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Abstract

A monopolist sells a good whose value depends on the set (network) of
buyers who adopt it as well as on their private types. This paper studies the
seller’s revenue maximization in this problem when he coordinates the buyers’
adoption decisions based on their reported types. We characterize ex post im-
plementable sales schemes, and identify the conditions under which the revenue
maximizing scheme has the properties that a larger network is more affordable
than a smaller network, and that the network size is maximized subject to the
participation constraints.
Key words: adoption externalities, strategy-proof, revenue maximization.
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1 Introduction

Goods have network externalities when their value to any consumer depends on
the consumption decision of other consumers. A classical example of a good with
network externalities, or more simply a network good, is a telecommunication device
whose value depends directly on the number of other people using the device. Other
leading examples of network goods include the operating system (OS) of PC’s, fuel-
cell vehicles, social networking services, industrial parks, and so on. The nature of
network externalities may be purely physical as in the case of the telecommunication
device, but may also be market-based or psychological. Market-based externalities
arise when more users of a good induces the market to provide complementary goods

∗ISER, Osaka University, 6-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.

1



that enhance the value of the good. More users of a fuel-cell vehicle, for example,
encourages entry into the market of charge stations, which leads to the increased
value of such vehicles. On the other hand, much of bandwagon consumption in
the fashion, toy and electronic industries can be explained through psychological
externalities where consumers’ tastes for a particular good are directly influenced
by the size of its consumption. When all types of externalities are accounted for, it
would be no exaggeration to say that a substantial fraction of consumption goods
have network properties.

Despite their importance, network goods have received relatively little attention
in economic theory.1 Analysis of network goods in the literature has mostly been
focused on the resolution of the coordination problem arising from the multiplicity
of equilibria. When every consumer expects others to adopt the good, its expected
value is high enough to render adoption a rational decision (at least for some price).
On the other hand, when every consumer expects no other consumers to adopt,
then its low expected value makes no adoption rational. Expectation is self-fulfilling
in both cases, leading to multiple, Pareto-ranked equilibria. A subsidy scheme
as proposed by Dybvig and Spatt (1983) is one way to eliminate the problem by
promising to compensate the adopters when the number of adoptions is below some
threshold. The existence of Pareto-ranked equilibria is also the main focus of the
analysis of intertemporal patterns of adoption of a network good.2 In contrast, the
problem of revenue maximization by a monopolist has been analyzed only indirectly
either through the analysis of subsidy schemes under the implicit assumption that
higher participation implies higher revenue, or through the analysis of introductory
prices, a common practice of setting a low price for early adopters and a higher,
regular price for others (Cabral et al., 1999).3 The objective of this paper is to
directly explore the revenue maximizing coordination and pricing of a network in
the incomplete information environment.

In the present context, a network is the set of all adopting buyers. Each buyer
i’s valuation function vi depends on a network, and also is an increasing function
of his private type distributed over the unit interval. A coordinating scheme is a

1Rohlfs (1974) is the first to give a theoretical analysis of network goods.
2See Gale (1995, 2001), Ochs and Park (2010) and Shichijo and Nakayama (2009).
3Sekiguchi (2009) examines the monopolist’s revenue in the dynamic setup as in Gale (1995)

when the price is held constant over time and across consumers. Aoyagi (2010) analyzes a related but

different problem in which a monopolist attempts to maximize revenue when the buyers’ valuations

mutually depend on one another’s types.
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pair of an assignment rule, which determines a network as a function of the buyers’
reported types, and a pricing rule, which determines transfer from each buyer as a
function of the realized network.

We analyze a revenue maximizing coordinating scheme that is ex post imple-
mentable in the sense that it is strategy-proof and ex post individually rational.
Our first result on two buyers identifies all possible configurations for the optimal
ex post implementable schemes under an arbitrary type distribution. It turns out
that an optimal scheme can take diverse forms depending on the joint distribution
of private types and the buyers’ valuation functions. When the buyers’ types are
independent, however, one simple property of a coordinating scheme emerges es-
sential as described below. Given the price of each network, consider the marginal
type of buyer i who is just indifferent between adopting network a at price pi and
not adopting. We say that a network a priced at pi is more affordable for buyer i

than another network a′ priced at p′i if, whenever the marginal type of buyer i for
network a is lower than the marginal type for network a′. In other words, a is more
affordable than a′ if any type who would accept a′ at p′i will surely accept a at p.4 A
coordinating scheme is monotone if (1) a larger network is always more affordable
than a smaller network for every buyer, and (2) the assignment rule chooses the
largest network as permitted by individual rationality. In other words, a monotone
scheme has an important efficiency property that it does not exclude any buyer type
who is willing to adopt the network for the given price.

When the type distribution satisfies the increasing hazard rate condition and the
value functions satisfy some permissive conditions, the optimal scheme is monotone
against two buyers with independent types. Against three or more ex ante sym-
metric buyers, we establish the following results under the same conditions on the
distribution and value functions. First, when the externalities are sufficiently strong,
there exists a monotone scheme that is optimal among the class of symmetric ex
post implementable schemes. Second, we look at a stronger incentive compatibility
condition under which no group deviations in reporting are profitable. Any coordi-
nating scheme satisfying the condition is hence robust against buyer collusion.5 We
show that a monotone coordinating scheme is coalitionally ex post implementable
in this sense. Furthermore, there exists a monotone scheme that is optimal among
the class of symmetric coalitionally ex post implementable schemes.

4Note that this does not imply that pi < p′
i since the values of a and a′ are different for i.

5Buyer collusion is a plausible concern for some type of networks. For example, potential buyers

of an industrial park may come from the same industry and know each other well.
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The idea of a coordinating scheme is a generalization of an inducement scheme
proposed by Park (2004). An inducement scheme, which itself generalizes the sub-
sidy schemes discussed above to the incomplete information environment, is a sales
mechanism in which the transfer between the seller and buyers depends on the re-
alized network. It first posts a price of each network, and then lets the buyers
simultaneously decide whether to adopt or not. Because of this feature, the buyers’
adoption decisions are independent of one another under an inducement scheme. In
contrast, we model a seller who actively coordinates adoption decisions, and propose
a sales scheme that works a coordinating device.

The perceived multiplicity of equilibria in network problems makes strategy-
proofness a preferable incentive condition compared with Bayesian incentive com-
patibility. While strategy-proofness is independent of the type distribution by defi-
nition, the computation of expected revenues requires the specification of the distri-
bution of buyer types. One unique aspect of the present analysis is that it combines
these two elements together.6 As will be seen, our conclusion that an optimal scheme
is monotone is distribution-free in the sense that it is not sensitive to the specifica-
tion of the type distribution as long as it satisfies the standard increasing hazard
rate condition.

In line with the existing research on network goods, we suppose that each net-
work is associated with a single (individualized) price. In other words, we analyze
adoption-contingent pricing of a network, where the price depends only on the iden-
tities of adopters rather than their and others’ reported types. Adoption-contingent
pricing is extensively analyzed in contracting problems with externalities. In par-
ticular, the principal’s optimization problem (such as revenue maximization and
cost minimization) in various contracting settings are studied by Armstrong (2006),
Bernstein and Winter (2010), and Segal (2003), among others. Compared with these
models, the distinguishing feature of the present model is the presence of incomplete
information about buyer types.

In network problems, only a subset of buyers may end up consuming the good.
A similar framework is found in the problem of excludable public goods where the
planner can exclude some agents from consumption. However, the public good
literature typically assumes that the good’s value depends on the amount of con-

6A similar approach is taken by Shao and Zhou (2008), who combine strategy-proofness and

expected surplus maximization in an allocation problem of an indivisible good to two buyers. One

interpretation is that the buyers have common knowledge about one another’s type, but the seller

only knows their distribution.
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tributions from the agents rather than their adoption status, and focuses on the
efficient cost sharing rather than revenue maximization.7

The paper is organized as follows: The next section introduces a coordinating
scheme. Ex post implementable schemes are characterized in Section 3. We study
the problem with two buyers in Section 4, and optimal symmetric schemes with a
general number of ex ante symmetric buyers in Section 5. Subsection 5.1 analyzes the
case of strong externalities, and Subsection 5.2 analyzes coalitionally strategy-proof
schemes. We conclude in Section 6. All the proofs are collected in the Appendix.

2 Model

There are I potential buyers of a network good indexed by i ∈ I = {1, . . . , I}.8
Buyer i’s decision is either to buy the good (ai = 1), or not (ai = 0). A network is
a profile of adoption decisions a = (ai)i∈I , and an element of the set A = {0, 1}I .
Let Ai be the set of networks including buyer i: Ai = {a ∈ A : ai = 1}.9 The
value of the good to buyer i, denoted vi(a, si), depends on the network a as well
as his own private type si. The type profile s = (si)i∈I has a strictly positive joint
density g over S =

∏
i∈I Si, where Si is the unit interval [0, 1] ⊂ R+. Throughout,

we normalize the payoff from no-adoption to zero for any buyer type: vi(a, si) = 0
for any a /∈ Ai and si ∈ Si.

A coordinating scheme determines the network as a function of the private type
profile, and monetary transfer as a function of the realized network. Formally, a
coordinating scheme is a pair (f, t) of an assignment rule f : S → A and a pricing
rule t = (t1, . . . , tI) : A → RI : f(s) ∈ A is the network formed under the type
profile s ∈ S, and ti(a) ∈ R is the monetary transfer from buyer i when network a

is realized.10 A coordinating scheme (f, t) is strategy-proof if

vi(f(si, s−i), si) − ti(f(si, s−i)) ≥ vi(f(s′i, s−i), si) − ti(f(s′i, s−i))

for every i, si, s′i and s−i,

7See, for example, Moulin (1994), Deb and Razzolini (1999a, b), and Bag and Winter (1999).
8Note that symbol I is used to denote both the set and the number of buyers.
9In view of the one-to-one correspondence between a and the set {i ∈ I : ai = 1} of adopting

agents, the term network is interchangeably used to imply the set of agents who adopt the good.
10In other words, a coordinating scheme is a social choice function (f, τ ) : S → A×RI such that

for any s, s′ ∈ S, f(s) = f(s′) implies τ (s) = τ (s′).
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and ex post individually rational if

vi(f(si, s−i), si) − ti(f(si, s−i)) ≥ 0 for any i, si, and s−i.

A coordinating scheme (f, t) is ex post implementable if it is both strategy-proof
and ex post individually rational.11

Given the concern for the multiplicity of equilibria in the network good problems,
strategy-proofness is a particularly suitable requirement compared with Bayesian
incentive compatibility, which does not address the multiplicity issue.12

We say that a coordinating scheme (f, t) is constrained (ex post) efficient if∑
i

{vi(f(s), si) − ti(f(s))} ≥
∑

i

{vi(a, si) − ti(a)}

for every s ∈ [0, 1]I and a ∈ A. In other words, when the pricing rule t is given, no
other network achieves a higher aggregate net welfare than f(s) for any profile s.13

Let the seller’s expected revenue per buyer under a coordinating scheme (f, t)
be defined by

R(f, t) =
1
I

∑
i∈I

Es[ti(f(s))].

An ex post implementable coordinating scheme (f, t) is optimal if it maximizes the
seller’s expected revenue:

R(f, t) = max {R(f ′, t′) : (f ′, t′) is ex post implementable}.

3 Characterization of Ex Post Implementability

In this section, we present a simple characterization of ex post implementability
that will later be used in the analysis of optimal schemes. We make the following
assumptions on the valuation function vi : A × Si → R+:

11In line with the standard assumption of mechanism design, ex post individual rationality re-

quires that each buyer i not reject the network f(s) even if he is not assigned the good. Since

vi(a, ·) = 0 for a /∈ Ai, it immediately follows that the transfer required for buyer i in such a case

is non-positive.
12Park (2004) presents an analysis of Bayesian implementable sales mechanisms for a network

good. His analysis shows that the optimal Bayesian implementable mechanism admits multiple

equilibria.
13When unconstrained by t (i.e., under t(·) ≡ 0), only the maximal network I is ex post efficient

for any s since vi(a, ·) ≥ 0 for any a.
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Assumption 1 For any i ∈ I,

1) vi(a, 0) = 0 for any a ∈ A,

2) a /∈ Ai ⇒ vi(a, ·) ≡ 0,

3) a ∈ Ai ⇒ ∂vi
∂si

(a, ·) > 0,

4) For any a, b ∈ A and si, s′i ∈ [0, 1], ∂vi
∂si

(a, si) < ∂vi
∂si

(b, si) ⇔ ∂vi
∂si

(a, s′i) <
∂vi
∂si

(a, s′i).

That is, the value of the good equals zero (1) to a buyer of the lowest type
si = 0, and (2) to a non-adopter. Moreover, (3) the value is strictly increasing with
the private type. (4) is a single-crossing condition saying that if buyer i doesn’t find
two networks equivalent to each other, then the slope of his value function for one of
the networks is always higher than that for the other network. We introduce some
notation as follows. First, let

Ci(a) = {a′ ∈ A : vi(a′, ·) = vi(a, ·)}
be the set of networks among which buyer i is indifferent. For example, when the
level of externalities depends only on the size of a network defined by |a| =

∑
i∈I ai,

then Ci(a) = {a′ ∈ Ai : |a′| = |a|} for a ∈ Ai. Next, fix any s−i ∈ S−i and let

Bi(s−i) = {f(si, s−i) : si ∈ Si}
be the set of possible networks that buyer i can achieve by changing his report when
the type profile of other buyers is fixed at s−i. Further, for any network a ∈ A and
profile s−i ∈ S−i, let

Li(a, s−i) = cl {si ∈ Si : f(si, s−i) = a}
be the (closure of the) set of i’s types that would lead to network a when others’
type profile is fixed at s−i, and for any network a ∈ A,

La = cl {s ∈ S : f(s) = a}
be the (closure of the) set of type profiles that induce network a.

Now suppose that (f, t) is a coordinating scheme. Given any network a ∈ Ai,
define ya

i ∈ [0, 1] to be the marginal type at which buyer i is indifferent between
participating in network a for price ti(a), and not adopting:

vi(a, ya
i ) − ti(a) = 0. (1)
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Such a type ya
i is unique by Assumption 1 if it exists. If vi(a, 0) − ti(a) > 0, then

let ya
i = 0 and if vi(a, 1) − ti(a) < 0, then let ya

i = 1. Moreover, given any pair of
networks a, b ∈ Ai such that a has larger externalities than b: ∂vi

∂si
(a, ·) > ∂vi

∂si
(b, ·),

define yab
i = yba

i ∈ [0, 1] to be the marginal type at which buyer i is indifferent
between network a at price ti(a) and network b at price ti(b):

vi(a, yab
i ) − ti(a) = vi(b, yab

i ) − ti(b). (2)

Again, such a type yab
i is unique if it exists. If vi(a, 0) − ti(a) > vi(b, 0) − ti(b), set

yab
i = 0 and if vi(a, 1) − ti(a) < vi(b, 1) − ti(b), set yab

i = 1.14

For each i ∈ I and a ∈ Ai, we may restrict attention to the price ti(a) such
that 0 ≤ ti(a) ≤ vi(a, 1). Since there is a one-to-one correspondence between ti(a)
and ya

i for any such ti(a), we will interchangeably use the profile y = (ya
i )i∈I,a∈Ai

and the pricing rule t in what follows. We say that network a priced at ti(a) is
more affordable for buyer i than network a′ priced at ti(a′) if ya

i ≤ ya′
i . In other

words, buyer i finds network a worth the purchase for a wider range of types than
a′. Note that this is not equivalent to saying that a is less expensive than a′, which
is expressed as ti(a) ≤ ti(a′).

Proposition 1 A coordinating scheme (f, t) is ex post implementable if and only
if the following holds. For any i and s−i, if a1, . . . , an ∈ A are all distinct networks
such that

a) ∂vi
∂si

(a1, ·) < · · · < ∂vi
∂si

(an, ·), and

b) {a1, . . . , an} ⊂ Bi(s−i) ⊂
⋃n

k=1 Ci(ak),

then for k = 1, . . . , n,

1) ti(a) = ti(ak) if a ∈ Ci(ak) ∩ Bi(s−i),

2) ti(a1) ≤ 0,

3) ti(a1) ≤ · · · ≤ ti(an).

4)
⋃

a∈Ci(ak)∩Bi(s−i)

Li(a, s−i) =
[
yak−1ak

i , yakak+1

i

]
, where ya0a1

i = 0.

14To summarize the three cases, ya is defined so that buyer i prefers a to no adoption to the right

of ya and prefers no adoption to a to the left of it. Likewise, yab is defined so that buyer i prefers

a to b to the right of yab, and b to a to the left of it.
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a1 a3a2

vi(a2, si) − ti(a2)

vi(a3, si) − ti(a3)

vi(a1, si) − ti(a1)
si = 0 si = 1

ya1a2

i ya2a3

i

si ŝi

Figure 1: Illustration of ex post implementability

The above proposition can be illustrated as follows: Fix the type profile of
buyers other than i. ak is the network that may be chosen for some report by
buyer i and represents the set Ci(ak) of networks equivalent to it for him. The
networks that may be chosen for different reports of i’s type should be lined up
in the order of their externalities as measured by the marginal values ∂vi

∂si
(a, si).

Note that network a1 with the smallest externalities for i is typically the one that
excludes buyer i such that a1 /∈ Ai or vi(a1, ·) = 0. Proposition 1 states (1) for
any equivalent networks, the required transfers are the same, (2) for the network a1

that has the smallest externalities and is assigned to the lowest type, the required
transfer is non-positive, (3) the transfers increase with the externalities, and (4)
each equivalence class represented by ak is assigned to the kth interval. Note that
the relative ordering between any equivalent networks is indeterminate. An ex post
implementable assignment rule is illustrated in Figure 1. In the figure, suppose for
example that i’s true type is si as indicated. If he reports it truthfully, then his
payoff equals vi(a2, si)−ti(a2), which is greater than vi(a3, si)−ti(a3) that he would
get by misreporting that his type is ŝi.

4 Optimal Schemes against Two Buyers

Suppose now that there are only two buyers I = {1, 2}. The set of possible networks
in this case is given by

A = {11, 10, 01, 00},
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where
11 = (1, 1), 10 = (1, 0), 01 = (0, 1) and 00 = (0, 0).

We assume positive network externalities as follows.

Assumption 2 For each a ∈ Ai, vi(a, 0) = 0. Furthermore,

∂v1

∂s1
(11, ·) >

∂v1

∂s1
(10, ·), ∂v2

∂s2
(11, ·) >

∂v2

∂s2
(01, ·).

The following theorem characterizes the optimal schemes in a general environ-
ment with two buyers.

Theorem 1 If (f, t) is an optimal ex post implementable coordinating scheme against
two buyers under Assumption 2, then it takes one of the following forms.

(A) y11
1 , y11

2 < 1, y10
1 , y01

2 ∈ (0, 1),

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(A0) y11
1 ≤ y10

1 , y11
2 ≤ y01

2

(A1) y11
1 ≤ y10

1 , y11
2 > y01

2 ,

(A2) y11
1 > y10

1 , y11
2 ≤ y01

2⎧⎪⎨
⎪⎩

L11 = [y11
1 , 1] × [y11

2 , 1]
L10 = [y10

1 , 1] × [0, y11
2 ]

L01 = [0, y11
1 ] × [y01

2 , 1].

(B1) 0 < y10
1 < y11

1 < y11,10
1 < 1, y11

2 < 1, y01
2 ∈ (0, 1),⎧⎪⎨

⎪⎩
L11 = [y11,10

1 , 1] × [y11
2 , 1]

L10 = [y10
1 , 1] × [0, 1] \ int L11

L01 = [0, y10
1 ] × [y01

2 , 1].

(B2) 0 < y01
2 < y11

2 < y11,01
2 < 1, y10

1 ∈ (0, 1), y11
1 < 1,⎧⎪⎨

⎪⎩
L11 = [y11

1 , 1] × [y11,01
2 , 1]

L10 = [y10
1 , 1] × [0, y01

2 ]
L01 = [0, 1] × [y01

2 , 1] \ int L11.

(C1) y10
1 < y11

1 < 1, 0 < y01
2 < y11

2 < 1,⎧⎪⎨
⎪⎩

L11 = [y11
1 , 1] × [y11

2 , 1]
L10 = [y10

1 , 1] × [0, y11
2 ]

L01 = [0, y10
1 ] × [y01

2 , 1].
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y11
1 y10

1

y11
2

y01
2

11

10
00

01

Figure 2: Configuration (A0)

(C2) 0 < y10
1 < y11

1 < 1, y01
2 < y11

2 < 1,⎧⎪⎨
⎪⎩

L11 = [y11
1 , 1] × [y11

2 , 1]
L10 = [y10

1 , 1] × [0, y01
2 ]

L01 = [0, y11
1 ] × [y01

2 , 1].

These configurations are depicted in Figures 2, 3, 4 and 5. Note that Theorem
1 states that an optimal scheme has one of these configurations for any distribution
of buyer types whether they are independent or correlated. Specification of the
distribution and the value functions is required to pin down which one of the various
assignment rules is indeed optimal as well as the exact locations of the marginal
types ya

i . Note that in most of these configurations, some types are precluded
from adoption even though they are willing to adopt. In Configuration (B2), for
example, buyer 1 is not assigned the good when his type s1 ≥ y11

1 and buyer 2’s
type s2 ∈ (y01

2 , y11,01
2 ). This occurs when the seller finds it more profitable to charge

buyer 2 a higher price y11,01
2 for joint adoption than to charge him a lower price y11

2

and allow joint adoption whenever feasible.15 As depicted, hence, no configuration
other than (A0) is constrained efficient.16

4.1 Independent Types

A sharper characterization of an optimal scheme is possible under some additional
assumptions on the valuation functions and the type distribution. Assume specifi-

15Note that the latter would correspond to Configuration (A1).
16In the degenerate cases, (A1) and (A2) are constrained efficient when y11

1 = y10
1 and y11

2 = y01
2 ,

respectively.
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y11
1 y10

1

y11
2

y01
2

11

10
00

01

y11
1 y10

1

y01
2

y11
2

11

10
00

01

Figure 3: Configurations (A1) (left) and (A2) (right)

y11,10
1y10

1

y11
2

y01
2

11

10
00

01

y11
1 y10

1

y11,01
2

y01
2

11

1000

01

Figure 4: Configurations (B1) (left) and (B2) (right)

y11
1y10

1

y11
2

y01
2

11

1000

01

y11
1y10

1

y11
2

y01
2

11

1000

01
00

00

Figure 5: Configurations (C1) (left) and (C2) (right)
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cally that the types s1 and s2 are independent. Let Gi be the cumulative distribution
function of si, and for i ∈ I, a ∈ A and si ∈ Si, define

ri(a, si) = {1 − Gi(si)} vi(a, si)

to be the seller’s expected revenue from buyer i when he offers network a for price
vi(a, si). We make the following assumptions.

Assumption 3 1) vi(a, ·) is strictly log-concave for each a ∈ Ai.17

2) v1(11,·)
v1(10,·) and v2(11,·)

v2(01,·) are weakly decreasing.

3) gi(·)
1−Gi(·) is strictly increasing.

In Assumption 3, the only requirement on the distribution is the increasing
hazard rate condition in (3), which is known to hold for most distributions. The first
two conditions concern the functional form of the valuation function. (1) requires
that it be not too convex as a function of the type, and (2) is a single-crossing
condition on log vi since its alternative expression is ∂(log v1)

∂s1
(11, ·) ≤ ∂(log v1)

∂s1
(10, ·).

In other words, the log-value of the larger network increases at a lower rate than that
of the smaller network. For example, (2) holds with equality for a multiplicatively
separable valuation function vi(a, si) = γi(a)hi(si) in which the effect of the network
γi(a) is separated from that of the type hi(si).18 As summarized by the following
lemma, Assumption 3 implies that the graph of r1(a, ·) has a single peak when
a = 11 or 10 and that the peak of r1(11, ·) is located to the left of that of r1(10, ·)
(Figure 6).

Lemma 1 Suppose that Assumptions 2 and 3 hold. Then

1) For each a ∈ Ai, ri(a, ·) is strictly log-concave with the (unique) maximizer z̄a
i

which satisfies z̄11
1 ≤ z̄10

1 and z̄11
2 ≤ z̄01

2 .

2)

∂r1

∂s1
(11, s1) <

∂r1

∂s1
(10, s1) for s1 > z̄10

1 ,

∂r2

∂s2
(11, s2) <

∂r2

∂s2
(01, s2) for s2 > z̄01

2 .

17That is, log vi(a, ·) is strictly concave for each a.
18More generally, (2) holds if vi(a, si) = γi(a)hi(si) + ci(si),

ci(si)
hi(si)

is weakly increasing in

si, and γi(a) increases with the network size. It also holds when ∂v1
∂s1

(11, ·)/∂v1
∂s1

(10, ·) and
∂v2
∂s2

(11, ·)/∂v2
∂s2

(01, ·) are weakly decreasing.
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r1(11, s1)

r1(10, s1)

s1 = 0 s1 = 1z̄11
1 z̄10

1

Figure 6: Functions r1(10, ·) and r1(11, ·).

We say that a coordinating scheme (f, y) against two buyers is monotone if

1) y11
1 ≤ y10

1 , y11
2 ≤ y01

2 , and

2) f1(s) =

⎧⎨
⎩1 if s1 ≥ y10

1 , or s ≥ (y11
1 , y11

2 ),

0 otherwise,
and

f2(s) =

⎧⎨
⎩1 if s2 ≥ y01

2 , or s ≥ (y11
1 , y11

2 ),

0 otherwise.

Under a monotone scheme, hence, the larger network a = 11 is more affordable
than the smaller network a = 10 or 01, and the network size is maximized subject to
the individual rationality constraints. The second property can also be interpreted
as saying that the good is allocated to a single buyer only when the other buyer’s
type is too low for joint adoption. Configuration (A0) in Figure 1 corresponds to a
monotone scheme. If a monotone scheme is optimal, then (y10

1 , y01
2 ) = (z̄10

1 , z̄01
2 ) and

(y11
1 , y11

2 ) ∈ argmax {1 − G2(y11
2 )} r1(11, y11

1 ) + {1 − G1(y11
1 )} r2(11, y11

2 )

+ G2(y11
2 ) r1(10, z̄10

1 ) + G1(y11
1 ) r2(01, z̄01

2 ).
(3)

It is clear from the definition that a monotone scheme is constrained efficient.19

The following theorem characterizes optimal schemes against two buyers with
independent types.

Theorem 2 Suppose that (s1, s2) is independent and that Assumptions 2 and 3
hold. If (f, y) is an optimal ex post implementable coordinating scheme against two
buyers, then it is monotone.

19A partial converse of this also holds.
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Proof. See the Appendix.
When y11

1 < y10
1 and y11

2 < y01
2 , it is impossible to replicate the monotone scheme

by any scheme in which the buyers’ decisions are based only on their own types or
on the decisions of other buyers: In any such scheme, at least one buyer’s decision
(e.g., the first-mover’s decision) must be independent of other buyers’ types.

Example: Suppose that si has the uniform distribution Gi(si) = si, and that the
buyers’ valuation functions are given by

v1(10, s1) = γs1

v1(11, s1) = δs1,

v2(01, s2) = γs2

v2(11, s2) = δs2,

where 0 < γ < δ. Given that the optimal scheme is monotone, the marginal type
for the single adoption 10 or 01 equals y10

1 = y01
2 = 1

2 . By (3) and symmetry, the
marginal type y11

1 = y11
2 for the joint adoption 11 solves

y11
1 = y11

2 ∈ argmax
x

δx(1 − x)2 +
γ

4
x.

Solving this, we get20

y11
1 = y11

2 =
1
3δ

{
2δ −

√
δ2 − 3

4
γδ

}
.

We can confirm that y11
1 = y11

2 < 1
2 = y10

1 = y01
2 if and only if γ < δ. Consider now

the price of each network associated with these marginal types. They are given by

t1(10) = t2(01) =
γ

2
, and t1(11) = t2(11) =

1
3

{
2δ −

√
δ2 − 3

4
γδ

}
.

From these, we can check that the price of the size 2 network 11 is higher than that
of the size 1 network if and only if

δ

γ
>

3
4
,

which is true since δ > γ. In this example, the larger network is more expensive
than the smaller network although it is more affordable in the aforementioned sense.

20As seen, analytical derivation of an optimal scheme is possible only under very limited specifi-

cations of the distribution and values.
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5 Optimal Symmetric Schemes

With more than two buyers, the problem of identifying all the ex post implementable
schemes becomes intractable. In this section, we focus on an optimal symmetric
scheme when the buyers are ex ante symmetric. We show that the optimal scheme
is monotone when the network externalities are strong, or when a stronger notion
of incentive compatibility is imposed.

Suppose that the types s1, . . . , sI are independent and identically distributed,
and denote by g the density of si and by G the corresponding cumulative distribu-
tion. The valuation functions are symmetric in the sense that

vi(a, si) = vj(a′, sj)

for any i �= j, si = sj ∈ [0, 1] and a, a′ ∈ A such that (ai, aj , a−i−j) = (a′j , a
′
i, a

′
−i−j).

The symmetry condition implies that the network externalities depend only on the
size of the network a ∈ A, defined by |a| =

∑
j∈I aj. In what follows, hence, we

refer to any network of size k as network k, and denote the set of networks by
N ≡ {0, 1, . . . , I} = I ∪ {0}. For any network k ∈ N , denote the valuation function
of any buyer by vk : [0, 1] → R+.

We say that a coordinating scheme (f, t) is symmetric if for any i �= j,

(fi(s), fj(s), f−i−j(s)) = (fj(s′), fi(s′), f−i−j(s′))

for any s, s′ ∈ S such that (si, sj , s−i−j) = (s′j, s
′
i, s−i−j), and

(ti(a), tj(a), t−i−j(a)) = (tj(a′), ti(a′), t−i−j(a′))

for any a, a′ ∈ A such that (ai, aj , a−i−j) = (a′j , a
′
i, a

′
−i−j). That is, when (f, t) is

symmetric, swapping the private types of any pair of buyers results in the swapping
of their assignments and transfers but does not affect those of any other buyers.21

When the scheme (f, t) is symmetric, the transfer depends on the network only
through its size. That is, ti(a) = tj(a′) for any i, j ∈ I and any a ∈ Ai, a′ ∈ Aj such
that |a| = |a′|. Hence, we let tk denote the price of network k for any single buyer.
We make the following assumptions as in the previous section.

Assumption 4 1) v1(0) = · · · = vI(0) = 0 and (v1)′(·) < · · · < (vI)′(·).

2) v1, . . . , vI are strictly log-concave.
21In the social choice literature, this property is often called anonymity.
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3) vn(·)
vm(·) is weakly decreasing if m < n.

4) g(·)
1−G(·) is strictly increasing.

Again, the increasing hazard rate in (4) is the only requirement on the distribu-
tion. (1) says that the value is zero to the lowest type, and that the externalities as
measured by the derivatives increase strictly with the network size. (2) and (3) are
exact counterparts of those in the previous section.

We adapt ya
i and yab

i defined in (1) and (2) to the symmetric environment by
writing yn for the marginal type that is indifferent between network n priced at tn

and no-adoption, and ymn
i for the marginal type that is indifferent between m at

priced at tm and n priced at tn.22 Just as in the general formulation of Section
3, restricting the range of the pricing rule tn to [0, vn(1)] for each n ∈ N entails
no loss of generality as far as the expected revenue is concerned. Given the one-
to-one correspondence between such a pricing rule t = (t1, . . . , tn) and the profile
of marginal types y = (y1, . . . , yI), we again use t and y interchangeably when
describing a coordinating scheme.

Let λ0 = λ0
I−1 = 1, and for each k = 1, . . . , I − 1, let λk = λk

I−1 be the kth
highest value among I − 1 types s−i = (sj)j �=i. A symmetric coordinating scheme
(f, t) is monotone if

1) yI ≤ · · · ≤ y1, and

2) fi(s) =

⎧⎨
⎩1 if si ≥ yn and λn−1 ≥ yn for some n ∈ N ,

0 otherwise.

As before, in a monotone scheme, (1) a larger network is more affordable than
a smaller network, and (2) the maximal network is chosen subject to individual
rationality: for any n ∈ N , |f(s)| = n if and only if |{i ∈ I : si ≥ yn}| = n.23 It is
not difficult to see from Proposition 1 that a monotone scheme is strategy-proof.24

Moreover, a monotone scheme is constrained efficient in the sense defined in Section
2.

22As before, yn = 0 if tn < 0, and yn = 1 if tn > vn(1). Likewise, ymn = 0 if tn − tm < 0, and

ymn = 1 if tn − tm > vn(1) − vm(1).
23To see that a monotone scheme (f, y) has this property, note that it is clear from the definition

that |f(s)| = n if |{i ∈ I : si ≥ yn}| = n. For the other implication, suppose that |f(s)| = n. Then

IR implies that |{i ∈ I : si ≥ yn}| ≥ n. If the inequality is strict, then take any i such that si ≥ yn.

For this i, λn ≥ yn ≥ yn+1 so that |f(s)| ≥ n + 1 must hold by definition, a contradiction.
24Proposition 2 below proves that it satisfies a stronger condition of coalitional strategy-proofness.
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As is the case with two buyers, we begin by examining the seller’s expected
revenue from a single buyer i. Specifically, take any set K ⊂ N of networks. Let
also the marginal types y = (y1, . . . , yI) ∈ S be given. Suppose now that the
seller offers buyer i a menu consisting of networks in K. That is, the menu lists
each network k ∈ K for price tk = vk(yk). Letting yK = (yk)k∈K , we will denote
by rK(yK) the seller’s expected revenue from offering this menu to buyer i. In
Figure 1, for example, the seller’s expected revenue from buyer i is given by rK(yK),
where K = {a1, a2, a3}, and equals the sum of the probability that each network
is chosen multiplied by its price. When the menu contains a single item K = {k},
we denote rK(yK) = rk(yk), and when it contains two items K = {k, �}, we denote
rK(yK) = rk�(yk, y�). We see that

rk(yk) = {1 − G(yk)} vk(yk),

and that when k < � and yk < y� < yk� < 1,

rk�(yk, y�) = {1 − G(yk�)} v�(y�) + {G(yk�) − G(yk)} vk(yk).

A general formula of rK(yK) is presented in the Appendix. rK(yK) plays a key
role in what follows since a general coordinating scheme requires a buyer to make
a choice from more than two networks even if the type profile of other buyers is
fixed.25 On the other hand, as seen from Figure 2, a monotone scheme requires a
buyer to make only a binary choice between network 0 and network k (≥ 1) for any
fixed type profile of other buyers.

Under Assumption 4, we have:

Lemma 2 Suppose that Assumption 4 holds. Then the following hold.

1) For each n ∈ N , rn is strictly log-concave with the (unique) maximizer z̄n

which satisfies 1 > z̄1 ≥ · · · ≥ z̄I > 0.

2) If m < n, ym < yn, and (rn)′(ymn) ≥ (rm)′(ymn), then rn(yn) > rmn(ym, yn).

In other words, (1) each rn is single-peaked and when k < �, r� peaks earlier
than rk, and (2) for the seller, offering a menu containing two networks m and n

25For example, in configuration (B1) in Figure 4, when s2 > y01
2 , buyer 1 chooses among networks

01, 10 and 11.
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is dominated by offering just the larger of the two for some ym and yn.26 Let the
marginal types y = (y1, . . . , yI) and set K ⊂ N of networks be given, and define

S−i(K, y) = {s−i ∈ S−i : min
k∈K

(λk−1 − yk) ≥ 0, max
k/∈K

(λk−1 − yk) < 0}. (4)

S−i(K, y) is the set of type profiles of buyers other than i such that when s−i ∈
S−i(K, y), it is possible to include i to form any network k ∈ K without violating
any buyer’s individual rationality as long as si ≥ yk, but no other network including
i can be formed for any si. Since λ0 = 1 and yk ≤ 1 for any k, for any y, if
S−i(K, y) �= ∅, then 1 ∈ K.27 Let

QK(y) = P (s−i ∈ S−i(K, y))

be the probability that s−i is such a type profile.

5.1 Optimal Symmetric Scheme under Strong Externalities

In this section, we analyze optimal schemes when a larger network has significantly
stronger externalities than a smaller network. Specifically, we suppose that for each
positive network k = 1, . . . , I, there exist vk : [0, 1] → R+ and 0 < ρ1 ≤ · · · ≤ ρI

such that
vk(si) = ρkvk(si).

vk is the base valuation function for network k satisfying Assumption 4, and we
use ρ1, . . . , ρI to vary the externality levels. Throughout this subsection, we assume
that the density g is continuous and strictly positive over [0, 1].

Given the marginal types y = (y1, . . . , yI) and the set K of networks, let
S−i(K, y) ⊂ S−i be as defined in (4), and QK(y) be the probability that s−i ∈
S−i(K, y). Define w : S → R+ by

w(y) =
∑

1∈K⊂N

QK(y) max
∅�=L⊂K

rL(yL).

To interpret w, suppose that s−i ∈ S−i(K, y) so that the seller can include i to form
only those networks in K. Since his expected revenue from buyer i by offering him
a menu L of networks is rL(yL), the maximal revenue from buyer i conditional on
s−i ∈ S−i(K, y) cannot exceed max∅�=L⊂K rL(yL). In this sense, w(y) presents an

26In the proof, it is shown that (rn)′(ymn) ≥ (rm)′(ymn) holds only if ymn < z̄n.
27In other words, regardless of others’ profile, it is possible to form network 1 if i’s signal si ≥ y1.
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upper bound on the seller’s revenue from buyer i.28 With symmetry, this also equals
an upper bound on the expected revenue (per buyer) under an ex post implementable
coordinating scheme (f, y). We can also make the following observation. Suppose
that (f, y) is monotone. Suppose further that s−i ∈ S−i(K, y) for some i and K ⊂ N .
Since ymax K ≤ yk for any k ∈ K by monotonicity, if si < ymax K , then si < yk for any
k ∈ K so that i is not included in the network: fi(si, s−i) = 0. On the other hand,
since the network is maximized subject to IR, if si ≥ ymaxK , then |f(si, s−i)| =
maxK should hold. Therefore, the expected revenue from buyer i conditional on
s−i ∈ S−i(K, y) equals rmax K(ymax K), and the unconditional expected revenue from
buyer i under a monotone scheme equals

R(f, y) =
∑

1∈K⊂N

QK(y) rmax K(ymax K). (5)

For any K, hence, if offering any menu L of networks in K is dominated by
offering just the maximal network maxK, or equivalently, if rmax K(ymax K) =
max∅�=L⊂K rL(yL), then we have w(y) = R(f, y) by the definition of w(y) and
(5). The following lemma summarizes this observation.

Lemma 3 Suppose that y satisfies yI ≤ · · · ≤ y1, and

rmaxK(ymax K) = max
∅�=L⊂K

rL(yL) for any 1 ∈ K ⊂ N .

If (f, y) is a symmetric monotone scheme, then R(f, y) = w(y).

Recall from Lemma 2 that when y1, . . . , yI satisfy certain conditions, offering a
menu containing two networks is dominated by offering just the larger of the two.
Under strong externalities, we can repeat this argument to show that offering a menu
of any subset of networks in K is dominated by offering just the largest network
maxK. In this case, strong externalities further guarantee that any maximizer y

of w must satisfy yI ≤ · · · ≤ y1 as would be required by a monotone scheme. The
following theorem combines these observations to prove that any maximizer y of w

satisfies the conditions of Lemma 3.

Theorem 3 Suppose that vk(si) = ρkvk(si) for every k = 1, . . . , I, where 0 < ρ1 ≤
· · · ≤ ρI and vk : [0, 1] → R+ satisfies Assumption 4. Then there exists ε > 0
such that if max2≤k≤I

ρk−1

ρk < ε, then the optimal symmetric coordinating scheme is
monotone.

28It is only an upper bound because while it takes into account buyer i’s IC and all buyers’ IR,

it does not take into account other buyers’ IC.
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When the externalities are positive but weak, preliminary analysis indicates that
an optimal ex post implementable symmetric scheme is not monotone. Full charac-
terization of an optimal scheme in such an environment appears extremely difficult
as it entails a very complex assignment rule. As seen in the next section, however,
requiring a stronger version of incentive compatibility recovers the monotonicity of
an optimal scheme for any positive degree of externalities.

5.2 Optimal Symmetric Scheme under Coalitional Implementabil-

ity

Given a coordinating scheme (f, t), a subset J ⊂ I of buyers, and type profiles
s = (sJ , s−J) and ŝJ , ŝJ is a profitable deviation for the coalition J at s if

vi(f(ŝJ , s−J), si) − ti(f(ŝJ , s−J)) ≥ vi(f(s), si) − ti(f(s)) for every i ∈ J , and

vi(f(ŝJ , s−J), si) − ti(f(ŝJ , s−J)) > vi(f(s), si) − ti(f(s)) for some i ∈ J .

(f, t) is coalitionally strategy-proof if no coalition of buyers has a profitable devia-
tion at any type profile. Coalitional strategy-proofness is hence a strong robustness
requirement since even if there exists a group of buyers who share the informa-
tion about their private types and jointly misreport them, the deviation is not
profitable.29(f, t) is coalitionally ex post implementable if it is coalitionally strategy-
proof and ex post individually rational. The following proposition shows that a
monotone scheme has this robustness property.

Proposition 2 A monotone scheme (f, t) is coalitionally ex post implementable.

Given the marginal types y = (y1, . . . , yI), define

M(y) = {m : m = 1, . . . , I − 1, ym < max
�>m

y�}.

M(y) is the set of networks that are more affordable than some of the larger net-
works. Also, let

K(f) = {n ∈ N : |f(s)| = n for some s ∈ S}
be the set of networks that may be formed under f . If (f, y) is a monotone scheme,
then yI ≤ · · · ≤ y1 so that M(y) = ∅, and hence M(y) ∩ K(f) = ∅. In fact, the
following lemma shows that any coalitionally ex post implementable scheme (f, y)
should satisfy this condition.

29Since Moulin (1980), there is extensive analysis of coalitional (or group) strategy-proofness in

the social choice and mechanism design literature.
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Lemma 4 Let (f, y) be a symmetric, coalitionally ex post implementable coordinat-
ing scheme. Then M(y) ∩ K(f) = ∅.

Now given a subset K ⊂ N of networks and marginal types y = (y1, . . . , yI) such
that K ∩ M(y) = ∅, let w(K, y) be defined by

w(K, y) =
∑
k∈K

P
(
λk−1 ≥ yk, max

�>k
�∈K

(λ�−1 − y�) < 0
)

rk(yk)

w(K, y) is interpreted as the seller’s expected revenue under a coalitionally imple-
mentable coordinating scheme (f, y) when the set K(f) of networks formed under
f equals K, and f always chooses the maximal network in K subject to individual
rationality. For a monotone scheme (f, y), we have

R(f, y) = w(N, y) (6)

since K(f) = N when y1 < 1 and yI > 0.30 The following proposition shows that for
any coalitionally ex post implementable scheme (f, y), w(K(f), y) gives its expected
revenue R(f, y).

Lemma 5 Let (f, y) be a symmetric, coalitionally ex post implementable coordinat-
ing scheme. Then R(f, y) = w(K(f), y).

The following theorem establishes the optimality of a monotone scheme by show-
ing that for any coalitionally ex post implementable scheme (f, y), there exists
ŷ = (ŷ1, . . . , ŷI) such that ŷ1 ≤ · · · ≤ ŷI and w(K(f), y) ≤ w(N, ŷ).

Theorem 4 Suppose that Assumption 4 holds. Then there exists a monotone co-
ordinating scheme that is optimal in the class of symmetric, coalitionally ex post
implementable coordinating schemes.

6 Conclusion

The sales schemes considered in the literature for network goods do not involve
active coordination of the buyers’ adoption decisions. In contrast, a coordinat-
ing scheme permits the seller to fully coordinate their decisions while maintaining
the principle of adoption-contingent pricing. Ex post implementability required in

30It can be checked that (6) also holds in the degenerating cases y1 = 1 or yI = 0.
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our analysis eliminates the multiplicity of equilibria, a central issue in the network
adoption problems. We present monotonicity as a key property of the optimal ex
post implementable scheme when the buyers’ private types are independent. In a
monotone scheme, a larger network is more affordable than a smaller network in
the sense that the set of buyer types who are willing to adopt the larger network
is larger than that for the smaller network, and given such pricing, assignment is
efficient by choosing the maximal network subject to individual rationality.31 Given
that monotonicity is defined in terms of the private types, it has no direct implica-
tion on the actual price levels for different networks. As observed in the example in
Section 4.1, however, it is not inconsistent with a lower price for a smaller network
and a higher price for a larger network. Such a pricing strategy underlies the prac-
tice of introductory pricing, which provides a refund to the adopters when there are
few adoptions. It remains an open question whether the optimal price of a larger
network can be lower.

In this paper, we have only looked at externalities whose magnitude increases
with the network size. It would be interesting to study the case of negative exter-
nalities, or more complex externalities based on graph structure.32 Network goods
are often supplied competitively as in the case of cellular phones or PC operating
systems. While some aspects of such competition have been analyzed by Katz and
Shapiro (1985, 1986), much remains to be understood.

Appendix

Proof of Proposition 1 (Necessity)
1. If ti(a) > ti(ak) for a ∈ Ci(ak) ∩ Bi(s−i), then vi(f(si, s−i), si) − ti(f(si, s−i)) <

vi(f(s′i, s−i), si)− ti(f(s′i, s−i)) for si and s′i such that f(si, s−i) = a and f(s′i, s−i) =
ak, contradicting the strategy-proofness of (f, t).

2. Ex post IR for si = 0 requires that vi(a1, 0) − ti(a1) = −ti(a1) ≥ 0.

31It is possible to see the efficiency of a monotone scheme in a different way. Suppose that the

seller separates out each buyer and chooses a take-it-or-leave-it offer to him that would be optimal

if he were the only buyer. The optimal monotone scheme is more efficient than such a scheme.
32See Sundararajan (2007) for one such formulation.
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3. For si and s′i such that f(si, s−i) = ak and f(s′i, s−i) = ak+1, we have

vi(ak, si) − ti(ak) = vi(f(si, s−i), si) − ti(f(si, s−i))

≥ vi(f(s′i, s−i), si) − ti(f(s′i, s−i))

= vi(ak+1, si) − ti(ak+1).

Rearranging, we get

ti(ak+1) − ti(ak) ≥ vi(ak+1, si) − vi(ak, si) ≥ 0.

4. It suffices to show that if f(si, s−i) = ak and f(s′i, s−i) = am for k < m, then
si < s′i. Since (f, t) is strategy-proof,

vi(am, s′i) − ti(am)

= vi(f(s′i, s−i), s′i) − ti(f(s′i, s−i))

≥ vi(f(si, s−i), s′i) − ti(f(si, s−i))

= vi(ak, s′i) − ti(ak),

and

vi(ak, si) − ti(ak)

= vi(f(si, s−i), si) − ti(f(si, s−i))

≥ vi(f(s′i, s−i), si) − ti(f(s′i, s−i))

= vi(am, si) − ti(am).

It hence follows that

vi(am, s′i) − vi(ak, s′i) ≥ ti(am) − ti(ak) ≥ vi(am, si) − vi(ak, si).

This further implies that∫ s′i

si

∂vi

∂si
(am, si)D′si = vi(am, s′i) − vi(am, si)

≥ vi(ak, s′i) − vi(ak, si) =
∫ s′i

si

∂vi

∂si
(ak, si)D′si.

Since ∂vi
∂si

(am, ·) > ∂vi
∂si

(ak, ·) by assumption, this implies that si < s′i.

(Sufficiency) Fix i ∈ I and s−i ∈ S−i.
Strategy-proofness:
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Suppose that si ∈ [yak−1ak

i , yakak+1

i ] and that s′i ∈ [ya�−1a�

i , ya�a�+1

i ] for some
k �= �. Then

vi(f(si, s−i), si) − ti(f(si, s−i)) = vi(ak, si) − ti(ak)

≥ vi(a�, si) − ti(a�)

= vi(f(s′i, s−i), si) − ti(f(s′i, s−i)),

where the inequality follows since

si ∈
[
yak−1ak

i , yakak+1

i

]
⇒ vi(ak, si) − ti(ak) = max

a∈Bi(s−i)
vi(a, si) − ti(a)

as would be clear from Figure 1.
Ex post IR:

Since for si ∈ [yakak−1

i , yak+1ak

i ], we have

vi(ak, si) − ti(ak)

≥ vi(ak, yakak−1

i ) − ti(ak) = vi(ak−1, yakak−1

i ) − ti(ak−1)

≥ vi(ak−1, yak−1ak−2

i ) − ti(ak−1) = vi(ak−2, yak−1ak−2

i ) − ti(ak−2)

≥ · · ·
≥ −ti(a1) ≥ 0.

Proof of Theorem 1 We begin with the following lemma.

Lemma 6 Suppose that (f, t) is an optimal ex post implementable coordinating
scheme against two buyers under Assumption 2. Then

1) There exist no 0 ≤ α1 < β1 ≤ 1 such that f(s) = 0 for every s ∈ (α1, β1) ×
(y01

2 , 1].

2) There exist no 0 ≤ α2 < β2 ≤ 1 such that f(s) = 0 for every s ∈ (y10
1 , 1] ×

(α2, β2).

3) L11 is a rectangle with a non-empty interior such that (1, 1) ∈ L11 and (0, 0) /∈
L11.

Proof.
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1. Suppose that there exist such α1 and β1 and denote D = (α1, β1) × (y01
2 , 1]. We

will show that (f, t) is suboptimal. If y01
2 = 0 or 1, let (f̂ , t̂) be such that ŷ1 = y1,

(ŷ01
2 , ŷ11

2 ) = (1
2 , y11

2 ), and

f̂(s) =

⎧⎨
⎩01 if s ∈ (α1, β1) × (1

2 , 1],

f(s) otherwise.

Then (f̂ , t̂) is ex post implementable and raises a strictly positive expected revenue
P (s ∈ (α1, β1) × (1

2 , 1]) v2(01, 1
2) from D. When y01

2 ∈ (0, 1), let (f̂ , t̂) be such that
ŷ = y and

f̂(s) =

⎧⎨
⎩01 if s ∈ D,

f(s) otherwise.

Again, (f̂ , t̂) is ex post implementable and raises a strictly positive expected revenue
P (s ∈ D) v2(01, y01

2 ) from D. In both cases, R(f̂ , t̂) > R(f, t).

3. If L11 �= ∅, then it contains (1, 1) by Assumption 2 and Proposition 1. Suppose
that int L11 = ∅. The optimality of (f, t) would then imply that (1, 1) ∈ L10 ∪ L01.
Assume without loss of generality that (1, 1) ∈ L10. We will show that (f, t) is
dominated by an alternative scheme (f̂ , t̂) defined as follows:

f̂(s) =

⎧⎨
⎩11 if s ∈ [y10

1 , 1] × [0, 1],

f(s) otherwise.
(ŷ10

1 , ŷ11
1 ) = (y10

1 , y10
1 ), (ŷ01

2 , ŷ11
2 ) = (y01

2 , 0)

Then (f̂ , t̂) is ex post implementable. Furthermore, the expected revenue under
(f̂ , t̂) from [y10

1 , 1] × [0, 1] equals

P (L11) v1(11, y10
1 ).

This is strictly greater than the expected revenue under (f, t) from the same set
since the latter is bounded above by

P (L11) v1(10, y10
1 ),

and v1(11, y10
1 ) > v1(10, y10

1 ) by Assumption 2. The expected revenue under (f̂ , t̂)
and that under (f, t) are the same elsewhere. We hence conclude that R(f, t) <

R(f̂ , t̂).
Next, we show that L11 is a rectangle. If y10

1 ≥ y11
1 , then L11 = [y11

1 , 1] × [y11
2 , 1]

or L11 = [y11
1 , 1] × [y11,01

2 , 1]. It is also a rectangle if y01
2 ≥ y11

2 . Suppose then
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that y11,10
1 > y11

1 and y11,01
2 > y11

2 . L11 may fail to be a rectangle only if L11 =
[y11

1 , 1]×[y11
2 , 1]\[y11

1 , y11,10
1 ]×[y11

2 , y11,01
2 ]. However, if f(s) = 10 for s ∈ [y11

1 , y11,10
1 ]×

[y11
2 , y11,01

2 ], f is not ex post IC since for s1 ∈ (y11
1 , y11,10

1 ), L2(10, s1) = [y11
2 , y11,01

2 ]
and L2(11, s1) = [y11,01

2 , 1] and violates Proposition 1. Likewise, f(s) �= 01, 00 for
s ∈ [y11

1 , y11,10
1 ] × [y11

2 , y11,01
2 ]. Therefore, L11 is a rectangle in all cases. Finally,

(0, 0) /∈ L11 since otherwise, L11 = [0, 1]2 and the expected revenue under (f, t)
would equal zero.

We now return to the proof of the theorem. We have the following four cases to
consider depending on the relative orderings between y11

1 and y10
1 , and between y11

2

and y01
2 .33

Case 1) y11
1 ≤ y10

1 and y11
2 ≤ y01

2 . For s � (y11
1 , y11

2 ), f(s) = 00 by ex post IR.
For s ∈ [0, y10

1 ) × [0, y11
2 ), f(s) = 00 by ex post IR. It then follows from Lemma

6(1) that y10
1 < 1 and that f(s) = 10 for s ∈ (y10

1 , 1] × [0, y11
2 ). The symmetric

argument shows that y01
1 < 1, f(s) = 00 for s ∈ [0, y11

1 ) × (y11
2 , y01

2 ), and f(s) = 01
for s ∈ [0, y11

1 ) × (y01
2 , 1]. By Lemma 6(3), it must be the case that f(s) = 11

for s ∈ (y10
1 , 1] × (y01

2 , 1]. By ex post IC, we must then have f(s) = 11 for s ∈
(y11

1 , y10
1 ]× (y01

2 , 1] and s ∈ (y10
1 , 1]× (y11

2 , y01
2 ). Since L11 is a rectangle, we can then

conclude that L11 = [y11
1 , 1] × [y11

2 , 1]. This yields (A0).

Case 2) y10
1 < y11

1 < y11,10
1 and y01

2 < y11
2 < y11,01

2 . For s � (y10
1 , y01

2 ), f(s) = 00
by ex post IR. For s ∈ (y10

1 , 1] × (0, y01
2 ), f(s) ∈ {00, 10} by ex post IR, and hence

f(s) = 10 by Proposition 1 and Lemma 6(1). The symmetric argument shows that
f(s) = 01 for s ∈ [0, y10

1 ) × (y01
2 , 1]. We now proceed by separately considering

possible configurations of L11. Since L11 is a rectangle containing (1, 1) by Lemma
6(3), there are four possible cases as follows:

1) L11 = [y11,10
1 , 1] × [y11,01

2 , 1]. Proposition 1 shows that f(s) = 10 for s ∈
(y10

1 , y11,10
1 ) × (y11,01

2 , 1] and that f(s) = 01 for s ∈ (y11,10
1 , 1] × (y01

2 , y11,01
2 ).

Proposition 1 further implies that f(s) = 00 for s ∈ (y10
1 , y11,10

1 )× (y01
2 , y11,01

2 ).
This configuration, called (D), is depicted in Figure 7.

Now consider configurations (B1) and (B2) which have the same t as (D) above.
We show that (D) is dominated by (B1) if t1(10) ≥ t2(01) and dominated by
(B2) if t1(10) ≤ t2(01). To see this, note that the expected revenue under (D)

33Since L11 has a non-empty interior, it must be the case that y11
1 , y11

2 < 1. This shows that

when y10
1 < y11

1 , y11
1 < y11,10

1 , and that when y01
2 < y11

2 , y11
2 < y11,01

2 .
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Figure 7: Configuration (D)

minus that under (B1) is written as

RF − RB = P ([y10
1 , y11,10

1 ] × [y01
2 , y11,01

2 ]) {−t1(10)}
+ P ([y11,10

1 , 1] × [y01
2 , y11

2 ]) {t2(01) − t1(10)}
+ P ([y11,10

1 , 1] × [y11
2 , y11,01

2 ]) {t2(01) − t1(11) − t2(11)}.
Since y11

1 > y10
1 ≥ 0 implies t1(11) = v1(11, y11

1 ) > v1(10, y10
1 ) = t1(10) ≥ 0,

this difference is strictly negative if t1(10) ≥ t2(01). Likewise, the expected
revenue under (D) minus that under (B2) is written as

RF − RC = P ([y10
1 , y11,10

1 ] × [y01
2 , y11,01

2 ]) {−t2(01)}
+ P ([y10

1 , y11
1 ] × [y11,01

2 , 1]) {t1(10) − t2(01)}
+ P ([y11

1 , y11,10
1 ] × [y11,01

2 , 1]) {t1(10) − t1(11) − t2(11)}.
Since y11

2 > y01
2 ≥ 0 implies t2(11) = v2(11, y11

2 ) > v2(01, y01
2 ) = t2(01) ≥ 0, the

difference is strictly negative if t2(01) ≤ t1(10). Hence, (D) is never optimal.

2) L11 = [y11,10
1 , 1] × [y11

2 , 1]. By Proposition 1, f(s) = 10 for s ∈ (y10
1 , y11,10

1 ) ×
(y11

2 , 1]. Furthermore, Lemma 6(1) shows that f(s) = 10 for s ∈ (y10
1 , 1] ×

(y01
2 , y11

2 ). This yields (B1).

3) L11 = [y11
1 , 1] × [y11,01

2 , 1]. A similar reasoning as above shows that f(s) = 01
for (y10

1 , 1] × (y01
2 , 1] \ L11. This yields (B2).

4) L11 = [y11
1 , 1] × [y11

2 , 1]. In this case, we have two possibilities:

(a) f(s) = 10 for s ∈ (y10
1 , 1] × (y01

2 , y11
2 ) and f(s) = 00 for s ∈ (y10

1 , y11
1 ) ×

(y11
2 , 1]. This yields (C1).
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(b) f(s) = 01 for s ∈ (y10
1 , 1] × (y01

2 , y11
2 ) and f(s) = 00 for s ∈ (y10

1 , y11
1 ) ×

(y11
2 , 1]. This yields (C2).

Case 3) y10
1 < y11

1 < y11,10
1 and y11

2 ≤ y01
2 .

By ex post IR and Lemma 6(1), f(s) = 00 for s ∈ [0, y10
1 ) × [0, y01

2 ), f(s) = 01
for s ∈ [0, y10

1 ) × (y01
2 , 1], and f(s) = 10 for s ∈ [y10

1 , 1] × [0, y11
2 ). By Lemma 6(3),

L11 can be either (i) [y11,10
1 , 1] × [y11

2 , 1] or (ii) s ∈ [y11
1 , 1] × [y11

2 , 1]. In case (i),
it must be the case that f(s) = 10 for s ∈ (y10

1 , y11,10
1 ) × (y11

2 , 1]. Hence we obtain
configuration (B1). In case (ii), f(s) = 00 for s ∈ (y10

1 , y11
1 )×(y11

2 , y01
2 ) by Proposition

1. Proposition 1 also implies that f(s) ∈ {01, 00} for s ∈ (y10
1 , y11

1 ) × (y01
2 , 1].

However, we must have f(s) = 01 by Lemma 6(1). This yields (A2).

Case 4) y11
1 ≤ y10

1 and y01
2 < y11

2 < y11,01
2 .

The reasoning similar to that of Case 3 above yields (A1) and (B2).
. Since y11

1 < 1 by assumption, we then have y10,11
1 > y11

1 . Fix s such that
s1 ∈ (y11

1 , y10,11
1 ) and s2 = y11

2 . If f(s) = 11, then ex post implementability of
(f, y) implies that f(ŝ) = 00 or 01 for ŝ such that ŝ1 ∈ (y10

1 , y11
1 ) and ŝ2 = y11

2

by Proposition 1. In this case, However, this implies that (f, y) is not constrained
efficient since it would require f(s) = 11. Intuitively, for type s1 of buyer 1 that
is just above y11

1 , the price of network 11 is too high giving him an incentive to
underreport his type to achieve network 10.

Proof of Theorem 2 We first examine the optimality of configuration (B1),
which requires y10

1 < y11
1 < y11,10

1 < 1. Since y11,10
1 is uniquely determined as a

function of y1 = (y10
1 , y11

1 ) in this case, we can use the pair of variables (y10
1 , y10,11

1 )
instead of y1 to express the seller’s expected revenue.

RB(y11,10
1 , y10

1 , y11
2 , y01

2 )

= {1 − G2(y11
2 )} {1 − G1(y

11,10
1 )}

×
{
v1(11, y

11,10
1 ) − v1(10, y

11,10
1 ) + v1(10, y10

1 ) + v2(11, y11
2 )

}
+

[
1 − G1(y10

1 ) − {1 − G2(y11
2 )} {1 − G1(y

11,10
1 )}

]
v1(10, y10

1 )

+ G1(y10
1 ) {1 − G2(y01

2 )} v2(01, y01
2 )

= {1 − G2(y11
2 )}

{
r1(11, y

11,10
1 ) − r1(10, y

11,10
1 ) + {1 − G1(y

11,10
1 )} v2(11, y11

2 )
}

+ r1(10, y10
1 ) + G1(y10

1 ) r2(01, y01
2 ).
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Differentiation of RB with respect to y10
1 yields:

∂RB

∂y11,10
1

(y11,10
1 , y10

1 , y11
2 , y01

2 ) =
∂r1

∂s1
(10, y10

1 ) + g1(y10
1 ) r2(01, y01

2 ).

If y10
1 < z̄10

1 , then ∂r1
∂s1

(10, y10
1 ) > 0 by Assumption 3 and hence the above partial

derivative is strictly positive. It follows that the optimal y10
1 must satisfy y10

1 ≥ z̄10
1 .

Next, differentiation of RB with respect to y11,10
1 yields:

∂RB

∂y11,10
1

(y11,10
1 , y10

1 , y11
2 , y01

2 )

= {1 − G2(y11
2 )}

{∂r1

∂s1
(11, y11,10

1 ) − ∂r1

∂s1
(10, y11,10

1 ) − g1(y
11,10
1 ) v2(11, y11

2 )
}

.

Since y11,10
1 > y10

1 ≥ z̄10
1 , ∂r1

∂s1
(11, y11,10

1 ) < ∂r1
∂s1

(10, y11,10
1 ) by Assumption 3. It follows

that
∂RB

∂y11,10
1

(y11,10
1 , y10

1 , y11
2 , y01

2 ) < 0 for y11,10
1 > y10

1 ,

suggesting that (B1) cannot be optimal. The symmetric discussion shows that (B2)
is also suboptimal. Consider next configuration (C1) which requires y10

1 < y11
1 < 1.

The expected revenue can be written as:

RD(y11
1 , y10

1 , y11
2 , y01

2 )

= {1 − G2(y11
2 )} {1 − G1(y11

1 )}
{

v1(11, y11
1 ) + v2(11, y11

2 )
}

+ {1 − G1(y10
1 )}G2(y11

2 ) v1(10, y10
1 )

+ G1(y10
1 ) {1 − G2(y01

2 )} v2(01, y01
2 )

= {1 − G2(y11
2 )} r1(11, y11

1 ) + {1 − G1(y11
1 )} r2(11, y11

2 )

+ G2(y11
2 ) r1(10, y10

1 ) + G1(y10
1 ) r2(01, y01

2 ).

(7)

Differentiation of RD with respect to y10
1 yields

∂RD

∂y10
1

(y11
1 , y10

1 , y11
2 , y01

2 ) = G2(y11
2 )

∂r1

∂s1
(10, y10

1 ).

Hence, the optimal y10
1 should equal z̄10

1 . Differentiation of RD with respect to y11
1

on the other hand yields

∂RD

∂y11
1

(y11
1 , y10

1 , y11
2 , y01

2 ) = {1 − G2(y11
2 )} ∂r1

∂s1
(11, y11

1 ) − g1(y11
1 ) r2(11, y11

2 ).
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Since y11
1 > y10

1 = z̄10
1 , ∂r1

∂s1
(11, y11

1 ) < ∂r1
∂s1

(10, y11
1 ) < 0 by Assumption 3. Therefore,

the derivative is strictly negative and (C1) cannot be optimal. That (C2) cannot be
optimal is shown by a symmetric argument. We are then left with configurations in
(A), which require either y11

1 ≤ yb or y11
2 ≤ y01

2 . The expected revenue under each
one of (A) has the same expression as that under (B2) in (7). It then follows from
the discussion there that the optimal values satisfy y10

1 = z̄10
1 , y01

2 = z̄01
2 , y11

1 ≤ z̄10
1

and y11
2 ≤ z̄10

2 . The optimal scheme is hence (A0), which is monotone.

Formula for rK(yK): We can verify that the seller’s expected revenue rK(yK)
from offering a menu K = {k1, . . . , km} for k1 < · · · < km equals

rK(yK)

= max
{
0, G(min {yk1k2 , . . . , yk1km}) − G(yk1)

}
vk1(yk1)

+
m−1∑
n=2

max
{
0, G(min {yknkn+1, . . . , yknkm})

− G(max {ykn , yk1kn , . . . , ykn−1kn})
}

vkn(ykn)

+ max
{
0, 1 − G(max {ykm , yk1km , . . . , ykm−1km})

}
vkm(ykm).

When yk�kn < ykmkn for every � < m and n, we can express rK(yK) as

rK(yK) =
m∑

n=2

{rkn(ykn−1kn) − rkn−1(ykn−1kn)} + rk1(yk1). (8)

Proof of Lemma 2 (i) For each n ∈ N , rn is strictly log-concave with the (unique)
maximizer z̄n which satisfies 1 > z̄1 ≥ · · · ≥ z̄I > 0.

We first note that for m < n,

(vn)′(·)
vn(·) ≤ (vm)′(·)

vm(·) . (9)

This readily follows from Assumption 4, which implies that
(

vn(s)
vm(s)

)′ ≤ 0 when
m < n. Note now that

(rn)′(s) = −g(s) vn(s) + {1 − G(s)} (vn)′(s)

= {1 − G(s)} vn(s)
{
− g(s)

1 − G(s)
+

(vn)′(s)
vn(s)

}

= rn(s)
{
− g(s)

1 − G(s)
+

(vn)′(s)
vn(s)

}
.
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Since g(s)
1−G(s) is strictly increasing and (vn)′(s)

vn(s) is strictly decreasing, (rn)′(·)
rn(·) is strictly

decreasing, implying that rn is strictly log-concave. Hence, the maximizer z̄n of rn

is unique and satisfies z̄n ∈ (0, 1) as rn(0) = rn(1) = 0. For m < n, z̄m and z̄n

satisfy
(vm)′(z̄m)
vm(z̄m)

=
g(z̄m)

1 − G(z̄m)
and

(vn)′(z̄n)
vn(z̄n)

=
g(z̄n)

1 − G(z̄n)
.

If z̄m < z̄n, then
g(z̄m)

1 − G(z̄m)
<

g(z̄n)
1 − G(z̄n)

,

and hence
(vm)′(z̄m)
vm(z̄m)

<
(vn)′(z̄n)
vn(z̄n)

,

which contradicts (9).
(ii) If m < n, s < s′, s′′ = ϕMN (s, s′), and (rn)′(s′′) ≥ (rm)′(s′′), then rn(s′) >

rmn(s, s′).
We first verify

(rm)′(s)
(vm)′(s)

>
(rn)′(s′)
(vn)′(s′)

for m < n and s < s′. (10)

The inequality is equivalent to

{1 − G(s′)}
[
1 − g(s′)

1 − G(s′)
vn(s′)

(vn)′(s′)

]
< {1 − G(s)}

[
1 − g(s)

1 − G(s)
vm(s)

(vm)′(s)

]
.

Since s < s′, this holds if g(·)
1−G(·) is (strictly) increasing, and (vn)′(s′)

vn(s′) ≤ (vm)′(s)
vm(s) . By

the log-concavity of vm, the latter inequality holds if (vn)′(s′)
vn(s′) ≤ (vm)′(s′)

vm(s′) , which is
true by (9).

We now show that (rn)′(s) ≥ (rm)′(s) implies that (rn)′(s), (rm)′(s) ≥ 0. Note
that (rn)′(s) ≥ (rm)′(s) is equivalent to

(vn)′(s) − (vm)′(s)
vn(s) − vm(s)

≥ g(s)
1 − G(s)

. (11)

and that (rm)′(s) ≥ 0 is equivalent to

(vm)′(s)
vm(s)

≥ g(s)
1 − G(s)

. (12)

Furthermore, since (vn)′(·)
vn(·) ≤ (vm)′(·)

vm(·) by (9),

(vm)′(s)
vm(s)

≥ (vn)′(s) − (vm)′(s)
vn(s) − vm(s)

. (13)
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(12) then follows from (13) and (11). This also implies (rn)′(s) ≥ (rm)′(s) ≥ 0.
Now, since (rn)′(s′′), (rm)′(s′′) ≥ 0, we have (rm)′(s) > 0 and (rn)′(s′) > 0 for

any s, s′ < s′′ by the strict log-concavity of rm and rn. It hence follows from (10)
that for any such s and s′,

(vm)′(s)
(vn)′(s′)

<
(rm)′(s)
(rn)′(s′)

. (14)

Now fix s′′ such that rn(s′′) > rm(s′′), and consider the following functions of
s ∈ [0, s′′]:

s′ = (vn)−1
(
vm(s) + vn(s′′) − vm(s′′)

)
,

and
s′ = (rn)−1

(
rm(s) + rn(s′′) − rm(s′′)

)
.

Both functions are differentiable over the domain, and the graph of the former lies
above that of the latter since both of them go through (s′′, s′′) and have a single
crossing point because of (14), which shows that the latter has a steeper slope than
the former at any point of intersection between the two. Hence, for any s < s′′, we
have

(vn)−1
(
vm(s) + vn(s′′) − vm(s′′)

)
> (rn)−1

(
rm(s) + rn(s′′) − rm(s′′)

)
.

In other words, whenever vn(s′) = vm(s) + vn(s′′) − vm(s′′), rn(s′) > rm(s) +
rn(s′′) − rm(s′′). Equivalently, we have rn(s′) > rm(s) + rn(s′′) − rm(s′′) when
s′′ = ϕMN (s, s′), and s < s′. The desired conclusion then follows since by (8),

rMN (s, s′) = rn(s′′) − rm(s′′) + rm(s).

Lemma 7 Suppose that vk(si) = ρkvk(si) for every k ∈ K, where 0 < ρ1 ≤ · · · ≤ ρI

and vk : [0, 1] → R+ satisfies Assumption 4 for every k ∈ N . Then there exists
ε > 0 such that the following hold when max2≤k≤I

ρk−1

ρk < ε.

1) For any m < n and ym, yn ∈ (0, 1), if rn(yn) ≤ rm(ym) and yn < ym, then

(rn)′(yn)
rn(yn)

{G(ym) − G(yn)} > g(yn).

2) Let μ̄k = supsi

vk−1(si)
vk(si)

= vk−1(1)
vk(1)

and μk = infsi

vk−1(si)
vk(si)

= limsi→0
vk−1(si)
vk(si)

for
k ∈ N . Then

μ̄n <
1 + (n − 2)

∏n−1
k=2 μk

n − 1
for n = 2, . . . , I − 1.
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Proof of Lemma 7 Since the density g is continuous and strictly positive over
[0, 1], we have

G(ym) − G(yn)
ym − yn

≥ β g(yn),

where β = minsi g(si)

maxsi g(si)
> 0. Hence, the condition in Lemma 7(1) holds if

β(ym − yn)
(rn)′(yn)
rn(yn)

> 1. (15)

Since rm(ym) ≥ rn(yn) and ym > yn imply vm(ym) > vn(yn), dividing through by
vn(ym), we obtain

ρmvm(ym)
ρnvn(yn)

=
vm(ym)
vn(ym)

>
vn(yn)
vn(ym)

=
vn(yn)
vn(ym)

≥ minsi (vn)′(si)
maxsi (vn)′(si)

yn

ym
, (16)

where the last inequality holds because vn(y)
y = vn(y)−vn(0)

y−0 is the average slope of
vn over [0, y], and hence

vn(yn)
yn

1
minsi (vn)′(si)

≥ 1 ≥ vn(ym)
ym

1
maxsi (vn)′(si)

.

It follows from (16) that

ym

yn
>

minsi (vn)′(si)
maxsi (vn)′(si)

ρn

ρm

vn(ym)
vm(ym)

≥ minsi (vn)′(si)
maxsi (vn)′(si)

ρn

ρm
.

Hence, (15) is implied by

β

(
minsi (vn)′(si)
maxsi (vn)′(si)

ρn

ρm
− 1

)(
yn (rn)′(yn)

rn(yn)

)
> 1.

Suppose now that ρm

ρn → 0. Then the quantity in the first brackets → ∞. As for

the second brackets, note that yn → 0 since vn(yn)
vm(ym) < ρm

ρn . Note also that

si
(rn)′(si)
rn(si)

= si
(vn)′(si)
vn(si)

− si
g(si)

1 − G(si)
→ 1,

because limsi→0
si

vn(si)
= limsi→0

1
(vn)′(si)

= 1
(vn)′(0) by L’Hospital’s rule. Hence, (15)

holds when ρm

ρn is sufficiently small.

Next, the condition in Lemma 7(2) holds if we take ε < 1
n−1 : ρk−1

ρk < ε would
then imply

μ̄k = sup
si

vk−1(si)
vk(si)

=
ρk−1

ρk
sup
si

vk−1(si)
vk(si)

< ε <
1

n − 1
<

1 + (n − 2)πn−1
k=2 μk

n − 1
.
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Proof of Theorem 3 The proof of the theorem begins with Lemmas 8, 9 and 10.

Lemma 8 Under Assumption 4, if z ∈ argmaxy∈S w(y), then there exists a per-
mutation π1, . . . , πI of 1, . . . , I such that for each n = 1, . . . , I,

rπn(zπn) = max
∅�=L⊂Πn

rL(zL),

where ΠI = N and Πn = N \ {πn+1, . . . , πI}. In particular, rπI (zπI ) ≥ · · · ≥
rπ1(zπ1).

Proof.
Step 1. rπI (zπI ) = max∅�=J⊂I rJ(zJ) for some πI ∈ I.

Suppose to the contrary that there exists K such that K ⊂ I, |K| ≥ 2, and

rK(zK) = max
∅�=J⊂I

rJ(zJ). (17)

If there exists more than one such set that satisfies (17), choose any one with the
smallest cardinality |K|. Write K = {κ1, . . . , κn} for some 2 ≤ n ≤ I and κ1 <

· · · < κn. Now consider y such that

0 < yκ1 < · · · < yκn < 1, and yκn−1 < yκn < yκn−1κn < 1. (18)

Given that K has the smallest cardinality, z must satisfy (18): Otherwise, there is
redundancy in K and we can find a strictly smaller set K̂ ⊂ K such that rK̂(zK̂) =
rK(zK). Write yκ1κ2, . . . , yκn−1κn as functions of yκ1 , . . . , yκn as follows:

yκ1κ2 = yκ1κ2(yκ1 , yκ2), . . . , yκn−1κn = yκn−1κn(yκn−1 , yκn).

Let
zκ1κ2 = yκ1κ2(zκ1 , zκ2), . . . , zκn−1κn = yκn−1κn(zκn−1 , zκn).

z1 = ϕκ1κ2(zκ1 , zκ2), . . . , ζn−1 = ϕκn−1κn(zκn−1 , zκn).

By our choice of K, we must have 0 < ζ1 < ζ2 < · · · < ζn−1 < 1, zκ1 < zκ2 < ζ1,
zκ2 < zκ3 < ζ2,. . . ,zκn−1 < zκn < ζn−1.

Now define ŵ by

ŵ(y) =
∑

1∈J⊂N
κn /∈J

QJ(y) max
∅�=L⊂J

rL(yL) + rK(yK)
∑

1∈J⊂N
K⊂J

QJ(y).
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Note that S−i(J, z) = ∅ for any J ⊂ N such that K �⊂ J and κn ∈ J : Suppose to
the contrary that s−i ∈ S−i(J, z) for such a J . Since K �⊂ J , there exists k ∈ K

such that λk−1 < zk. However, since λκn−1 ≤ λk−1 < zk ≤ zκn for any such s−i,
we must have λκn−1 < zκn , contradicting the assumption that κn ∈ J . Hence,∑

1∈J⊂N
κn∈J,K �⊂J

QJ(z) = 0 so that

ŵ(z) =
∑

1∈J⊂N
K �⊂J

QJ(z) max
∅�=L⊂J

rL(zL) + rK(zK)
∑

1∈J⊂N
K⊂J

QJ(z).

This suggests that ŵ(y) ≤ w(y) for any y, and ŵ(z) = w(z) by our hypothesis.
From the definition of ŵ, we have

∂ŵ

∂yκn
(z) =

∑
1∈J⊂N
κn /∈J

∂QJ

∂yκn
(z) max

∅�=L⊂J
rL(zL)

+ rK(zK)
∑

1∈J⊂N
K⊂J

∂QJ

∂yκn
(z) +

∂rK

∂yκn
(zK)

∑
1∈J⊂N

K⊂J

QJ(z).

Using ∑
1∈J⊂N
κn /∈J

∂QJ

∂yκn
(z) = −

∑
1∈J⊂N

K⊂J

∂QJ

∂yκn
(z),

we observe that the FOC ∂ŵ
∂yκn (z) = 0 is given by

∑
1∈J⊂N
κn /∈J

∂QJ

∂yκn
(zJ )

{
max

∅�=L⊂J
rL(zL) − rK(zK)

}
+

∂rK

∂yκn
(zK)

∑
1∈J⊂N

K⊂J

QJ(z) = 0.

Note that the bracketed term is negative and that
∑

1∈J⊂N
K⊂J

QJ(z) > 0 since zκ1 <

· · · < zκn < 1. It follows that this equation holds only if

∂rK

∂yκn
(zK) ≥ 0.

Recall from (8) that

rK(zK) = rκ1(zκ1) +
n∑

�=2

{
rκ�(zκ�−1κ�) − rκ�−1(zκ�−1κ�)

}
.

The derivative of rK is hence given by

∂rK

∂yκn
(zK) =

{
(rκn)′(zκn−1κn) − (rκn−1)′(zκn−1κn)

} ∂yκn−1κn

∂yκn
(zκn−1 , zκn).
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Since ∂yκn−1κn

∂yκn (zκn−1 , zκn) > 0, (rκn)′(zκn−1κn) − (rκn−1)′(zκn−1κn) ≥ 0. Since
zκ�−1 < zκ� < zκ�−1κ� ≤ zκn−1κn for each � ≤ n, we have by Lemma 2

rκ�(zκ�) > rκ�−1κ�(zκ�−1 , zκ�) = rκ�−1(zκ�−1) + rκ�(zκ�−1κ�) − rκ�−1(zκ�−1κ�).

Substituting this into (6), we obtain

rK(zK)

= rκ1(zκ1) +
n∑

�=2

{
rκ�(zκ�−1κ�) − rκ�−1(zκ�−1κ�)

}

< rκ1(zκ1) +
n∑

�=2

{
rκ�(zκ�) − rκ�−1(zκ�−1)

}
= rκn(zκn).

This however contradicts our original supposition.

Step 2.
As an induction hypothesis, suppose that for m = μ + 1, . . . , I, there exists

πm ∈ Πm such that
rπm(zπm) = max

∅�=L⊂Πm

rL(zL).

We will show that
rK(zK) < max

∅�=J⊂Πμ

rJ(zJ)

for any K such that K ⊂ Πμ and |K| ≥ 2. Suppose to the contrary that rK(zK) =
max∅�=J⊂Πμ

rJ(zJ ) for some K = {κ1, . . . , κn} such that K ⊂ Πμ and n ≥ 2. Define

ŵ(y) =
∑

1∈J⊂Πμ
κn /∈J

QJ(y) max
∅�=L⊂J

rL(yL) + rK(yK)
∑

1∈J⊂Πμ
K⊂J

QJ(y)

+
I∑

m=μ+1

rπm(yπm)
∑

1∈J⊂Πm
πm∈J

QJ(y).

As in Step 1, we observe that S−i(J, z) = ∅ for any J such that κn ∈ J and K �⊂ J .34

Then ŵ(y) ≤ w(y) for any y and ŵ(z) = w(z) by the induction hypothesis. Since∑
1∈J⊂Πm

πm∈J

QJ(y) = P
(
λπm−1 ≥ yπm, max

�>m
(λπ�−1 − yπ�) < 0

)
,

34The reasoning is the same as that following the definition of ŵ in Step 1.
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the third term in the definition of ŵ is independent of yΠμ . It follows that

∂ŵ

∂yκn
(z) =

∑
1∈J⊂Πμ

κn /∈J

∂QJ

∂yκn
(z) max

∅�=L⊂J
rL(zL) + rK(zK)

∑
1∈J⊂Πμ

K⊂J

∂QJ

∂yκn
(z)

+
∂rK

∂yκn
(zK)

∑
1∈J⊂Πμ

K⊂J

QJ(z).

Noting that
∑

1∈J⊂Πμ
κn /∈J

∂QJ

∂yκn (z) = −∑
1∈J⊂Πμ

K⊂J

∂QJ

∂yκn (z), we conclude as before that

∂rK

∂yκn (zK) ≥ 0. Using the same logic as in Step 1, we can then derive the contradiction
that rK(zK) < rκn(zκn). This advances the induction step and completes the proof.

Lemma 9 Under Assumption 4, if z ∈ argmaxy∈S w(y), then z ∈ (0, 1)I .

Proof. Suppose not and take the largest n for which zπn = 0 or 1, where π1, . . . , πI

are as defined in Lemma 8. It would then follow that rπn(zπn) = 0 and hence that
rπ�(zπ�) = 0 for every � < n as well. Define ẑ to be such that

ẑπμ =

⎧⎨
⎩zπμ if μ �= n,

1
2 if μ = n.

We then have

w(ẑ) ≥
I∑

μ=1

rπμ(ẑπμ)
∑

1∈J⊂Πμ
πμ∈J

QJ(ẑ)

= rπn(ẑπn)P
(
λπn−1 ≥ ẑπn , max

�>n
(λπ�−1 − zπ�) < 0

)

+
I∑

μ=n+1

rπμ(zπμ)P
(
λπμ−1 ≥ zπμ , max

�>μ
(λπ�−1 − zπ�) < 0

)

>
I∑

μ=n+1

rπμ(zπμ)P
(
λπμ−1 ≥ zπμ , max

�>μ
(λπ�−1 − zπ�) < 0

)
= w(z),

where the inequality holds since rπn(1
2 ) > 0 and zπ� > 0 for � > n. This is a

contradiction.
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Lemma 10 Suppose that Assumptions 4 and the condition in 7(1) hold. If z ∈
argmaxy∈S w(y), then πμ = μ for μ = 1, . . . , I, or equivalently,

r1(z1) ≤ · · · ≤ rI(zI).

Proof. Note first that argmaxy w(y) �= ∅ since w is a continuous function over the
compact domain S. Let z = (z1, . . . , zI) ∈ argmaxy w(y) be any maximizer. We
prove the claim by induction over μ = 1, . . . , I.

Step 1. rI(zI) = max∅�=J⊂I rJ(zJ).
Given the conclusion of Lemma 8, the claim is equivalent to πI = I, where

π1, . . . .πI are as defined there. Suppose to the contrary that πI < I, and take n < I

such that πn = I. If we define

ŵ(y) =
I∑

μ=1

rπμ(yπμ)
∑

1∈J⊂Πμ
πμ∈J

QJ(y)

=
I∑

μ=1

rπμ(yπμ)P
(
λπμ−1 ≥ yπμ , max

�>μ
(λπ�−1 − yπ�) < 0

)
,

then ŵ(y) ≤ w(y) for any y and ŵ(z) = w(z). Differentiating ŵ with respect to
yπn = yI , we obtain

∂ŵ

∂yπn
(y) =

n−1∑
μ=1

rπμ(yπμ)
∑

1∈J⊂Πμ
πμ∈J

∂QJ

∂yπn
(y)

+ (rπn)′(yπn)
∑

1∈J⊂Πn
πn∈J

QJ(y)

+ rπn(yπn)
∑

1∈J⊂Πn
πn∈J

∂QJ

∂yπn
(y).

(19)

Since z ∈ (0, 1)I by Lemma 9, the FOC ∂ŵ
∂yπn (z) = 0 holds at y = z. Furthermore,

since rπμ(zπμ) ≤ rπn(zπn) for every μ < n, and

∑
1∈J⊂Πμ

πμ∈J

∂QJ

∂yπn
(z) = −

∑
1∈J⊂Πn

πn∈J

∂QJ

∂yπn
(z) > 0, (20)
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the sum of the first and third terms on the right-hand side of (19) evaluated at z is
≤ 0, implying that (rπn)′(zπn) ≥ 0. This and rπ�(zπ�) ≥ rπn(zπn) for � > n together
imply that zπ� > zπn for � > n. Let zπm be the smallest among zπn+1, . . . , zπI .

For any y such that yπn < yπm < min�>n,� �=m yπ�, we now evaluate the probabil-
ity

∑
1∈J⊂Πn

πn∈J
QJ(y) appearing in (19) in two ways. First, assigning just one of I − 1

types to the interval [yπn , yπm], we see that∑
1∈J⊂Πn

πn∈J

QJ(y) = P
(
λπn−1 ≥ yπn , max

�>n
(λπ�−1 − yπ�) < 0

)

=
(

I − 1
1

)
{G(yπm) − G(yπn)}

× P
(
λπn−2

I−2 ≥ yπn , max
�>n

(λπ�−1
I−2 − yπ�) < 0

)
,

(21)

where λk
I−2 is the kth largest value among I − 2 types, and λ�

k = 0 whenever k < �.
Second, suppose we assign p of I−1 types to [yπn , yπm] and the remaining q = I−1−p

types to (yπm, 1]. In this case, q < πm − 1 must hold since λπm−1 < yπm . Hence,∑
1∈J⊂Πn

πn∈J

QJ(y) = P
(
λπn−1 ≥ yπn ,max

�>n
(λπ�−1 − yπ�) < 0

)

=
∑

p+q=I−1
q<πm−1

(
I − 1

p

)
{G(yπm) − G(yπn)}p

× P
(

max
�>n,� �=m

(λπ�−1
q − yπ�) < 0, λq

q ≥ yπm

)
.

(22)

Differentiating (22) with respect to yπn = yI and rearranging, we obtain

∑
1∈J⊂Πn

πn∈J

∂QJ

∂yπn
(y)

= −(I − 1) g(yπn)P
(
λπn−2

I−2 ≥ yπn , max
�>n

(λπ�−1
I−2 − yπ�) < 0

)
.

(23)

Now substitute (21) and (23) into (19) and set y = z to get

∂ŵ

∂yπn
(z)

≥ P
(
λπn−2

I−2 ≥ zπn , max
�>n

(λπ�−1
I−2 − zπ�) < 0

)
× (I − 1)

[
−g(zπn) rπn(zπn) + (rπn)′(zπn) {G(zπm) − G(zπn)}

]
> 0.
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where the first inequality follows from the fact that the first term on the right-
hand side of (19) is positive (i.e., (20)), and the second from Lemma 7(1) along
with the fact that zπn < zπm and rπm(zπm) ≥ rπn(zπn). We have hence derived a
contradiction to the fact that z is an interior maximizer.

Step 2. For n = 1, . . . , I − 1, rn(zn) = max�≤n r�(z�).
As an induction hypothesis, suppose that the statement holds for n + 1, . . . , I.

Define

ŵn(y) =
n∑

k=1

rπk(yπk)
∑

1∈J⊂Πk
πk∈J

QJ(y) +
I∑

k=n+1

rk(yk)
∑

1∈J⊂N
max J=k

QJ(y)

=
n∑

k=1

rπk(yπk)
∑

1∈J⊂Πk
πk∈J

QJ(y)

+
I∑

k=n+1

P
(
λk−1 ≥ yk, max

�>k
(λ�−1 − y�) < 0

)
rk(yk).

We then have ŵn(y) ≤ w(y) for any y, and by the induction hypothesis, ŵn(z) =
w(z). Hence, since z is a maximizer of w, it is a maximizer of ŵn as well. Note
that the second term on the right-hand side above is independent of (y1, . . . , yn),
and the first term has the same form as ŵ in Step 1 with the only exception that n

replacing I. This implies that the same reasoning as that in step 1 proves

rn(zn) = max
�≤n

r�(z�).

We now return to the proof of the theorem. We will show that any maximizer
z of w : RI → R satisfies zI ≤ · · · ≤ z1 under Lemma 7(2). For n = 1, . . . , I and
y ∈ S, define

Rn(y) =
∑

1∈J⊂In
n∈J

QJ(y) = P (λn−1 ≥ yn, max
�>n

(λ�−1 − y�) < 0).

For any y such that yI > yI−1, we have

∂R1

∂yI
(·) = · · · =

∂RI−2

∂yI
(·) = 0.

Furthermore, since
RI(y) = {1 − G(yI)}I−1,
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and

RI−1(y)

= P (λI−2 ≥ yI−1, λI−1 < yI)

= (I − 1){1 − G(yI−1)}I−2G(yI−1)

+ {1 − G(yI−1)}I−1 − {1 − G(yI)}I−1,

we have
∂RI

∂yI
(y) = −(I − 1){1 − G(yI)}I−2g(yI),

and
∂RI−1

∂yI−1
(y) = −(I − 1)(I − 2){1 − G(yI−1)}I−3G(yI−1)g(yI−1).

Suppose now that there exists a maximizer z of w such that zI > zI−1. Since
z ∈ (0, 1)I by Lemma 9, z satisfies the FOC’s:

∂w

∂yI
(z) =

∂RI−1

∂yI
(z) rI−1(zI−1)

+
∂RI

∂yI
(z) rI(zI) + RI(z) (rI)′(zI) = 0,

and

∂w

∂yI−1
(z) =

I−1∑
n=1

∂Rn

∂yI−1
(z) rn(zn)

+ RI−1(z) (rI−1)′(zI−1) = 0.

Noting that ∂RI−1

∂yI (z) = −∂RI−1

∂yI (z) > 0, and
∑I−2

n=1
∂Rn

∂yI−1 (z) = −∂RI−1

∂yI−1 (z) > 0, we
obtain

(rI)′(zI)
rI(zI)

= − 1
RI(z)

∂RI

∂yI
(z)

{
1 − rI−1(zI−1)

rI(zI)

}
,

= (I − 1)
g(zI)

1 − G(zI )

{
1 − rI−1(zI−1)

rI(zI)

}
,

(24)

and

(rI−1)′(zI−1)
rI−1(zI−1)

=
1

RI−1(z)

{
−∂RI−1

∂yI−1
(z) −

I−2∑
n=1

∂Rn

∂yI−1
(z)

rn(zn)
rI−1(zI−1)

}

≤ − 1
RI−1(z)

∂RI−1

∂yI−1
(z)

{
1 − r1(z1)

rI−1(zI−1)

}
.

(25)
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Let R̂I−1(y) = RI−1(ŷ), where ŷk = yk for k �= I and ŷI = yI−1. Then R̂I−1(y) ≤
RI−1(y), and

− 1
R̂I−1(z)

∂RI−1

∂yI−1
(z) = (I − 2)

g(zI−1)
1 − G(zI−1)

.

Since zI−1 < z1 = z̄1 and (r1)′(y1) > 0 for y1 < z̄1, we have

r1(z1)
rI−1(zI−1)

>
r1(zI−1)

rI−1(zI−1)
=

v1(zI−1)
vI−1(zI−1)

≥
I−1∏
k=2

μk.

Hence, (25) implies

(rI−1)′(zI−1)
rI−1(zI−1)

≤ (I − 2)
g(zI−1)

1 − G(zI−1)

{
1 −

I−1∏
k=2

μk

}
. (26)

Since (rI)′(zI) > 0, zI−1 < zI and (rI−1)′(y) > 0 whenever (rI)′(y) > 0, we also
have

rI−1(zI−1)
rI(zI)

<
rI−1(zI)
rI(zI)

=
vI−1(zI)
vI(zI)

≤ μ̄I .

substituting this into (24), we get

(rI)′(zI)
rI(zI)

> (I − 1)
g(zI)

1 − G(zI)
(1 − μ̄I). (27)

Combining (26) and (27) together, we see that

(I − 1)
g(zI)

1 − G(zI)
(1 − μ̄I)

<
(rI)′(zI)
rI(zI)

≤ (rI)′(zI−1)
rI(zI−1)

≤ (rI−1)′(zI−1)
rI−1(zI−1)

≤ (I − 2)
g(zI−1)

1 − G(zI−1)

{
1 −

I−1∏
k=2

μk

}
,

where the inequalities in the second line hold because (rI)′
rI is decreasing, zI > zI−1.

and (rI)′(si)
rI(si)

≤ (rI−1)′(si)
rI−1(si)

for any si. Furthermore, given the increasing hazard rate,
we must have

(I − 1) (1 − μ̄I) < (I − 2)

{
1 −

I−1∏
k=2

μk

}
.

This, however, contradicts Lemma 7(2).
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As an induction hypothesis, suppose that zI ≤ · · · ≤ zn. Suppose that zn >

zn−1. For any y such that yI ≤ · · · ≤ yn and yn > yn−1, we have ∂R1

∂yn (y) = · · · =
∂Rn−1

∂yn (y) = 0, and

Rn(y)

= P (λn−1 ≥ yn, λn < yn+1, . . . , λI−1 < yI)

=
(

I − 1
n − 1

)
{1 − G(yn)}n−1 P (λ1

I−n < yn+1, . . . , λI−n
I−n < yI),

where λk
I−n is the kth largest value among I − n types. Hence,

∂Rn

∂yn
(y)

= −g(yn)(n − 1) {1 − G(yn)}n−2

(
I − 1
n − 1

)
P (λ1

I−n < yn+1, . . . , λI−n
I−n < yI),

and
1

Qn(y)
∂Qn

∂yn
(y) = −(n − 1)

g(yn)
1 − G(yn)

.

The first-order condition ∂w
∂yn (z) = 0 then yields

(rn)′(zn)
rn(zn)

= − 1
Qn

∂Qn

∂yn

{
1 − rn−1(zn−1)

rn(zn)

}

= (n − 1)
g(zn)

1 − G(zn)

{
1 − rn−1(zn−1)

rn(zn)

}
.

(28)

On the other hand, suppose yn+1 ≤ yn−1 < yn. Other cases can be treated in a
similar manner.

Rn−1(y)

= P (λn−2 ≥ yn−1, λn−1 < yn, λn < yn+1, . . . , λI−1 < yI)

=
(

I − 1
n − 2

)
{1 − G(yn−1)}n−2

×
[
(I − n + 1){G(yn−1) − G(yn+1)}P (λ1

I−n < yn+1, . . . , λI−n
I−n < yI)

+ P (λ1
I−n+1 < yn+1, . . . , λI−n+1

I−n+1 < yI)
]

+
(

I − 1
n − 1

)[
{1 − G(yn−1)}n−1 − {1 − G(yn)}n−1

]
P (λ1

I−n < yn+1, . . . , λI−n
I−n < yI).
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Differentiating Rn−1 with respect to yn−1, we obtain

∂Rn−1

∂yn−1
(y)

= −g(yn−1)
(

I − 1
n − 2

)
(n − 2){1 − G(yn−1)}n−3

×
[
(I − n + 1){G(yn−1) − G(yn+1)}P (λ1

I−n < yn+1, . . . , λI−n
I−n < yI)

+ P (λ1
I−n+1 < yn+1, . . . , λI−n+1

I−n+1 < yI)
]
.

Let R̂n−1(y) = Rn−1(ŷ), where ŷk = yk for k �= n and ŷn = yn−1. We have
R̂n−1(y) ≤ Rn−1(y) and can also verify that

1
R̂n−1(y)

∂Rn−1

∂yn−1
(y) = −(n − 2)

g(yn−1)
1 − G(yn−1)

.

The first-order condition ∂w
∂yn−1 (z) = 0 then yields

(rn−1)′(zn−1)
rn−1(zn−1)

= − 1
Rn−1(z)

[
n−1∑
k=1

∂Rk

∂yn−1
(z)

rk(zk)
rn−1(zn−1)

]

≤ (n − 2)
g(yn)

1 − G(yn)

(
1 − r1(z1)

rn−1(zn−1)

)

< (n − 2)
g(yn)

1 − G(yn)

(
1 − r1(zn−1)

rn−1(zn−1)

)

≤ (n − 2)
g(yn)

1 − G(yn)

(
1 −

n−1∏
k=2

μk

)
.

(29)

On the other hand,

(rn)′(zn)
rn(zn)

= (n − 1)
g(zn)

1 − G(zn)

{
1 − rn−1(zn−1)

rn(zn)

}

> (n − 1)
g(zn)

1 − G(zn)

{
1 − rn−1(zn)

rn(zn)

}

> (n − 1)
g(zn)

1 − G(zn)
{1 − μ̄n} .

(30)

Just as in Step 1, we can combine (29) and (30) to yield a contradiction to Lemma
7(2), which is equivalent to

(n − 1) {1 − μ̄n} ≥ (n − 2)

(
1 −

n−1∏
k=2

μk

)
.
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This advances the induction step and completes the proof.

Proof of Proposition 2 Take any J ⊂ I, s = (sJ , s−J) and ŝJ . Denote ŝ =
(ŝJ , s−J) and k = |f(s)|. If |f(ŝ)| = m > k, then |{i : si ≥ zk}| = k < m and
|{i : ŝi ≥ zm}| = m by the definition of a monotone scheme. Hence, there exists at
least one buyer i ∈ J for whom si < zm, ŝi ≥ zm and fi(ŝ) = 1. It follows that for
this i,

vi(f(ŝ), si) − ti(f(ŝ)) = vm(si) − tm < 0 ≤ vi(f(s), si) − ti(f(s)),

suggesting that ŝJ is not a profitable deviation of J at s. If |f(ŝ)| = m < k, take any
i ∈ J for whom fi(ŝ) = 1. If there exists no such j ∈ J , then ŝ is not a profitable
deviation for J . Since zm ≥ zk, we have vk(zm) − vm(zm) ≥ vk(zk) − vm(zm).
Furthermore, since (vk)′ ≥ (vm)′, vk(si)−vm(si) ≥ vk(zm)−vm(zm) for any si ≥ zm.
It follows that vk(si) − vm(si) ≥ vk(zk) − vm(zm) for any si ≥ zm. In other words,
if fi(ŝ) = 1 and si ≥ zm, then

vi(f(ŝ), si) − ti(f(ŝ)) = vm(si) − tm

= vm(si) − vm(zm)

≤ vk(si) − vk(zk)

= vi(f(s), si) − ti(f(s)).

This implies that ŝ is not a profitable deviation for J at s.

Proof of Lemma 4 Suppose that (f, y) is such that M(y) ∩ K(f) �= ∅, and take
m ∈ M(y) ∩ K(f) so that |f(ŝ)| = m for some ŝ and ym < yn for some n > m.
By symmetry, we can take ŝ such that f(ŝ) = (1, . . . , 1︸ ︷︷ ︸

m

, 0, . . . , 0). Take s such that

ym < s1 = · · · = sn < yn and sn+1 = · · · = sI = 0. Symmetry and ex post
IR then imply that f(s) equals either (0, . . . , 0︸ ︷︷ ︸

n

, 1, . . . , 1︸ ︷︷ ︸
I−n

), (0, . . . , 0), or (1, . . . , 1).

When f(s) = (0, . . . , 0, 1, . . . , 1), tI−n = 0 should hold by ex post IR, and when
f(s) = (1, . . . , 1), then tI = 0 should hold by ex post IR.

If f(s) = (0, . . . , 0). then ŝ is a profitable deviation for the coalition J = I at s:
For i = 1, . . . ,m,

vi(f(ŝ), si) − ti(f(ŝ)) = vm(si) − tm > 0 = vi(f(s), si) − ti(s),
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where the inequality follows from the fact that si > ym. Furthermore, for i =
m + 1, . . . , I,

vi(f(ŝ), si) − ti(f(ŝ)) = 0 = vi(f(s), si) − ti(s).

If f(s) = (0, . . . , 0︸ ︷︷ ︸
n

, 1, . . . , 1), then tI−n = 0 as noted above and ŝ is a profitable

deviation for the coalition J = I at s: For i = 1, . . . ,m,

vi(f(ŝ), si) − ti(f(ŝ)) = vm(si) − tm > 0 = vi(f(s), si) − ti(f(s)),

for i = m + 1, . . . , n,

vi(f(ŝ), si) − ti(f(ŝ)) = 0 = vi(f(s), si) − ti(f(s)),

and for i = n + 1, . . . , I,

vi(f(ŝ), si) − ti(f(ŝ)) = 0 = vI−n(0) − tI−n = vi(f(s), si) − ti(f(s)).

If f(s) = (1, . . . , 1), then yI = 0 as noted above and s is a profitable deviation for
the coalition J = I at ŝ: For i = 1, . . . ,m,

vi(f(s), ŝi) − ti(f(s)) = vI(ŝi) − tI > vm(ŝi) − tm = vi(f(ŝ), ŝi) − ti(f(ŝ)),

and for i = m + 1, . . . , I,

vi(f(s), ŝi) − ti(f(s)) = vI(ŝi) − tI > 0 = vi(f(ŝ), ŝi) − ti(f(ŝ)).

Therefore, (f, t) is not coalitionally strategy-proof.

Proof of Lemma 5 Let (f, y) be such that K(f) = K. Fix k ∈ K and s−i such
that λk−1 ≥ yk and max �∈K

�>k
(λ�−1−y�) < 0. By our choice of s−i, |f(si, s−i)| ≤ k for

any si by ex post IR. Moreover, if si < yk, then si < ym for any m < k so that i is
not assigned the good: fi(si, s−i) = 0. In what follows, we show that |f(si, s−i)| = k

whenever si > yk. If this holds, then

Esi [ti(f(si, s−i)) | s−i] = P (si < yk)Esi [ti(f(si, s−i)) | si < yk, s−i]

+ P (si > yk)Esi [ti(f(si, s−i)) | si > yk, s−i]

= P (si > yk) tk

= rk(yk).
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This in turn implies that

R(f, t) = Es[ti(f(s))]

= Es−i [Esi [ti(f(si, s−i)) | s−i]]

=
∑
k∈K

rk(yk)P (λk−1 ≥ yk, max
�∈K
�>k

(λ�−1 − y�) < 0)

= w(K, y).

Suppose that si > yk and denote s = (si, s−i). We will derive a contradiction when
m = |f(s)| < k. Let J ⊂ I be such that i ∈ J , |J | = k, and

{j : fj(s) = 1} ⊂ J ⊂ {j : sj ≥ yk}.

Such a set J exists since fj(s) = 1 implies that sj ≥ ym by ex post IR and ym ≥ yk by
Lemma 4. Since k ∈ K = K(f), take ŝ such that |f(ŝ)| = k and {j : fj(ŝ) = 1} = J .
Such a type profile ŝ exists by symmetry. When sj ≥ yk, note that

vk(sj) − vm(sj) ≥ vk(yk) − vm(yk) ≥ vk(yk) − vm(ym),

where the first inequality follows from (vk)′ > (vm)′, and the second from yk ≤ ym.
We will show that ŝ is a profitable deviation for I at s:
For j ∈ J ∩ {j : fj(s) = 1},

vj(f(ŝ), sj) − tj(f(ŝ)) = vk(sj) − vk(yk)

≥ vm(sj) − vm(ym)

= vj(f(s), sj) − tj(f(s)).

(31)

For j ∈ J ∩ {j : fj(s) = 0},

vj(f(ŝ), sj) − tj(f(ŝ)) = vk(sj) − tk ≥ 0 = vj(f(s), sj) − tj(f(s)). (32)

For j ∈ I \ J ,

vj(f(ŝ), sj) − tj(f(ŝ)) = 0 = vj(f(s), sj) − tj(f(s)).

Since si > yk, if fi(s) = 1, then (31) holds with strict inequality for j = i, and
if fi(s) = 0, then (32) holds with strict inequality for j = i. Hence, (f, t) is not
strategy-proof.
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Proof of Theorem 4 Take any coalitionally ex post implementable scheme (f, y),
and denote K = K(f). We will show that when K �= N , w(K, y) ≤ w(N, ŷ) for
some ŷ such that ŷI ≤ · · · ≤ ŷ1. Since w(N, ·) is continuous over the compact set
{y : yI ≤ · · · ≤ y1}, it achieves a maximum at some z = (z1, . . . , zI) in this set.
By Proposition 2, the monotone scheme with marginal types z raises the expected
revenue w(N, z) and is optimal.

When yk = 1 for some k ∈ K, then w(K, y) = w(K \ {k}, y) so that we may
restrict attention to the case where maxk∈K yk < 1. Suppose that K �= N and fix
any y such that K ∩ M(y) = ∅. We have

w(K, y) =
∑
�∈K

P (λ�−1 ≥ y�, max
m∈K
m>�

(λm−1 − ym) < 0) r�(y�).

Let n = min N \ K and K̂ = K ∪ {n}. If n = 1, then let ŷ be such that ŷ1 =
maxk∈K yk and ŷk = yk for k > 1. Then K̂ ∩ M(ŷ) = ∅ and w(K̂, ŷ) is given by

w(K̂, ŷ) =
∑
k∈K̂

P (λk−1 ≥ yk, max
�∈K̂
�>k

(λ�−1 − y�) < 0) rk(yk)

= P (max
�∈K

(λ�−1 − y�) < 0) r1(y1)

+
∑
k∈K

P (λk−1 ≥ yk, max
�∈K
�>k

(λ�−1 − y�) < 0) rk(yk)

≥ w(K, y).

If n > 1, then n − 1 ∈ K and let ŷ be such that

ŷk =

⎧⎨
⎩yk if k �= n,

yn−1 if k = n.

Since K̂ ∩ M(ŷ) = ∅, w(K̂, ŷ) is given by

w(K̂, ŷ) =
∑
�∈K̂

P
(
λ�−1 ≥ ŷ�, max

m∈K̂
m>�

(λm−1 − ŷm) < 0
)

r�(ŷ�)

=
∑
�∈K
�<n

P
(
λ�−1 ≥ y�, λn−1 < yn−1, max

m∈K
m>�

(λm−1 − ym) < 0
)

r�(y�)

+ P
(
λn−1 ≥ yn−1, max

m∈K
m>n

(λm−1 − ym) < 0
)

rn(yn−1)

+
∑
�∈K
�>n

P
(
λ�−1 ≥ y�, max

m∈K
m>�

(λm−1 − ym) < 0
)

r�(y�).
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Noting that λn−2 < yn−1 implies λn−1 < yn−1, we can decompose the first line of
the right-hand side above to rewrite w(K̂, ŷ) as

w(K̂, ŷ) =
∑
�∈K

�<n−1

P
(
λ�−1 ≥ y�, max

m∈K
m>�

(λm−1 − ym) < 0
)

r�(y�)

+ P
(
λn−2 ≥ yn−1, λn−1 < yn−1, max

m∈K
m>n−1

(λm−1 − ym) < 0
)

rn−1(yn−1)

+ P
(
λn−1 ≥ yn−1, max

m∈K
m>n

(λm−1 − ym) < 0
)

rn(yn−1)

+
∑
�∈K
�>n

P
(
λ�−1 ≥ y�, max

m∈K
m>�

(λm−1 − ym) < 0
)

r�(y�).

Summing the probabilities in the second and third lines above yields

P
(
λn−2 ≥ yn−1, λn−1 < yn−1, max

m∈K
m>n−1

(λm−1 − ym) < 0
)

+ P
(
λn−1 ≥ yn−1, max

m∈K
m>n

(λm−1 − ym) < 0
)

= P
(
λn−2 ≥ yn−1, max

m∈K
m>n−1

(λm−1 − ym) < 0
)
.

Using this and the fact that rn(yn−1) ≥ rn−1(yn−1), we obtain w(K̂, ŷ) ≥ w(K, y).
Iteration of this process shows that w(N, ŷ) ≥ w(K, y) for some ŷ such that ŷ1 ≤
· · · ≤ ŷI .
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