note that this is a natural assumption for the analysis of the probability of the same decision

in Section 7. Some of our conclusions hold when cij < 0. See Section 8 for more discussion.
11Without the subtraction of μj , the conclusion in Section 4 holds as is while some adjustments

are required for the conclusions in Section 5.
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of possible outcomes from the set J of buyers. In other words, Y (J) consists of all
the two-way partitions of the set J including (J, ∅) and (∅, J). A history of length
t consists of the outcomes in periods 1, . . . , t. Let Ht denote the set of possible
histories of length t, and let H = ∪∞

t=0 Ht be the set of all possible histories, where
H0 is the singleton set of the null history. Given any history h ∈ H, we denote by
I(h) and U(h) = I \ I(h) the set of buyers with whom the seller has and has not,
respectively, traded along h.

A sales scheme of the seller, denoted σ, consists of a pair of mappings r : H → 2I

and x = (xi)i∈I : H → RI
+: r is the target function with r(h) specifying the subset

of buyers chosen for trading at history h, and x is the pricing function with xi(h)
specifying the price offered to buyer i at h. Note in particular that the target buyers
in any period can be contingent on the history. In a three-buyer model, for example,
after trading with buyer 1 in period 1, the seller may choose either buyer 2 or buyer
3 in period 2 depending on whether the period 1 trade is successful or not, etc. It
should also be noted that the specification of the price xi(h) is relevant only if i is
the target buyer at h (i.e., i ∈ r(h)). In order to eliminate redundancy, we require
that r choose at least one buyer in every period until the list of buyers is exhausted:
r(h) �= ∅ if U(h) �= ∅. This in particular implies that all the trading ends in or before
period I. Let Σ be the set of all sales schemes. Two representative classes of sales
schemes are the simultaneous schemes in which the seller trades with all the buyers
at once (i.e., r(h) = I for h ∈ H0), and the sequential schemes in which he trades
one by one with each buyer (i.e., r(h) = {i} for some i ∈ U(h) for each h ∈ Ht−1

and t = 1, . . . , I).
Given a sales scheme σ, let P σ denote the joint probability distribution of the

signal profile s and the history h induced by σ. Let Eσ be the expectation with
respect to the distribution P σ. We use P without the superscript to denote the
marginal distribution of s that does not depend on the sales scheme, and E to
denote the corresponding expectation. For any history h ∈ H, let

V σ
i (si | h) = Eσ[vi(si, s̃−i) | h]

be the expected valuation of buyer i with signal si given history h. By assumption,
it can be explicitly written as

V σ
i (si | h) = ci0 + ciisi +

∑
j∈I(h)

cij Eσ[s̃j − μj | h].

Note that the summation above is over the set I(h) of buyers who have already
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traded along h since any other term involves the unconditional expectation of the
private signal and hence cancels out. Buyer i with signal si accepts the seller’s offer
xi at history h if and only if the expected value of the good conditional on h is
greater than or equal to xi: Vi(si | h) ≥ xi. The seller’s expected revenue under the
sales scheme σ, denoted by π(σ), is simply the sum of expected payments from the
I buyers.

II. Example

In this section, we illustrate the problem in a simple two-buyer example as follows:
The buyers’ private signals s1 and s2 both have the uniform distribution over the
unit interval [0, 1] with the means μ1 = μ2 = 1/2. Their valuation functions are
given by

v1(s1, s2) = s1 + c1

(
s2 − 1

2

)
and v1(s1, s2) = s2 + c2

(
s1 − 1

2

)
,

where 0 < c1 ≤ c2 < 2. Note that buyer i’s ex ante expected valuation of the good
equals Vi(si | h0) = si.

When the seller uses the simultaneous sales scheme, he will choose the price
offers x1 and x2 so as to maximize x1P (V1(s̃1 | h0) ≥ x1) and x2P (V2(s̃2 | h0) ≥ x2),
respectively. Hence, the revenue maximizing prices equal x1 = x2 = 1/2 and the
seller’s expected payoff equals

π0 =
1
4
× 2 =

1
2
.

On the other hand, when the seller uses the sequential sales scheme that trades with
buyers 1 and 2 in this order, he needs to solve a two-step optimization problem.
Consider first the problem in period 2 given the first period offer x1 ∈ [0, 1]. Let
h1 = 1 be the history denoting buyer 1’s acceptance, and h1 = 0 be the history
denoting his rejection. Depending on h1, buyer 2’s valuation function is either

V2(s2 | 1) = s2 + c2E
[
s̃1 − 1

2
| s̃1 ≥ x1

]
= s2 + c2

x1

2
,

or

V2(s2 | 0) = s2 + c2E
[
s̃1 − 1

2
| s̃1 < x1

]
= s2 − c2

1 − x1

2
.

The seller also has two prices to consider in period 2: x2(1) is the price offer to
buyer 2 when buyer 1 accepted in period 1, and x2(0) is the offer to buyer 2 when

9



buyer 1 rejected. The period 2 price offers hence solve for h1 = 0 and 1,

x2(h1) ∈ arg max
x2

x2 P
(
V2(s̃2 | h1) ≥ x2

)
.

Suppose for the moment that the seller chooses

x2(1) =
1
2

+ c2
x1

2
, and x2(0) =

1
2
− c2

1 − x1

2
.

These prices are obtained by adding to the optimal price 1
2 under the simultaneous

scheme the change in buyer 2’s valuation V2(s2 | h1) − V2(s2 | h0) (h1 = 0, 1) from
the ex ante level. While these prices may be suboptimal, they yield the seller the
expected period 2 revenue of

P (s̃1 ≥ x1) x2(1) P
(
V2(s̃2 | 1) ≥ x2(1)

)
+ P (s̃1 < x1) x2(0) P

(
V2(s̃2 | 0) ≥ x2(0)

)

= P (s̃1 ≥ x1)
(1

2
+ c2

x1

2

)
P

(
s̃2 ≥ 1

2

)
+ P (s̃1 < x1)

(1
2
− c2

1 − x1

2

)
P

(
s̃2 ≥ 1

2

)

=
1
2

P
(
s̃2 ≥ 1

2

)
,

which equals his expected revenue from buyer 2 in the simultaneous scheme. Hence,
the sequential scheme with x1 = 1/2, and x2(0) and x2(0) defined as above yields
the same expected revenue as the optimal simultaneous scheme. On the other hand,
the optimal prices given x1 are computed as

x2(1) =
1
2

(
1 +

c2

2
x1

)
, and x2(0) =

1
2

(
1 − c2

2
(1 − x1)

)
.

They yield the expected period 2 revenues of

π2(x1 | 1) =
1
4

(
1 +

c2

2
x1

)2
, and π2(x1 | 0) =

1
4

(
1 − c2

2
(1 − x1)

)2
(1)

after h1 = 1 and h1 = 0, respectively. The seller’s period 1 maximization problem
can be written as:

max
x1

P (s̃1 ≥ x1)
{
x1 + π2(x1 | 1)

}
+ P (s̃1 < x1) π2(x1 | 0).

Solve this to get

x1 =
1
2
.

The seller’s maximized expected payoff under the sequential scheme with buyer 1
first hence equals

π12 =
1
2

+
c2
2

64
.
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Likewise, when the seller uses the sequential scheme with the order of buyers 1 and
2 reversed, his maximized expected payoff is given by

π21 =
1
2

+
c2
1

64
.

Given our assumptions on c1 and c2, we hence have the following ordering:

π0 < π21 ≤ π12. (2)

The inequalities in (2) show that each sequential scheme is better than the simul-
taneous scheme, and that the sequential scheme with an increasing order of the
weights is better than the sequential scheme with the reverse order. The superiority
of the simultaneous schemes in this two-buyer example can be understood in the
context of public revelation of payoff relevant information. The sequential schemes
supply both the seller and the second buyer with more information about the value
of the good, and contingent adjustment in the price offer to the second buyer allows
the seller to raise a higher revenue as seen above. As for the ranking between the
two sequential schemes, note from (1) that increasing c2 increases the seller’s period
2 revenue when he has a success in period 1, but decreases it if he has a failure
in period 1. For relevant values of x1, the magnitude of the first impact is larger
than that of the second because of the sign of the constant term. This suggests that
having a more dependent buyer in period 2 is good for the seller. These observations
are generalized in the following sections.

While it is common in the theory of mechanism design to resort to the revelation
principle and study the properties of direct mechanisms, the focus of the present
paper is on price posting mechanisms.12 Price posting is not only an important sales
mechanism in its own right, but also is more plausible than a direct mechanism in
some ways. Most importantly, in a sales situation like the one considered in this
paper, we rarely observe the practice of using private signals solicited from buyers
to force an allocation on them as is done by a direct mechanism.13

12In the present setup, a direct scheme would first solicit private signals from all the buyers, and

then choose the allocation of the good and monetary transfer to each buyer as a function of the

reported signal profile.
13At more technical levels, the standard analysis of a direct mechanism has the following problems:

First, it does not exclude the possibility that a buyer’s payment is positive even when he does not

obtain the good, or that it is contingent on another buyer’s report. The positive payment is difficult

to justify with no competition for the good, while the contingent price leads to the seller’s credibility

problem. Second, it imposes individual rationality at the interim stage. This is insufficient when a

buyer can leave the market after seeing the price offer.
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III. Optimality of Sequential Sales Schemes

In the example of the preceding section, the revenue from each alternative scheme
can be computed explicitly. However, technical complexity makes such computation
simply infeasible in a general problem. For this reason, we take a different approach
in what follows and examine how a local change in a given scheme affects the revenue.
In this section, we show that the seller’s expected payoff is maximized when he
employs a sequential scheme.

Theorem 1. The seller’s expected revenue is maximized when he employs a se-
quential scheme: There exists a sequential sales scheme σ∗ such that π(σ∗) =
maxσ∈Σ π(σ).

Proof. See the Appendix.

The proof of the theorem shows that given any non sequential scheme σ, there
exists a sequential scheme that performs at least as well as σ. Suppose for simplicity
that σ induces some history h ∈ Hn−1 (n ≥ 1) at which it trades with two buyers i

and m. Let xi ≡ xi(h) denote the price offer to buyer i under the original scheme.
Consider the following alternative scheme σ∗ = (r∗, x∗): In period n at history h, σ∗

trades only with buyer m by offering the same price as under σ. Let (h, 1) ∈ Hn be
the history under σ∗ denoting m’s acceptance at h, and (h, 0) ∈ Hn be the history
denoting his rejection at h. Let

κm = E[s̃m − μm | V σ
m(s̃m | h) ≥ xm(h)],

λm = E[s̃m − μm | V σ
m(s̃m | h) < xm(h)]

(3)

be the expected values of m’s private signal (minus the unconditional mean μm)
conditional on (h, 1) and (h, 0), respectively. The change in buyer i’s valuation in
period n equals either cim κm or cim λm depending on m’s decision. The contingent
offer to i in period n + 1 is set equal to xi + cim κm at (h, 1), and xi + cim λm at
(h, 0). Since the adjustment is exactly in line with the change in i’s valuation, the
probability that this offer is accepted at (h, 1) or (h, 1) is the same as the probability
that xi is accepted at h under the original scheme. Formally, if we denote by z∗i (h, 1)
the probability that i accepts at (h, 1) under σ∗, then

z∗i (h, 1) = P
(
V σ∗

i (s̃i | h, 1) ≥ xi + cim κm

)

= P
(
V σ

i (s̃i | h) ≥ xi

)

= zi(h).
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Likewise, the probability z∗i (h, 0) that i accepts at (h, 0) under σ∗ equals zi(h). It
then follows that the seller’s expected revenue from buyer i under σ∗ conditional on
h is computed as

zm(h) zi(h) {xi + cim κm} + (1 − zm(h)) zi(h) {xi + cim λm}
= zm(h)

[
xi + cim

{
zm(h) κm + (1 − zm(h)) λm

}]

= zi(h)xi,

where the second equality follows since zm(h) κm + (1 − zm(h)) λm = 0 by the
definitions of κm and λm. Note that zi(h)xi = zi(h)xi(h) is just the expected
revenue from buyer i under the original scheme. As shown in Lemma A.1 in the
Appendix, the valuation function of any subsequent buyer (that comes after i and
m) is unchanged from that under σ given that the offers to i and m under σ∗ are
accepted with the same probability as those under σ. Therefore, by making the
same offer to each subsequent buyer as σ, σ∗ raises exactly the same revenue from
them. In other words, we can locally “expand” σ at h so as not to affect the seller’s
revenue. The argument here generalizes to the case where σ chooses more than two
buyers at h, and hence the optimality of a sequential scheme is obtained.

As mentioned in the Introduction, Ottaviani and Prat (2001) prove the link-
age principle for the monopoly problem when the monopolist can publicly reveal
information which is affiliated with the value of the good as well as the buyer type.
Their theorem specifically implies that a sequential scheme dominates a simultane-
ous scheme since the former provides the buyers with more information. However,
it cannot be applied to our framework for the following reasons. First, the anal-
ysis of Ottaviani and Prat (2001) builds on the incentive compatibility conditions
associated with finite buyer types. It is hence not clear how we can generalize their
argument to the continuous type distribution. Second, and more important, their
result cannot be used to rank various intermediate schemes that may arise when
there are three or more buyers. To see this point, suppose that we want to com-
pare the performance of the following two schemes against three buyers: In the first
scheme, the seller trades with buyers 1 and 2 in stage 1 and then with buyer 3 in
stage 2. In the second sequential scheme, the seller trades with buyer 1 in stage
1, buyer 2 in stage 2, and buyer 3 in stage 3. The theorem of Ottaviani and Prat
(2001) shows that the seller’s revenue from buyer 2 is higher in the second scheme
than in the first scheme since buyer 2 is provided with more information in the sec-
ond scheme. However, it is not clear if the seller’s revenue from buyer 3 is likewise
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increased since he observes the decisions of the other two buyers in both schemes.
On the other hand, we show that a local expansion of a non sequential scheme can
be done in such a manner that the expected revenue from buyer 3 remains the same.

IV. Optimal Buyer Ordering

We now focus on the optimal ordering of buyers in a sequential scheme when they
differ only in the weights they place on the others’ signals. Suppose specifically that
each buyer’s private signal has a common distribution F , and that his valuation
vi(s) given the signal profile s = (s1, . . . , sI) equals

vi(s) = c0 + si + ci

∑
j �=i

(sj − μ),

where μ is the common mean of sj .14 Note that ci, which is the only source of
difference across buyers, measures the degree of dependence of buyer i’s valuation
on others’ information.

Assume now that the common distribution F of each si is the uniform distribu-
tion over [s, s̄] (Δ = s̄− s). Under this assumption that the theorem below provides
sufficient conditions for the optimal scheme to trade in the increasing order of the
dependence weights. It essentially requires that the dependence weights be not very
large, similar in size, and that the support of the distribution be sufficiently large
compared with |s + c0|:15

Theorem 2. Suppose that each si has the uniform distribution over [s, s̄] (Δ =
s̄ − s), and that c1, . . . , cI satisfy c1 < · · · < cI , and

cI <
2

I − 1
− β, and

cI

c1
< 1 +

β2

16
for some β ∈ (0,

2
I − 1

). (4)

Then there exists δ ∈ (0, 1) such that if |s+c0|
Δ < δ, then the optimal sequential

scheme trades with buyer i in period i (i = 1, . . . , I) regardless of the outcome of
transactions in periods 1, . . . , i − 1.

Proof. See the Appendix.

14That is, we set cii = 1, cij = ci for j �= i, 0, and ci0 = c0 in the general formulation of Section

2.
15Note from Theorem 2 that the total weight placed on the other buyers’ signals (= (I − 1) ci)

need not be very small. Note also that the condition on the support is not needed if s + c0 = 0.

14



The proof of this result involves formulating the seller’s maximization problem
when he controls contingent prices against a fixed sequence of buyers, and identifying
a sufficient condition in terms of the contingent pricing function under which the
optimal scheme should trade in the increasing order of weights. We then solve
for the optimal contingent pricing function for the uniform distribution, and verify
that the above sufficient condition is implied by the conditions of Theorem 2. The
restriction to the uniform distribution stems from the difficulty of obtaining an
analytical expression for the optimal contingent pricing function, which is a solution
to a dynamic programming problem. To complement Theorem 2, we numerically
solved for the optimal sequential scheme in an environment not covered above.
Specifically, we checked the environments where (i) si has a uniform distribution but
the dependence weights do not satisfy (4), and (ii) si has a (truncated) exponential
distribution, and found in both cases that the optimal sequential scheme trades in
the increasing order of the weights.16

One implication of Theorem 2 concerns the effect of buyer heterogeneity on the
probability that every buyer makes the same decision under the optimal scheme.
When the seller uses the optimal sequential scheme in the framework of the above
theorem, we observe that the buyers are more likely to choose the same action as
others when they are heterogeneous than when they are homogeneous.17 Such a
result is of interest in view of the consumption fads in some markets, and also of
the significant attention focused on such behavior in the literature on social learn-
ing. Formally, given the original environment with weights c1, . . . , cI , consider an
alternative environment where the buyers are ex ante identical and their dependence
weights c′1, . . . , c′I all equal the average c̄ ≡ 1

I

∑I
i=1 ci of the original environment.

Let σ and σ′ be the optimal sequential schemes under (c1, . . . , cI) and (c′1, . . . , c′I),
respectively. The following proposition states that the probability of the same de-
cision under the optimal scheme is higher with heterogeneous buyers. For technical
reasons, we suppose that weights c1, . . . , cI are small, and consider the limit as
ε → 0 in

ci = εĉi for every i ∈ I, (5)

where ĉ1, . . . , ĉI are constants which satisfy

ĉ1 < · · · < ĉI , and
ĉI

ĉ1
< 1 +

1
4(I − 1)2

. (6)

16The details can be found in the online supplement to this paper.
17The supplement to this paper presents another related implication of Theorem 2.
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The conditions on c1, . . . , cI of Theorem 2 then hold for a small ε.

Proposition 1. Suppose that every si has the uniform distribution, that (5) and
(6) hold, and that s + c0 = 0.18 Then for a sufficiently small ε > 0, the probabilities
that the buyers all accept and that they all reject are higher under σ than under σ′.

V. Discussions

As emphasized in the Introduction, careful choice of the timing of trades is at the
core of the design of a good sales strategy. Our conclusions shed light on the dynamic
sales strategies used in reality as studied extensively in the marketing literature. We
below provide discussions on the key assumptions of our model.

− Independence of private signals and the linearity of value functions. As seen in
Section 3, these assumptions imply that a buyer’s valuation changes by a publicly
known amount in response to the outcome of each preceding transaction. This prop-
erty no longer holds when the signals are correlated or when the valuation functions
are multiplicative. In both cases, the impact of each transaction on a buyer’s valu-
ation varies with his own signal.19 The computation of the seller’s revenue in these
cases must sort through a layer of private expectations. While our assumptions are
restrictive, they lead to a considerable simplification of the analysis. At the same
time, we suspect that slight perturbations of these assumptions would not change
the derived properties of the optimal scheme.

− No cost of producing the good for the seller. When the production cost is positive
and must be incurred before each buyer’s decision, we would need to consider the
possibility of exit by the seller when he finds the buyers’ valuations to be too low
to justify further production. For example, in a model of monopoly pricing against
the sequence of buyers, Bose et al. (2007) identify the range of beliefs that such
exit takes place. Another implicit assumption of the present paper is that the seller
cannot gain by limiting the supply of his good. That is, the seller cannot improve

18The last condition is assumed for simplicity.
19With correlated signals, the seller also faces the learning problem. For example, if the private

signals indicate the underlying common value of the good, it would be in the interest of the seller

to engage in experimental pricing against the initial set of buyers. As seen in Bose et al. (2006,

2007), these issues significantly complicate the analysis.
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his revenue by, for example, supplying only five units to ten buyers.20

− Sign of the dependence weights. We assume that the buyers’ preferences are
aligned in the sense that the weight cij that buyer i’s valuation places on j’s sig-
nal is non negative. This assumption is not required for some of our conclusions.
Specifically, the optimality of a sequential scheme is independent of the signs of the
weights. When the weights are all negative, the same conclusion on the optimal
ordering of buyers holds under the uniform distribution of the signals.

− Modeling transactions as a take-it-or-leave-it offer. We assume that the buyers
make a binary decision at the seller’s offer and leave the market once they reject it.
One possible interpretation of this assumption is that acceptance/rejection is not an
action of a single buyer, but is rather a crude summary of the aggregate behavior of
consumers in the market segment represented by the buyer. In other words, while
the interaction between the seller and consumers in each market may be much more
complex than described by a simple take-it-or-leave-it offer, the consumers outside
the market have limited capabilities and can perceive the outcome only as a sim-
ple success or failure. One obvious way to enrich the model at hand is to give the
seller multiple chances to approach buyers with different price offers. To make such
a model interesting, we need both the seller and buyers to discount future as in
the case of durable good monopoly, and the conclusion would critically depend on
the level of discounting. With discounting, of course, the optimality of sequential
trading holds only with qualifications.

As discussed in the Introduction, an alternative interpretation of the present
model is through the seller’s information revelation policy. A more direct model of
information revelation would be obtained if we assume that each buyer observes only
the outcome of his own transaction. In such a setup, the seller’s information policy
specifies which past outcomes to reveal to each subsequent buyer as a function of
history. The seller’s credibility becomes a critical issue in such a model.

20One way to justify this is to assume that selling at the minimum price to every buyer is more

profitable than selling at the maximum price to any proper subset of them.
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Appendix

Preliminaries

We begin with a lemma (Lemma A.1) which is used in the proofs of Theorems 1 and
2. Consider a pair of sales schemes σ and σ′, and suppose that a pair of histories
h and h′ are induced by σ and σ′, respectively. Suppose that along these histories,
the seller has traded with the same set of buyers with exactly the same outcomes.
That is, the set of buyers who have accepted the seller’s offers along h is the same
as that along h′ (A(h) = A(h′)), and also the set of the buyers who have rejected
the offers along h is the same as that along h′ (B(h) = B(h′)). The following lemma
states that if, for every one of those buyers, the probability that he accepts the offer
is the same under both schemes, then so are the valuation functions of subsequent
buyers conditional on h and h′. It is based on the following simple logic: No matter
what the history up to buyer j is, if the probability that j accepts his offer under
one scheme is the same as that under another scheme, then the inference drawn
about j’s private signal when he accepts (resp. rejects) the offer in the first scheme
is the same as that when he accepts (resp. rejects) the offer in the second scheme.
Formally, given any sales scheme σ = (r, x) ∈ Σ and any history h ∈ H, let

zσ
i (h) = P

(
V σ

i (s̃i | h) ≥ xi(h)
)

be the probability that buyer i accepts the seller’s offer xi(h) given his valuation
conditional on history h ∈ H.

Lemma A.1. Let σ = (r, x) and σ′ = (r′, x′) be any sales schemes and h and h′

be any histories induced by σ and σ′, respectively, with the same set of buyers along
them and the same outcomes (i.e., A(h) = A(h′) and B(h) = B(h′)). For any buyer
j ∈ J ≡ I(h) = I(h′), let hj and h′

j denote the truncations of h and h′, respectively,
at which the seller trades with j: j ∈ r(hj) ∩ r′(h′

j). If zσ
j (hj) = zσ′

j (h′
j) for every

j ∈ J , then for any remaining buyer i /∈ J ,

V σ
i (si | h) = V σ′

i (si | h′) for every si.

Proof of Lemma A.1 Take any j ∈ A(h) = A(h′). Write

wσ
j (hj) = cj0 +

∑
k∈I(hj)

cjk Eσ[s̃k − μk | hj]
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for the part of j’s valuation under σ that is determined by the history hj . Likewise,
define wσ′

j (h′
j) to be the part of j’s valuation under σ′ that is determined by the

history h′
j. Since j’s valuation is given by V σ

j (sj | hj) = cjjsj + wσ
j (hj) and V σ′

j (sj |
h′

j) = cjjsj + wσ′
j (h′

j), we have by assumption,

zσ
j (hi) = P

(
cjj s̃j ≥ xj(hj) − wσ

j (hj)
)

= P
(
cjj s̃j ≥ x′

j(h
′
j) − wσ′

j (h′
j)

)
= zσ′

j (h′
j).

Hence

Eσ[s̃j − μj | h] = E[s̃j − μj | V σ
j (s̃j | hj) ≥ xj(hj)]

= E[s̃j − μj | cjj s̃j ≥ xj(hj) − wσ
j (hj)]

= E[s̃j − μj | cjj s̃j ≥ x′
j(h

′
j) − wσ′

j (h′
j)]

= E[s̃j − μj | V σ′
j (s̃j | h′

j) ≥ x′
j(h

′
j)]

= Eσ′
[s̃j − μj | h′].

(A.1)

Likewise, for any j ∈ B(h) = B(h′), we have Eσ[s̃j −μj | h] = Eσ′
[s̃j −μj | h′]. Now

take any buyer i /∈ J who has not traded along h or h′. Since for any si, V σ
i (si | h) =

ci0+ciisi+
∑

j∈J cij Eσ[s̃j−μj | h] and V σ′
i (si | h′) = ci0+ciisi+

∑
j∈J cij Eσ′

[s̃j−μj |
h′], we conclude from the above that V σ

i (si | h) = V σ′
i (si | h′).

Proof of Theorem 1

Fix any sales scheme σ that is not sequential. That is, σ induces a history h ∈ Hn−1

(n ≥ 1) such that r(h) = {m} ∪ J for some m ∈ I and J �= ∅. In other words,
according to σ, the seller trades with buyer m and at least one other buyer in
period n at history h. We will construct an alternative scheme σ∗ that raises the
same expected revenue as σ as follows: The sales scheme σ∗ operates in the same
way as σ does except when h arises. At history h, σ∗ trades only with buyer m with
the same offer price xm = xm(h) as under the original scheme. Denote the outcome
yn ∈ Y ({m}) in period n from buyer m under σ∗ by either 0 or 1: 1 represents
the outcome ({m}, ∅) that buyer m accepts the seller’s offer, and 0 represents the
outcome (∅, {m}) that he rejects it. In period n+1 at either (h, 1) or (h, 0), σ∗ trades
with the buyers in J with the offer prices adjusted according to the outcome in period
n. In any subsequent period, the set of buyers and prices specified by σ∗ along any
history (h, yn, . . . , yt−1) ∈ Ht−1 are the same as those specified by σ along the history
(h, yn ∪ yn+1, yn+2, . . . , yt−1) ∈ Ht−2, where yn ∪ yn+1 = (An ∪ An+1, Bn ∪ Bn+1)
is the “union” of two outcomes yn and yn+1: Those who accept under yn ∪ yn+1

19



are the union of those who accept under yn and yn+1, and those who reject under
yn ∪ yn+1 are the union of those who reject under yn ∪ yn+1. In other words, σ∗

operates just as σ by assuming that the outcomes in periods n and n+1 came from
the same period. Let κm and λm be defined as in (3). A formal description of σ∗ is
given as follows:

r∗(h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{m} if h = h,
J if h = (h, 1) or (h, 0),
r(h, yn ∪ yn+1, yn+2, . . . , yt−1)

if h = (h, yn, . . . , yt−1) for some
yn, . . . , yt−1 (t ≥ n + 2),

r(h) otherwise.

(A.2)

and for any i ∈ I,

x∗
i (h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(h) + cimκm if h = (h, 1)
xi(h) + cimλm if h = (h, 0)
xi(h, yn ∪ yn+1, yn+2, . . . , yt−1)

if h = (h, yn, . . . , yt−1) for some
yn, . . . , yt−1 (t ≥ n + 2),

xi(h) otherwise.

(A.3)

In what follows, we will show that σ∗ yields the same expected revenue as σ. Since σ

is an arbitrary non sequential scheme, repeated application of this argument shows
that for any scheme σ that is not sequential, there exists a sequential scheme that
yields the same expected payoff as σ. The desired conclusion would then follow.

For simplicity, denote

Vi(si | h) = V σ
i (si | h), V ∗

i (si | h) = V σ∗
i (si | h).

For buyer i /∈ I(h), let also

wi = ci0 +
∑

j∈In−1

cijE
σ[s̃j − μj | h].

be the component of i’s valuation that is already determined along h. Note that

Vi(si | h) = V ∗
i (si | h) = ciisi + wi, (A.4)
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and for any outcome yn ∈ Y ({m}) = {0, 1} from buyer m in period n,

V ∗
i (si | h, yn) =

⎧⎨
⎩

ciisi + wi + cimκm if yn = 1,

ciisi + wi + cimλm if yn = 0.
(A.5)

It hence follows from (A.3) that for any i ∈ J ,

z∗i (h, yn) = P
(
V ∗

i (s̃i | h, yn) ≥ x∗
i (h, yn)

)

= P
(
ciis̃i + wi ≥ xi(h)

)

= P
(
Vi(s̃i | h) ≥ xi(h)

)

= zi(h).

(A.6)

It then follows from Lemma A.1 that

V ∗
i (si | h, yn, yn+1) = Vi(si | h, yn ∪ yn+1).

For any t ≥ n+2 and any sequence of outcomes yn, . . . , yt−1 in periods n, . . . , t− 1
under σ∗, we will show that a buyer’s valuation function V ∗

i (· | h, yn, . . . , yt−1)
in period t induced by σ∗ is the same as the valuation function Vi(· | h, yn ∪
yn+1, yn+2, . . . , yt−1) in period t − 1 induced by σ. As an induction hypothesis,
suppose that

V ∗
i (si | h, yn, . . . , yt−1) = Vi(si | h, yn ∪ yn+1, yn+2, . . . , yt−1)

for some t ≥ n + 2. Since

x∗
i (h, yn, . . . , yt−1) = xi(h, yn ∪ yn+1, yn+2, . . . , yt−1)

by definition, we have

z∗i (h, yn, . . . , yt−1) = zi(h, yn ∪ yn+1, yn+2, . . . , yt−1).

Hence, Lemma A.1 implies that

V ∗
i (si | h, yn, . . . , yt) = Vi(si | h, yn ∪ yn+1, yn+2, . . . , yt).

For any h ∈ Ht−1, let πt(h) denote the seller’s expected revenue in periods t, . . . , I

at history h when he employs the sales scheme σ. Define π∗
t (h) similarly for σ∗.
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Given the equality of the valuation functions induced by the two schemes as seen
above, we have

π∗
n+2(h, yn, yn+1) = πn+1(h, yn ∪ yn+1)

for any sequence of outcomes (yn, yn+1) in periods n and n + 1 under σ∗. On the
other hand,

π∗
n(h) =

∑
yn∈Y ({m})

∑
yn+1∈Y (J)

P σ∗
(yn | h) P σ∗

(yn+1 | h, yn)

·
{ ∑

i∈An

x∗
i (h) +

∑
i∈An+1

x∗
i (h, yn) + π∗

n+2(h, yn, yn+1)
}
.

(A.7)

Likewise, the expected revenue in period n under σ conditional on h can be expressed
using Y ({m}) and Y (J) as:

πn(h) =
∑

yn∈Y ({m})

∑
yn+1∈Y (J)

P (yn | h) P (yn+1 | h)

·
{ ∑

i∈An

xi(h) +
∑

i∈An+1

xi(h) + πn+1(h, yn ∪ yn+1)
}
.

(A.8)

Since σ and σ∗ are identical up to and including period n − 1, we have for yn ∈
Y ({m}) = {0, 1},

P σ∗
(yn | h) = P σ(yn | h). (A.9)

By (A.6), we also have for any yn+1 ∈ Y (J),

P σ∗
(yn+1 | h, yn) =

∏
i∈An+1

z∗i (h, yn)
∏

i∈Bn+1

(1 − z∗i (h, yn))

=
∏

i∈An+1

zi(h)
∏

i∈Bn+1

(1 − zi(h))

= P σ(yn+1 | h).

(A.10)

Using (A.8), (A.10) and (A.9), and substituting the definitions of x∗
i (h) and x∗

i (h, yn),
we can rewrite (A.7) as:

π∗
n(h) = πn(h) +

∑
yn+1∈Y (J)

P σ(yn+1 | h)

·
∑

i∈An+1

[ ∑
yn∈Y ({m})

P σ(yn | h)
{ ∑

j∈An

cijκj(h) +
∑
j∈Bn

cijλj(h)
}]

,
(A.11)
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where the order of the summations in the second term is reversed since their ranges
are independent of each other. Since Y ({m}) = {(∅, {m}), ({m}, ∅)}, the quantity
in the square brackets on the right-hand side of (A.11) equals

∑
yn∈Y ({m})

P (yn | h)
{ ∑

j∈An

cijκj(h) +
∑
j∈Bn

cijλj(h)
}

= cim

{
zm(h) κm + (1 − zm(h)) λm

}

= 0.

(A.12)

This completes the proof of the theorem.

Proof of Theorem 2

Assume that the distribution F is strictly increasing and has bounded support
[s, s̄].21 Given a sequential sales scheme σ = (r, x), we redefine r(h) to be the
buyer (an element of I) that r chooses at history h. Given any history h ∈ Hn−1

(n ≤ I −1), the sales scheme σ = (r, x) has a fixed order after h if the buyers chosen
in periods n + 1, . . . , I are independent of the outcomes in periods n, . . . , I − 1,
i.e., there exist ρn+1, . . . , ρI ∈ I \ I(h) such that for any sequence of outcomes
yn, . . . , yt−1 in periods n, . . . , t,

r(h, yn, . . . , yt−1) = ρt. (A.13)

In other words, σ has a fixed order after h if the target buyers in all future periods
are known at h.22 Note that for any history h of length I−2, every sequential scheme
σ has a fixed order after h since only one buyer remains in period I no matter what
happens with buyer r(h) in period I −1. Given a permutation ρ = (ρ1, . . . , ρI) over
I, σ has a fixed order ρ if it has a fixed order after the null history, and trades with
buyers ρ1, . . . , ρI in this order.

The proof of the theorem is outlined as follows: In Step 1, we formulate a
sub-optimization problem called a sequential pricing problem. This is a problem
of revenue maximization by the seller when he controls price offers against a fixed
sequence of subset J ⊂ I of buyers. Step 2 presents Lemma A.2, which states that
if the maximized revenue against any subset of buyers is improved when we bring
the buyer with the smallest weight to the top, then the optimal sales scheme has a

21Although F is later assumed to be a uniform distribution, the discussions in Steps 1-3 below

do not depend on this assumption.
22Note that the target buyer r(h) in period n is known at h whether σ has a fixed order or not.
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fixed, increasing order of weights ci’s. In Step 3, we provide a sufficient condition
for Lemma A.2 in terms of the solution to the sequential pricing problem. Step
4 presents an explicit solution to the sequential pricing problem when each signal
si has the uniform distribution. Finally in Step 5, we show that the conditions of
Theorem 2 do in fact imply that the solution for the uniform distribution satisfies
the sufficient condition identified in Step 3.

Step 1: Sequential Pricing Problem

We begin the analysis of optimal sequential schemes by the discussion of the optimal
contingent pricing against a fixed sequence of a subset of buyers. The interpretation
is that those buyers are at the tail of the sequence in the original scheme. Let a
sales scheme σ ∈ Σ be given. For any history h ∈ Ht−1, let

ασ(h) =
∑

j∈I(h)

Eσ[s̃j − μ | h]

be the sum of the expected values of private signals (minus μ) conditional on history
h. Using ασ(h), we can express buyer i’s valuation function conditional on history
h as

V σ
i (si | h) = c0 + si + ciα

σ(h). (A.14)

ασ(h) is referred to as the state at h since it completely determines a buyer’s val-
uation at h. In what follows, we write Vi(si | α) for buyer i’s valuation in state
α:

Vi(si | α) = c0 + si + ciα.

We also redefine the pricing function xi as a function of α, and let zi(α) denote the
probability that the offer xi(α) is accepted by buyer i in state α. Since

zi = P (c0 + s̃i + ciα ≥ xi) = 1 − F (xi − c0 − ciα),

xi can be expressed in terms of zi as

xi = F−1(1 − zi) + ciα + c0 (A.15)

in state α. Buyer i accepts this offer if and only if Vi(si | α) = c0 + ciα + si ≥ xi, or
equivalently,

si ≥ F−1(1 − zi).
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Note that this condition depends on the state only through zi. Now let κ(z) denote
the expected value of si −μ when buyer i accepts the seller’s offer which is accepted
with probability z:

κ(z) = E
[
s̃i − μ | s̃i ≥ F−1(1 − z)

]
.

Likewise, let λ(z) denote the expected value of si − μ when buyer i rejects such an
offer:

λ(z) = E
[
s̃i − μ | s̃i < F−1(1 − z)

]
.

Both κ(z) and λ(z) are independent of the state or the identity of the buyer who
has made the decision, and by definition,

zκ(z) + (1 − z)λ(z) = 0, (A.16)

and κ(z) ≥ 0 ≥ λ(z). If we denote by α the current state, then the next state
is α + κ(z) when an offer that would be accepted with probability z is actually
accepted, and α + λ(z) when it is rejected. Hence, the state goes up whenever an
offer is accepted and goes down whenever it is rejected. Furthermore, since the
initial state is zero and limz→1 κ(z) = s̄ − μ and limz→0 λ(z) = s − μ, if we let
Ct = [t(s− μ), t(s̄− μ)] for any t = 0, 1, . . . , I − 1, then the state at the completion
of trades with the first t buyers must belong to Ct no matter what price offers those
t buyers were given.

For any subset J ⊂ I with J �= ∅ and any permutation ρ = (ρ1, . . . , ρJ) over J ,
suppose that the seller has traded with the buyers in I \ J and will now trade with
buyers ρ1, . . . , ρJ in this order. Let J also denote the number of buyers in set J .
The initial state (the state prior to the transaction with the first buyer ρ1) is denoted
α0. We allow α0 to be any point in CI−J to reflect the outcome of the preceding
transactions with I − J buyers. Let xt(α) denote the price offered to buyer ρt when
the state is α, and zt(α) be the probability that this offer is accepted.23 Given
the one-to-one correspondence between x and z in (A.15), we think that the seller
controls z1, . . . , zJ instead of x1, . . . , xJ . The sequential pricing problem (J, ρ, α0)
is a dynamic programming problem in which the seller, who trades with buyers
ρ1, . . . , ρJ ∈ J in this order, maximizes revenue by controlling z1, . . . , zJ given the
the state variables α0, . . . , αJ−1.

23That is, xt equals xρt in the previous notation.
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Let Π∗(J, ρ, α0) denote the maximized revenue in the sequential pricing prob-
lem (J, ρ, α0). This can be obtained using backward induction as follows: Let
πJ(zJ , αJ−1) denote the expected revenue from the last buyer ρJ in state αJ−1

when the seller makes an offer that is accepted with probability zJ . In view of
(A.15), it can be written as

πJ(zJ , αJ−1) = xJzJ = g(zJ) + cρJ zJαJ−1 + c0zJ ,

where g : [0, 1] → R is defined by g(z) = z F−1(1 − z). Let π∗
J(αJ−1) denote the

maximized value of πJ(zJ , αJ−1):

π∗
J(αJ−1) = max

zJ∈[0,1]
πJ(zJ , αJ−1).

For t = 1, . . . , J−1, the seller’s expected revenue over periods t, . . . , J is recursively
defined by

πt(zt, αt−1) = g(zt) + cρtztαt−1 + c0zt + ft+1(zt, αt−1),

where

ft+1(zt, αt−1) = zt π∗
t+1

(
αt−1 + κ(zt)

)
+ (1 − zt) π∗

t+1

(
αt−1 + λ(zt)

)

is the expected revenue over periods t + 1, . . . , J when he chooses zt in period t,
and then follows the optimal course of action in subsequent periods. The optimized
value of πt(zt, αt−1) is denoted by

π∗
t (αt−1) = max

zt∈[0,1]
πt(zt, αt−1).

We then have Π∗(J, ρ, α0) = π∗
1(α0).

Step 2: Relationship between the Optimal Ordering and the Sequential
Pricing Problem

Given J ⊂ I and i ∈ J , denote by ρi the permutation over J obtained by putting
i at the top and the remaining elements of J in the increasing order: ρi

1 = i,
ρi
2 = min J \ {i}, . . . , ρi

J = max J \ {i}.
Lemma A.2. Suppose that c1 < · · · < cI and that for every subset J ⊂ I and initial
state α0 ∈ CI−J ,

Π∗(J, ρmin J , α0) > max
i∈J

i�=min J

Π∗(J, ρi, α0). (A.17)
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Then among all the sales schemes, the seller’s expected revenue is maximized by the
sequential scheme with a fixed order (1, . . . , I).

With four buyers I = 4, for example, the above lemma can be illustrated as
follows: Suppose first that for every pair of buyers and every initial state α0 ∈
CI−2 = C2, we have (1, 2) � (2, 1), (1, 3) � (3, 1), . . . , (3, 4) � (4, 3), where �
represents the ordering by the seller’s revenue generated by the optimal contingent
prices along the corresponding sequence of buyers. These comparisons determine
the optimal ordering of the last two buyers depending on their identities. Suppose
next that for any combination of three buyers and any initial state α0 ∈ CI−3 = C1,
we have

(1, 2, 3) � (2, 1, 3), (3, 1, 2), (1, 2, 4) � (2, 1, 4), (4, 1, 2),
(1, 3, 4) � (3, 1, 4), (4, 1, 3), (2, 3, 4) � (3, 2, 4), (4, 2, 3).

The first two steps above determine the ordering of the last three buyers in the
optimal scheme. Finally, suppose for α0 ∈ C0 = {0},

(1, 2, 3, 4) � (2, 1, 3, 4), (3, 1, 2, 4), (4, 1, 2, 3), (A.18)

Then we can conclude that the optimal sequential scheme has a fixed order (1, 2, 3, 4).

Proof of Lemma A.2 Let σ ∈ Σ be an optimal scheme. Take any history
h ∈ HI−2 at which two buyers i1 and i2 (i1 < i2) remain. Since σ has a fixed order
after h as noted earlier, the optimal pricing function associated with σ solves the
sequential pricing problem q = (J, ρ, α0), where J = {i1, i2}, ρ = (i1, i2) or (i2, i1)
and α0 = ασ(h) ∈ CI−2. By assumption, then, trading with i1 and i2 in this order
is better than the other way around. This implies that σ trades with the buyer
with the smaller weight first whenever there remain two buyers. As an induction
hypothesis, given any t (2 ≤ t ≤ I − 1), suppose that σ has a fixed, increasing order
of dependence weights whenever there remain t buyers. Take any history h at which
t + 1 buyers i1, . . . , it+1 (i1 < · · · < it+1) remain. σ then must solve the sequential
pricing problem q = (J, ρ, α0) with J = {i1, . . . , it+1} and α0 = ασ(h) ∈ CI−t−1.
Moreover, we have ρ = ρi for some i ∈ J since by the induction hypothesis, the t

buyers after the first one are ordered monotonically in terms of their weights. By
assumption, then, trading with i1, . . . , it+1 in this order (i.e., along ρmin J = ρi1) is
better than any other order ρi (i �= i1). We can hence conclude that σ has a fixed,
increasing order of weights after every history at which t + 1 buyers remain. Hence,
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we have advanced the induction step and established that there exists an optimal
non contingent scheme that has a fixed order (1, . . . , I).

Step 3: A sufficient condition for (A.17) in Lemma A.2.

Let a sequential pricing problem q = (J, ρ, α0) and its solution (z1, . . . , zJ) be given.
Let α+

t = αt−1+κ(zt(αt−1)) be the state resulting when the offer zt(αt−1) is accepted
in state αt−1, and α−

t = αt−1 +λ(zt(αt−1)) be the state resulting when it is rejected.
Suppose that

zt(αt−1)αt−1 < zt(αt−1) zt+1(α+
t ) α+

t + (1 − zt(αt−1)) zt+1(α−
t ) α−

t (A.19)

for every αt−1 ∈ CI−J+t−1 and t = 1, . . . , J . Note that (A.19) captures the move-
ment of the product ztαt−1: The left-hand side gives the value of this product in
period t, while the right-hand side is the period t expected value of the product in
the following period. (A.19) requires that this value be increasing.

Lemma A.3. Suppose that c1 < · · · < cI . Take any subset J ⊂ I, permutation
ρ over J such that ρt > ρt+1 for some t = 1, . . . , J − 1, and α0 ∈ CI−J . Let ρ′

be the alternative permutation over J that reverses the order of ρt and ρt+1 but is
otherwise the same: ρ′t = ρt+1, ρ′t+1 = ρt and ρ′n = ρn for n �= t, t + 1. If the
solution z to the sequential pricing problem q = (J, ρ, α0) satisfies (A.19), then the
solution to the alternative sequential pricing problem q′ = (J, ρ′, α0) yields a higher
revenue: Π∗(J, ρ′, α0) > Π∗(J, ρ, α0).

In other words, whenever a buyer with a smaller dependence weight comes imme-
diately after a buyer with a larger weight, the revenue can be increased by reversing
their order provided that the solution to the original problem satisfies (A.19). If
(A.19) holds for the solution to every sequential pricing problem, hence, we can
conclude that the conditions of A.2 hold. We will verify this in Step 5 below.

The intuition behind Lemma A.3 is as follows: As seen from (A.15), when the
seller offers zi to buyer i at state α, his revenue from buyer i can be written as:

xi zi = c0zi + ciziα + ziF
−1(1 − zi). (A.20)

It can be seen that the dependence weight ci affects the stage revenue only through
the product ziα in (A.20). Therefore, when the product increases from one period to
the next, the seller’s revenue over the two periods is higher if the dependence weight
in the second period is higher than that in the first. The formal proof consists of
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taking the pricing function for (J, ρ′, α0) under which the probability of acceptance
by buyer i = ρ′t equals that by j = ρt under z, and the probability of acceptance
by j = ρ′t+1 equals that by i = ρt+1 under z, and then showing that the increase in
expected revenue equals the right-hand side minus the left-hand side of (A.19).

Proof of Lemma A.3 Let x be the pricing function associated with the solution z

to the original sequential pricing problem (J, ρ, α0). Given the alternative sequential
pricing problem (J, ρ′, α0), let x′ be the pricing function such that x′

n(αn−1) =
xn(αn−1) for any αn−1 ∈ CI−J+n−1 and n �= t, t + 1,

x′
t(αt−1) = xt(αt−1) − (cj − ci) αt−1 for any αt−1 ∈ CI−J+t−1,

and

x′
t+1(αt) = xt(αt) + (cj − ci) αt for any αt ∈ CI−J+t.

It can then be verified that for any αt−1 ∈ CI−J+t−1,

z′t(αt−1) = P
(
V ∗

i (s̃i | αt−1) ≥ x′
i(αt−1)

)

= P
(
c0 + s̃i + ciαt−1 ≥ xt(αt−1) − (cj − ci)αt−1

)

= P
(
c0 + s̃i + cjαt−1 ≥ xt(αt−1)

)

= P
(
Vj(s̃j | αt−1) ≥ xt(αt−1)

)
= zt(αt−1).

That is, the price offered to the tth buyer ρ′t = i under the alternative scheme is
accepted with the same probability as that offered to the tth buyer ρt = j under the
original scheme. It can also be verified likewise that the price offered to the t + 1th
buyer j under the alternative scheme is accepted with the same probability as that
offered to the tth buyer i under the original scheme: z′t+1(αt) = zt+1(αt) for any
αt ∈ CI−J+t. Lemma A.1 then implies that for any αn−1 ∈ CI−J+n−1 and n �= t,
t + 1, z′n(αn−1) = zn(αn−1).

Given any state α ∈ CI−J+t−1 at the beginning of period t − 1, the seller’s
expected revenue from the alternative scheme minus that from the original scheme
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over the two periods t and t + 1 is given by

z′t(α) x′
t(α) + z′t(α) z′t+1(α + κ(z′t(α))) x′

t+1(α + κ(z′t(α)))

+ (1 − z′t(α)) z′t+1(α + λ(z′t(α))) x′
t+1(α + λ(z′t(α)))

− zt(α) xt(α) + zt(α) zt+1(α + κ(zt(α))) xt+1(α + κ(zt(α)))

+ (1 − zt(α)) zt+1(α + λ(zt(α))) xt+1(α + λ(zt(α)))

= (cj − ci)
[
−zt(α) α + zt(α) zt+1(α + κ(zt(α))) α + κ(zt(α))

+ (1 − zt(α)) zt+1(α + λ(zt(α))) (α + λ(zt(α)))
]

(A.21)

By (A.19), the quantity in the square brackets on the far right-hand side of (A.21)
is > 0. Since the seller’s revenue from any other period is the same under the two
schemes, we obtain the desired conclusion.

Step 4: Solution to the Sequential Pricing Problem under the Uniform
Distribution

We now derive an analytical solution to the sequential pricing problem when the
buyers’ private signals have a uniform distribution. Formally, suppose that for every
i ∈ I, buyer i’s private signal si has the uniform distribution over the interval [s, s̄],
i.e.,

F (si) =
si − s

Δ
,

where Δ = s̄ − s. In this case, we have μ = (s + s̄)/2,

κ(z) =
Δ
2

(1 − z) and λ(z) = −Δ
2

z.

Let J ⊂ I be a subset of buyers and denote its cardinality also by J . Assume that
J = 2, . . . , I, and take any ordering ρ = (ρ1, . . . , ρJ) of them. Let aJ = Δ + s + c0,
bJ = cρJ , and

at = Δ +
s + c0

1 + 1
16

∑J
k=t+1 bkcρk

, and bt =
cρt

1 + 1
16

∑J
k=t+1 bkcρk

for t = 1, . . . , J − 1. The following theorem describes the solution to the sequential
pricing problem when it has an interior solution for every t = 1, . . . , J . Condition
(A.22) guarantees that for any t, the optimal probability is an interior solution:
zt(α) ∈ (0, 1) for any α ∈ CI−J+t−1. Since bt ≤ cρt , this condition holds when
s+c0 < Δ and the weights ci are not so large. For example, when s+c0 = 0, (A.22)
holds if (I − 1) maxi∈I ci < 2.
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Theorem A.4. Suppose that each si has the uniform distribution over [s, s̄]. Take
any subset J of buyers, any ordering ρ = (ρ1, . . . , ρJ) of them, and any initial state
α0 ∈ CI−J . If

bt <
2

Δ(I − J + t − 1)
min {Δ, 2Δ − at} for every t = 1, . . . , J , (A.22)

the solution to the sequential pricing problem q = (J, ρ, α0) is given by

zt(α) =
1

2Δ
(at + btα) (A.23)

for any α ∈ CI−J+t−1 and t = 1, . . . , J .

Proof of Theorem A.4 Suppose for simplicity that J = I and that ρt = t for
every t ∈ I. Note that g(z) = z{s + Δ(1− z)} for the given uniform distribution F .
Since

∂πI

∂zI
(zI , αI−1) = s̄ − 2ΔzI + cIαI−1 + c0

is decreasing in zI , the first-order condition yields the optimal solution zI(αI−1) =
1

2Δ(s̄ + c0 + cIαI−1). The envelope theorem also implies that

∂π∗
I

∂αI−1
(αI−1) = cIzI(αI−1).

As an induction hypothesis, suppose now that (A.23) holds for i+1, . . . , I (i ≤ I−1)
and that

∂π∗
i+1

∂αi
(αi) =

I∑
j=i+1

cjzj(αi).

The expected revenue function for periods i, . . . , I can be written as

πi(zi, αi−1) = g(zi) + ziciαi−1 + c0zi + fi+1(zi, αi−1),

where

fi+1(zi, αi−1) = zi π
∗
i+1

(
αi−1 + κ(zi)

)
+ (1 − zi) π∗

i+1

(
αi−1 + λ(zi)

)
.
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It follows that

∂πi

∂zi
(zi, αi−1) = s̄ − 2Δzi + c0 + ciαi−1

+
I∑

j=i+1

cj

∫ αi−1+κ(zi)

αi−1+λ(zi)
zj(αi) dαi

− Δ
2

I∑
j=i+1

cj

{
zizj(αi−1 + κ(zi)) + (1 − zi)zj(αi−1 + λ(zi))

}

= s̄ − 2Δzi + c0 + ciαi−1

+
I∑

j=i+1

cj

∫ αi−1+κ(zi)

αi−1+λ(zi)
zj(αi) dαi − Δ

2

I∑
j=i+1

cjzj(αi−1)

+
I∑

j=i+1

cj

{∫ αi−1+κ(zi)

αi−1+λ(zi)
zj(αi) dαi − Δ

2
zj(αi−1)

}

= s̄ − 2Δzi + c0 + ciαi−1 +
I∑

j=i+1

Δ
16

bjcj(1 − 2zi),

(A.24)

where the second equality follows since zj (j = i + 1, . . . , I) is by the induction
hypothesis an affine function and since ziκ(zi) + (1 − zi)λ(zi) = 0:

zizj(αi−1 + κ(zi)) + (1 − zi)zj(αi−1 + λ(zi))

= zj

(
zi(αi−1 + κ(zi)) + (1 − zi)(αi−1 + λ(zi))

)

= zj(αi−1).

(A.25)

Since
∂πi

∂zi
is decreasing in zi, the first-order condition yields the optimal solution

zi(αi−1) =
1

2Δ
s̄ + c0 + ciαi−1 +

∑I
j=i+1 Δbjcj/16

1 +
∑I

j=i+1 bjcj/16
=

1
2Δ

(ai + biαi−1).
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Furthermore, using (A.25) again, we see that

∂fi+1

∂αi−1
(zi, αi−1) = zi

∂π∗
i+1

∂αi
(αi−1 + κ(zi)) + (1 − zi)

∂π∗
i+1

∂αi
(αi−1 + λ(zi))

=
I∑

j=i+1

cj

{
zizj(αi−1 + κ(zi)) + (1 − zi)zj(αi−1 + λ(zi))

}

=
I∑

j=i+1

cjzj

(
αi−1 + ziκ(zi) + (1 − zi)λ(zi)

)

=
∂π∗

i+1

∂αi
(αi−1).

(A.26)

Hence, the envelope theorem implies that

∂π∗
i

∂αi−1
(αi−1) = cizi(αi−1) +

∂π∗
i+1

∂αi
(αi−1) =

I∑
j=i

cjzj(αi−1).

This advances the induction step and completes the proof.

Step 5: Conditions of Theorem 2 imply (A.19) and (A.22).

Write qt =
(
1 + 1

16

∑I
k=t+1 bkcρk

)−1
> 1. (A.22) holds if

bt <
2

I − 1
min

{
1, 1 − s + c0

Δ
qt

}
.

Since bt < maxi∈I ci, and maxi∈I ci < 2
I−1 − β by (4), this inequality holds if δ is

such that δ < I−1
2 β.

We next show that (A.19) holds for a sufficiently small δ. Note first that
maxi c2

i < 4
(I−1)2

− β2 by the first condition in (4) and the choice of β. It fol-
lows from this and the second condition in (4) that

ci

cj
≤ 1 − c2

i

16
+

1
4(I − 1)2

for any i �= j. (A.27)

Since bt
bt+1

<
cρt

cρt+1
and bt ≤ cρt , (A.27) implies that

bt

bt+1
< 1 − b2

t

16
+

1
4(I − 1)2

for t = 1, . . . , I − 1. (A.28)
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Now, since zt is an affine function by Theorem A.4, we have for any α,

zt(α) zt+1

(
α + κ(zt(α))

)
+ (1 − zt(α)) zt+1

(
α + λ(zt(α))

)

= zt+1

(
α + zt(α) κ(zt(α)) + (1 − zt(α)) λ(zt(α))

)

= zt+1(α),

(A.29)

where the second equality follows from the definitions of κ and λ. Using (A.23) and
(A.29), we see that (A.19) holds at any state in any period if

{16(bt+1 − bt) − b2
t bt+1}α2 + 2{8(at+1 − at) + btbt+1(Δ − at)}α

+ atbt+1(2Δ − at) > 0

for any α ∈ CI−J+t−1 and t = 1, . . . , J .

(A.30)

Since the left-hand side of (A.30) is quadratic in α, we have the following two cases
to consider to determine if (A.30) holds for any α ∈ CI−J+t−1.

Case 1. 16(bt+1 − bt) − b2
t bt+1 > 0.

In this case, (A.30) holds if the determinant is strictly negative:

{8(at+1 − at) + btbt+1(Δ − at)}2 < atbt+1(2Δ − at){16(bt+1 − bt) − b2
t bt+1}.

(A.31)

Using at = Δ + qt(s + c0), we can rewrite (A.31) as

{8(qt+1 − qt) − btbt+1qt}2
(s + c0

Δ

)2

<
{

1 −
(s + c0

Δ

)2}
bt+1{16(bt+1 − bt) − b2

t bt+1}.

Since 16(bt+1−bt)−b2
t bt+1 > 0 by assumption, this holds if | s+c0

Δ | < δ for a sufficiently
small δ.

Case 2. 16(bt+1 − bt) − b2
t bt+1 ≤ 0.

In this case, (A.30) holds for any α ∈ CI−J+t−1 if it holds at α = −Δ
2 (I−1) and

α = Δ
2 (I − 1) since CI−J+t−1 ⊂ CI−1 = [−Δ

2 (I − 1), Δ
2 (I − 1)]. These conditions

can be summarized as:

{16(bt+1 − bt) − b2
t bt+1} 1

4
(I − 1)2 +

1
Δ2

at(2Δ − at)bt+1

>
1
Δ

(I − 1)
∣∣∣8(at+1 − at) + btbt+1(Δ − at)

∣∣∣.
(A.32)
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Using at = Δ + qt(s + c0) again, we can rewrite (A.32) as

1 − bt

bt+1
− b2

t

16
+

1
4(I − 1)2

>
s + c0

Δ
1

4(I − 1)

{ 1
I − 1

s + c0

Δ
+

1
bt+1

∣∣∣8(qt+1 − qt) − btbt+1qt

∣∣∣}.

By (A.28), this holds if | s+c0
Δ | < δ for a sufficiently small δ.

Proof of Proposition 1 By Lemma A.5 below, the conclusion follows if it is
shown that

I∑
t=1

(t − 1) ct > c̄
I∑

t=1

(t − 1).

This holds since
∑I

t=1 (t − 1) ct∑I
t=1 (t − 1)

=
∑I

t=2 ct +
∑I

t=3 ct + · · · + (cI−1 + cI) + cI

(I − 1) + (I − 2) + · · · + 2 + 1

>

∑I
t=2 ct

I − 1
>

∑I
t=1 ct

I
= c̄.

Lemma A.5. Let ᾱ0 = α0 = 0, and for t = 2, . . . , I, let ᾱt−1 and αt−1 be the states
at the beginning of period t when the buyers 1, . . . , t−1 have all accepted, and when
they have all rejected, respectively. Then ᾱt and αt are given by

ᾱt =
t

4
Δ + o(1) and αt = − t

4
Δ + o(1),

where for any m = 0, 1, . . . , o(εm) is any term such that limε→0 |o(εm)|/εm = 0.
Furthermore, the probability that all buyers accept equals

I∏
t=1

zt(ᾱt−1) =
(1

2

)I {
1 +

1
4

I∑
t=1

(t − 1) ct

}
+ o(ε),

and the probability that all buyers reject equals

I∏
t=1

(1 − zt(αt−1)) =
(1

2

)I {
1 +

1
4

I∑
t=1

(t − 1) ct

}
+ o(ε)
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Proof. Note first that ᾱt and αt (t = 1, . . . , I − 1) are recursively defined by

ᾱt = ᾱt−1 + κ(zt(ᾱt−1)), and αt = αt−1 + λ(zt(αt−1)).

The probabilities that all buyers accept and that they all reject can then be expressed
as

I∏
t=1

zt(ᾱt−1) and
I∏

t=1

(1 − zt(αt−1)),

respectively. Note next that at = Δ (t = 1, . . . , I) when s + c0 = 0. We also have
bI = cI by definition, and can also show by induction that

bt = ct + o(ε2). (A.33)

for t = 1, . . . , I − 1.24 For t = 1, we have

ᾱ1 = κ(z1(ᾱ0)) =
Δ
2

(
1 − a1

2Δ

)
=

Δ
4

+ o(1).

As an induction hypothesis, suppose that for t = 2, . . . , I − 1,

ᾱt−1 =
t − 1

4
Δ + o(1).

Then we can use (A.33) to conclude that

ᾱt = ᾱt−1 + κ(zt(ᾱt−1))

= ᾱt−1 +
Δ
2

{
1 − 1

2Δ
(at + btᾱt−1)

}

= ᾱt−1 +
1
4

{
Δ − ᾱt−1ct + o(ε)

}

=
t

4
Δ + o(1),

and hence the induction step is advanced. The proof for αt is similar. It follows
that when the buyers ρ1, . . . , ρt−1 have all accepted, the probability that buyer ρt

24We have bI = cI , and bI−1 = cI−1 − cI−1
c2I

1+c2
I

= cI−1 + o(ε2). For t = 1, . . . , I − 2, if

bk = cρk + o(ε2) for k = t + 1, . . . , I − 1, then

bt = ct − ct

�I
k=t+1 bkck

1 +
�I

k=t+1 bkck

= ct + o(ε2).

We can also show that at = Δ + o(ε) when s + c0 �= 0.
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also accepts is given by

zt(ᾱt−1) =
1

2Δ
(at + btᾱt−1)

=
1

2Δ

[
Δ + o(ε) +

ct

4
(t − 1)Δ + o(ε)

]

=
1
2

[
1 +

ct

4
(t − 1)

]
+ o(ε).

Hence, the probability that every buyer accepts can be computed as

I∏
t=1

zt(ᾱt−1) =
(1

2

)I
I∏

t=1

{
1 +

ct

4
(t − 1)

}
+ o(ε)

=
(1

2

)I {
1 +

I∑
t=1

ct

4
(t − 1)

}
+ o(ε).

The probability that every buyer rejects can be computed in a similar manner.
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