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Abstract

A platform matches agents from two sides of a market to create a trading opportunity

between them. The agents subscribe to the platform by paying subscription fees which are

contingent on their reported private types, and then engage in strategic interactions with their

matched partner(s). A matching mechanism of the platform specifies the subscription fees as

well as the matching rule which determines the probability that each type of agent on one side

is matched with each type on the other side. We characterize optimal matching mechanisms

which induce truthful reporting from the agents and maximize the subscription revenue. We

show that the optimal mechanisms for a one-to-one trading platform do not necessarily entail

assortative matching, and may employ an alternative matching rule that maximizes the extrac-

tion of informational rents of the higher type. We then study an auction platform that matches

each seller to two agents, and show that the optimal mechanism is first-best efficient but entails

the combination of negative and positive assortative matching.
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1 Introduction

Platforms that match agents flourish in modern economies with the development of information

technologies. They realize gains from trade and other forms of interactions by providing agents

access to each other: an internet auction house matches sellers and buyers who would otherwise

not be able to find trading partners, a job matching platform matches firms and workers who

would otherwise face under-utilization of their resources, and a crowd-funding platform matches

entrepreneurs with investors to create new businesses. While there is now sizable literature on

matching platforms, one important aspect of matching platforms yet to be explored concerns the
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facts that the interactions between their subscribers are often strategic, and that their strategic

incentives in such interactions are determined by how a match is formed by the platforms. Sellers

of items in a trading platform post prices that are optimal given the expected willingness to pay of

subscribing buyers for his goods, and bidders in an auction platform choose bids that are optimal

given their beliefs about the valuations of other subscribing bidders. Put differently, subscribers to

a platform play a game against each other, and the outcome of their interactions is an equilibrium

of the game. In particular, when the subscribers are privately informed about their types, they play

incomplete information games, and the value of a match to each of them is endogenously determined

by their Bayes Nash equilibrium (BNE) payoffs. Since the way the platform matches subscribers

changes their beliefs about their opponents, it also changes their equilibrium behavior and payoffs.

Given that the equilibrium payoffs determine the agents’ willingness to pay in the subscription

stage, the platform attempting to maximize subscription revenue wants to match agents in such a

way that they play its preferred BNE. For example, an auction platform may attempt to restrict

subscription to high valuation bidders so as to create competition among them and charge a high

subscription fee to sellers. The objective of this paper is to study how a matching platform can

maximize its subscription revenue by controlling a matching rule which determines the subscribers’

beliefs in the game played amongst its subscribers. Our approach marks a departure from the

literature on a matching platform which assumes that the match value to each subscriber is an

exogenous function of their own type as well as those of the matched subscribers.

In our baseline model, a trading platform creates one-to-one matches of sellers and buyers where

each buyer makes a take-it-or-leave-it offer to the matched seller. The sellers have two cost types,

whereas the buyers have two valuation types. These types are overlapped so that efficient trading

is possible within a match only when it involves a high-valuation buyer or a low-cost seller. The

matching mechanism of the platform specifies the matching rule, which determines the probability

with which each seller type is matched with each buyer type, and type-contingent subscription

fees. Put differently, the matching mechanism is a simultaneous screening device of buyers and

sellers based on a matching rule and subscription fees. Such screening of subscribers based on both

matching and pricing is a common practice. Subscription fees required of sellers to be listed high

on the search engine outcomes is a leading example of such a screening device: The sellers’ ranking

in the list will affect the probability that they will be matched with buyers with high-willingness

to pay.1

We require matching mechanisms to be incentive compatible in the sense that the agents report

their types truthfully in the subscription stage. The optimal mechanism is the mechanism that

maximizes the platform’s subscription revenue in the class of incentive compatible mechanisms.

The agents’ incentives in the reporting stage depend on both the required transfer as well as the

value of the match they expect to obtain upon subscription. Importantly, this match value is the

BNE payoff of the game they play, and will depend on the agent’s own type as well as their belief

about the type of the agent they are matched with. The main strategic consideration in a seller-

buyer match is that a high-valuation buyer’s equilibrium strategy has the cut-off property in terms

of his belief about the seller’s type: His optimal bid equals the cost of the low-cost seller if his belief

1Other examples include eBay, which offers sellers and buyers the option “eBay plus” in some countries that their

raises visibility to the other side of the market, and a matchmaking platform Vidaselect, which offers a premium

membership which allows men better access to women.
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weight on the low-cost seller is above some threshold, but it equals the cost of the high-cost seller

otherwise. Since a high-valuation buyer’s incentive changes at this threshold match probability, so

does the subscription revenue of the platform.

Our first observation is that a matching mechanism maximizes social surplus if and only if it

entails positive assortative matching (PAM) that matches a high-valuation buyer with a low-cost

seller as much as possible. Hence, all matching mechanisms that entail PAM are first-best efficient

although they may generate different welfare distributions to the agents and the platform. Our

main focus hence is on whether the optimal mechanism entails PAM. We show that the matching

rule under the optimal mechanism takes one of three forms depending on the proportion of the

agents’ types in the population. Two of them are PAM and random matching (RM) that generates

matches agents ignoring their type information. Under the third matching rule referred to as B-

squeeze matching (BSM), a high-valuation buyer is matched with a low-cost seller more often than

a low-valuation buyer is, but not to the maximal extent as under PAM. It instead squeezes the

high-valuation buyers by minimizing their informational rents. BSM matching rule is optimal when

there are a high proportion of high-valuation buyers and a medium to high proportion of low-cost

sellers.

The suboptimality of PAM for some type distributions is in sharp contrast with the finding in

the literature, and implies divergence between welfare maximization and profit maximization. In

particular, the optimality of BSM is a direct consequence of the strategic incentive of high-valuation

buyers as mentioned above, and showcases itself in the most striking form in a symmetric market

where the proportion of low-cost buyers is the same as the proportion of high-valuation buyers: In

such a market, it is both physically feasible and socially efficient to match a high-valuation buyer

and a low-cost seller one-to-one. When their proportion is high, however, the platform finds it

optimal to introduce distortion by matching some of the high-valuation buyers to high-cost sellers.2

We further show that if (and only if) it entails BSM, the optimal mechanism is not second-best

either in the sense it does not maximize the surplus of trade between the two sides of the market

subject to the agents’ incentive constraints.

Regulation authorities and policy makers are generally concerned about monopolistic platforms

exercising favoritism to some of their users.3 As long as the interaction between matched subscribers

is non-strategic, however, favoritism used as a screening device does not necessarily lead to distortion

given the optimality and efficiency of PAM as found here and also in the existent literature on

monopolistic platforms. In contrast, our findings point to a new source of distortion that results

from the optimal response by the platform to the strategic behavior of its subscribers against each

other.

In one important variation of the above baseline model, we suppose that the platform can

condition subscription fees not only on the reported types of the subscribers, but also on whether

or not a transaction has taken place within a match. Such outcome-based pricing is becoming

increasingly popular, but requires a stronger control of the agents’ interaction by the platform.

2In the Appendix, we examine the effect of the game protocol by studying the optimal mechanism with seller-offer

bargaining, and show that this conclusion for the symmetric market continues to hold.

3For example, the authorities suspect that Amazon gives better visibility and search rankings to sellers that pay

to use its ads and fulfillment network for shipping products. (“How Each Big Tech Company May be Targeted by

Regulators,” Jack Nicas, Karen Weise, and Mike Isacc, New York Times, September 8, 2019.)
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We show that this model restores PAM as the optimal matching rule, and hence eliminates the

aforementioned efficiency distortion. On the other hand, the optimal mechanism extracts full

informational rents from the subscribers when the market is symmetric. Put differently, outcome-

based pricing achieves first-best efficiency, but leads to a heavily skewed welfare distribution, which

can be a source of concern for the regulation authorities.

In light of the prevalence of one-to-many matchings in the real world, we next turn to the

analysis of an auction platform which matches each seller with two buyers. This model explicitly

introduces within-match competition between agents on the same side as often observed in reality,

and departs from the literature that discusses the negative externalities between agents on the same

side of the market at the subscription stage.4 In this model, each seller has two types which now

represent the quality of the good they possess. Each buyer, which is one of two valuation types

as in the baseline model, competitively bids for the good of the matched seller upon observing its

quality. We consider both the first-price and second-price auction as sales formats, and derive the

optimal mechanism. In the case of the first-price auction, a high-valuation bidder randomizes his

bid in BNE, and the distribution of his bids is higher in the sense of stochastic dominance when

he believes that the other buyer is also a high-valuation type. We show that the optimal matching

rule does not depend on the auction format but is different from PAM. Under the optimal matching

rule, a high-quality seller is matched with high-valuation buyers more often than a low-quality seller

is, and a high-valuation buyer is matched with a high-quality seller more often than a low-valuation

buyer is. Unlike PAM, however, the optimal matching rule does not maximize the probability that

a high-quality seller is matched with a pair of high-valuation buyers. Instead, we show that the

optimal rule has an interesting assortative property: First, it entails negative assortative matching

(NAM) between two buyers so that a high-valuation buyer is matched with a low-valuation buyer to

the maximal extent. Second, subject to the NAM property of matching between buyers, it entails

PAM between a seller and a pair of buyers so that a high-quality seller is matched with a high-high

buyer pair as much as possible, and then matched with a high-low buyer pair as much as possible.

Unlike in our baseline trading model, we show that this optimal matching rule is also first-best

efficient: While NAM between buyers is again a consequence of the platform’s rent extraction from

high-valuation buyers, it does not result in allocative distortion since having them win as much as

possible is in line with social efficiency.

The paper is organized as follows. In Section 2, we discuss the related literature. Section 3

introduces a model of a trading platform, and Section 4 presents a benchmark case of non-strategic

interaction commonly discussed in the literature. A characterization of an optimal matching mech-

anism is given in Section 5 under the buyer-offer bargaining protocol. Section 6 discusses the

implications of outcome-based pricing. Analysis of a model of an auction platform is presented in

Section 7. We conclude with a discussion in Section 8. The Appendix collects all the proofs as well

as some extensions of the baseline model.

4For example, the larger the number of buyers, the smaller is the chance that they can be matched with sellers.

See for example Belleflamme & Peitz (2019) for the discussion of negative externalities.
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2 Related Literature

The key component of the matching models in the literature is a production function, which deter-

mines the value of a match to each member as a function of their types. The critical observation by

Becker (1973) is that when the production function is supermodular on the set of agents’ type pro-

files, the match allocation is in the core if it entails positive assortative matching (PAM), whereby

the highest type on one side is matched with the highest type on the other side, the second-highest

type is matched with the second-highest type, etc. Legros & Newman (2002) identify a condition on

the production function weaker than supermodularity for PAM to be the core outcome, and Legros

& Newman (2007) establish a sufficient condition for PAM to be in the core in an environment

without full transferability of payoffs between the matched agents. Shimer & Smith (2000) show

that the supermodularity of a production function is necessary but not sufficient for PAM to be

the equilibrium outcome of a search model where each agent engages in continuous-time search for

his partner.

The use of an exogenously specified production function for each agent is maintained in the

literature on platforms that match agents with private types. Damiano & Li (2007) and Hoppe

et al. (2011) study matching of agents with heterogeneous quality in two-sided markets when the

match quality is the product of the qualities of its members (and hence supermodular), and Gomes

& Pavan (2016) study efficient as well as profit-maximizing platforms for non-exclusive many-to-

many matching in a two-sided market when the value of a match to an agent is the product of his

value type and the average salience type of the matched agents. Board (2009) considers the problem

of grouping agents with variable qualities, and identifies a profit maximizing group structure under

various assumptions on the form of the production function.5 In our model, aggregate surplus

generated by trading within a match is a function of the types of the matched agents, but the

division of surplus is determined endogenously in equilibrium. Specifically, the matched agents

play a Bayesian equilibrium of a non-cooperative game, and the distribution of their types in each

match is controlled by the matching rule of the platform.

Strategic interactions among subscribing agents are studied by Tamura (2016) and Birge et al.

(2019) in models of monopolistic trading platforms. Tamura (2016) considers a platform that

matches a single seller with multiple buyers when the seller is privately informed about the quality

of his good, and the buyers’ private types are affiliated with the quality. Tamura (2016) assumes

that the platform offers a single subscription price to each side of the market, and shows that

its subscription revenue is higher under the first-price auction than under the second-price auc-

tion. Birge et al. (2019) consider a platform that matches sellers and buyers one-to-one under the

constraint that some type pairs are not feasible. When the agents’ types are public, Birge et al.

(2019) show that uniform pricing is suboptimal, and evaluate the optimal subscription revenue

from discriminatory pricing under complete information. Unlike these models, our model features

screening of privately informed agents through discriminatory pricing and matching. Furthermore,

we present explicit characterizations of optimal matching mechanisms in the presence of strategic

interactions among subscribers.

5Marx & Schummer (2019) focus on the stability of the matching rule when agents have heterogeneous preferences

over other agents on the other side of the market, and study the optimal mechanism that offers a single price for each

side.
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It is possible to interpret our model as one of information design by a platform. In the infor-

mation design literature, a principal controls the type distribution of each player so as to maximize

his own payoff. In the Bayesian persuasion model of Kamenica & Gentzkow (2011), for example,

a principal controls the distribution of signals about the state of the world that a decision maker

observes, and attempts to maximize the probability with which the decision maker chooses the

action preferred by the principal. In the multi-player information design model of Bergemann &

Morris (2016), a principal likewise controls the distribution of signals about the state which are pri-

vately observed by the players. The principal in this case attempts to induce the (Bayes) correlated

equilibrium of the game that is most preferable to him. In the present setting, the matching rule

of the platform also controls the type distribution of the agents in the trading game, and is used to

induce the Bayesian equilibrium that would maximize the subscription revenue. The key difference

is that while the principal in models of information design generates information and reveals it to

the agents, the platform in our model collects information from the agents: The matching rule and

subscription fees are chosen so that they induce truth-telling in reporting of private signals by the

agents.

3 Model of a Trading Platform

The market consists of two sides A and B as well as a monopolistic provider of a trading platform.

The side A is a unit mass of sellers of an indivisible good, and the side B is a unit mass of buyers of

the good. Each seller has a single unit of the good and each buyer has a unit demand for the good.

An agent on either side has access to another agent on the other side only through subscription

to the platform. Specifically, the platform sets fees for subscription, and then forms a one-to-one

match between a subscribing seller and a subscribing buyer. A seller’s cost of providing the good is

denoted α, and a buyer’s valuation is denoted β. The types α and β are private information of the

agents, and are randomly drawn from the binary sets A = {α1, α2} and B = {β1, β2}, respectively.6

We suppose that the types are overlapped α1 < β1 < α2 < β2 so that no efficient transaction is

feasible when a match involves a type β1 buyer and a type α2 seller (Figure 1). For simplicity, we

assume that

α1 = 0, α2 = 1, β1 = γ, and β2 = 1 + γ for γ ∈ (0, 1).7

A seller is type αi with probability λi ∈ (0, 1) and a buyer is type βi with probability µi ∈ (0, 1)

for i = 1, 2. The type realizations are independent across agents so that we may identify λi as the

proportion of type αi sellers on side A, and µi as the proportion of type βi buyers on side B.

Once matched, a seller and buyer play a trading game. In the main body of analysis, we suppose

that this trading game takes the form of a take-it-or-leave-it offer from the buyers. More generally,

however, we can express it as a double-auction in which both players simultaneously submit bids.

Let zA and zB denote a seller’s and a buyer’s bids, respectively, and z = (zA, zB) be the bid

profile. The transaction is consummated if and only if zB ≥ zA, and the transaction price equals

6Note that the symbols A and B are used to denote the sides of the market as well as the sets of types of agents

on each side.

7The argument goes through with no qualitative change without this simplification.
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α1 = 0 α2 = 1

β2 = 1 + γβ1 = γ

B

A

Figure 1: Costs and valuations

k(z) ≡ kzA + (1 − k)zB for some constant k ∈ [0, 1]. Accordingly, under the bid profile z ∈ R2
+,

the payoff gA(z, α) of a seller of type α, and the payoff gB(z, β) of a buyer of type β in the trading

game are given by

gA(z, α) =

{
k(z)− α if zA ≤ zB

0 otherwise,
and gB(z, β) =

{
β − k(z) if zA ≤ zB

0 otherwise.

In our main scenario of buyer-offer bargaining with sequential moves, we can set k = 0 so that

the transaction price always equals the buyer’s bid: k(z) = zB. In this case, the weakly dominant

response by a seller of cost type α is to accept if and only if zB ≥ α.8

Note that there is surplus from trade unless a high-cost seller (α2) is matched with a low-

valuation buyer (β1). If we denote by

f(α, β) = (β − α)1{β>α} (1)

the aggregate surplus of trade when a type α seller is matched with a type β buyer, then f is

supermodular since it satisfies

f(α1, β2) + f(α2, β1) = β2 − α1 > (β2 − α2) + (β1 − α1) = f(α2, β2) + f(α1, β1).
9 (2)

Formally, the matching mechanism Γ of the platform consists of a matching rule p, a pricing rule

k, a transfer rule t = (tA, tB), and a strategy profile σ = (σA, σB) of the trading game as follows.

First, the matching rule p specifies the distribution of type profiles of matched agents. For each

α ∈ A and β ∈ B, pij ≡ p(αi, βj) is the proportion of the type pair (αi, βj). Denote by P the set

of feasible matching rules:

P ≡ {p ∈ ∆(A×B) :
2∑

i=1

pij = µj for j = 1, 2, and
2∑

j=1

pij = λi for i = 1, 2}.

Given the matching rule p ∈ P , we denote by pA(α | β) the probability that a buyer with the

reported type β is matched to a seller with the reported type α, and by pB(β | α) the probability

that a seller with the reported type α is matched to a buyer with the reported type β. We have

pB(βj | αi) =
pij∑
j′ pij′

and pA(αi | βj) =
pij∑
i′ pi′j

.

8In the Appendix, we analyze the trading game with seller-offer bargaining. This corresponds to setting k = 1 or

k(z) = zA.

9We consider the partial ordering over the set of type profiles (α, β) that is induced by α2 ≺ α1 and β1 ≺ β2.
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As will be seen, these conditional probabilities determine the agents’ incentives in the reporting

stage, and are the primary objects of our analysis. Since pA(α1 | β1) and pA(α1 | β2) are conditional
probabilities, they must satisfy

µ1pA(α1 | β1) + µ2pA(α1 | β2) = λ1. (3)

Conversely, as long as (pA(α1 | β1), pA(α1 | β2)) satisfies (3), we can recover a feasible matching

rule p ∈ P as seen in the following lemma. This allows us to use (pA(α1 | β1), pA(α1 | β2)) and p

exchangeably.

Lemma 3.1 For any (pA(α1 | β1), pA(α1 | β2)) ∈ [0, 1]2 that satisfies (3), there exists p ∈ P .

We refer to (3) as the Bayes plausibility condition following Kamenica & Gentzkow (2011), who

use the terminology for the corresponding condition in their analysis of Bayesian persuasion.10

The pricing rule k and matching rule p together determine the Bayesian game played by a

pair of matched agents. The strategy profile σ = (σA, σB) specified by Γ is a (pure) Bayes Nash

equilibrium (BNE) of the incomplete information game that follows truthful reporting by both

agents. Since the joint distribution of type profiles equals p in this game, σ should satisfy

πA(σ, α) ≡
∑
β∈B

pB(β | α) gA(σA(α), σB(β), α) ≥
∑
β∈B

pB(β | α) gA(zA, σB(β), α)

for any zA ≥ 0 and α ∈ A,

and

πB(σ, β) ≡
∑
α∈A

pA(α | β) gB(σA(α), σB(β), β) ≥
∑
α∈A

pA(α | β) gB(σA(α), zB, β)

for any zB ≥ 0 and β ∈ B.

Unless otherwise noted, we let σ denote the BNE of the buyer-offer bargaining game in which the

seller accepts the buyer’s offer if and only if it is greater than or equal to his cost.11

Finally, the transfer rule t = (tA, tB) determines the payment from the agents to the platform:

tA(α) is the payment required from a seller whose reported type is α, and tB(β) is the payment

required from a buyer whose reported type is β.

The matching mechanism Γ is incentive compatible (IC) if no unilateral deviation in reporting

and action choice is profitable:

πA(σ, α)− tA(α) ≥
∑
β∈B

pB(β | α′) gA(zA, σB(β), α)− tA(α
′)

for every α, α′ ∈ A and zA ≥ 0,

10It can be readily verified that it is suboptimal for the platform to leave some agents unmatched in our model of

a trading platform.

11In general, when there exists a unique BNE in the game on the path of play after truthful reporting, the

specification of σ is redundant. Note that there exist other BNE’s in the buyer-offer bargaining game in which the

seller chooses a weakly dominated action. When there exist multiple BNE, the agents understand that they play

σ as suggested by the mechanism. Specifying a particular σ is equivalent to a revelation-suggestion mechanism as

proposed by Myerson (1982), which gives each agent an instruction on which bid to submit as a function of their

reported type. The mechanism then should induce honesty and obedience so that the agents find it optimal to obey

the instructions after truthful reporting.
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and

πB(σ, β)− tB(β) ≥
∑
α∈A

pA(α | β′) gB(σA(α), zB, β)− tB(β
′)

for every β, β′ ∈ B and zB ≥ 0.

Γ is individually rational (IR) if truthful reporting yields at least as much as the reservation utility,

which is normalized to zero:

πA(σ, α)− tA(α) ≥ 0 for every α ∈ A, and

πB(σ, β)− tB(β) ≥ 0 for every β ∈ B.

The platform’s subscription revenue R(Γ) under the mechanism Γ equals the sum of revenue from

both sides of the market:

R(Γ) =
2∑

i=1

λitA(αi)︸ ︷︷ ︸
revenue from sellers

+

2∑
j=1

µjtB(βj)︸ ︷︷ ︸
revenue from buyers

.

A matching mechanism Γ is optimal if it maximizes revenue subject to the IC and IR conditions.

When the mechanism Γ is IC and IR, its efficiency is defined by

W (Γ) =
∑
i, j

(βj − αi) pij 1{σA(αi)≤σB(βj)}. (4)

A matching rule p is (positively) assortative (PAM) if it matches the low-cost sellers with the

high-valuation buyers as much as possible: p ∈ argmaxp̂∈P p̂A(α1 | β2), or equivalently,

(pA(α1 | β1), pA(α1 | β2)) =

{
(λ1−µ2

µ1
, 1) if λ1 > µ2

(0, λ1
µ2
) if λ1 ≤ µ2.

(5)

Note that matching low-cost sellers and high-valuation buyers one-to-one is physically infeasible

unless the market is symmetric in the sense that the proportion of low-cost sellers equals that of

high-valuation buyers (i.e., λ1 = µ2). In a symmetric market, on the other hand, (5) implies that

PAM creates no mismatch. In the literature, PAM is widely associated with both social efficiency

and optimality from the platform’s perspective. In our model, it is also intuitive and readily verified

that PAM maximizes the aggregate surplus from transactions as formally stated in the following

proposition.

Proposition 3.1 If the matching rule p maximizes
∑

i,j pij(βj − αi)1{βj>αi}, then it is PAM.

Furthermore, the maximal social surplus equals

W ∗ =

{
γλ1 + µ2 if λ1 ≥ µ2,

γµ2 + λ1 if λ1 < µ2.
(6)

Proposition 3.1 shows that if a matching mechanism Γ entails PAM, it achieves social optimum.

The only question in that case would be how it distributes welfare between the agents and the

platform. On the other hand, if Γ entails matching rule other than PAM, it implies efficiency

distortion.
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4 Non-Strategic Interaction

As discussed in the Introduction, it is standard in the platform literature to exogenously specify the

production function for each agent, which determines the value of a match to them as a function of

their types. Exogenously specifying a production function amounts to exogenously specifying the

outcome of interaction between matched agents. In this section, we replicate such an argument by

supposing that each agent non-strategically bids his own type in the trading game. Recalling that

the transaction price equals k(z) = kzA+(1−k)zB for some k ∈ [0, 1], we can write the production

function for each agent as

fA(α, β) =

{
(1− k)(β − α) if β > α,

0 otherwise,
and fB(α, β) =

{
k(β − α) if β > α,

0 otherwise.
(7)

Since fA = (1 − k) f and fB = kf for the aggregate surplus f defined in (1), both fA and fB are

supermodular by (2). The following proposition shows that the optimal mechanism entails PAM.

Proposition 4.1 (Optimal matching under non-strategic interaction) Suppose that the agents’

match values are given by (7). If Γ is an optimal mechanism, then p is PAM, and the associ-

ated revenue is given by

R(Γ) =

{
k
µ1

{γ(λ1 − µ2) + λ2µ2}+ (1− k)µ2 if λ1 ≥ µ2,
1−k
λ2

{γ(µ2 − λ1) + λ1µ1}+ kλ1 if λ1 < µ2.
(8)

In particular, when the market is symmetric (λ1 = µ2), R(Γ) = λ1 = µ2.

Note that the optimality of PAM is consistent with the findings in the literature on profit max-

imizing platforms under the assumption of a supermodular production function for each agent.12

5 Strategic Interaction

We now return to our main setup where the matched agents play strategically in the trading game.

The BNE payoff of this game will determine their incentives in the reporting stage. As mentioned

earlier, we will focus on the trading game in which a buyer makes a take-it-or-leave-it offer (i.e.,

k(z) = zB for every z), and consider the BNE σ = (σA, σB) of this game (after truthful reporting

by both agents) in which the seller of cost type α plays the weakly dominant strategy of accepting

the offer zB if and only if zB ≥ α. This implies that σA(α) = α for every α. σB is a best response

against σA specified as follows. Let z∗B(β, p̃A) be the seller’s optimal bid against σA when his true

type is β, and his belief about the type of the matched seller is given by p̃A:

z∗B(β, p̃A) ∈ argmaxzB∈R+

∑
α∈A

p̃A(α) gB((σA(α), zB), β).

12As another non-strategic benchmark, we may consider a mechanism which chooses the allocation and price of

the good based on the reported types of the matched agents. It can be shown that the optimal matching rule in such

a mechanism is also PAM for any type distribution of agents.
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Explicitly, z∗B(β, p̃A) can be written as

z∗B(β, p̃A) =

{
α1 if β = β1, or if β = β2 and p̃A(α1) ≥ β2−α2

β2−α1
= γ

1+γ ,

α2 if β = β2 and p̃A(α1) <
β2−α2

β2−α1
= γ

1+γ .

In other words, the only viable bid for the low-valuation buyer β1 is α1, whereas the optimal bid for

the high valuation buyer β2 varies with his belief about the type of the matched seller: He either

bids α1 and has the low-cost seller accept it, or bids α2 and has both seller types accept it. After

truthful reporting, his belief is given by p̃A = pA(· | β) so that the BNE strategy σB can be defined

by

σB(β) = z∗B(β, pA(· | β)) for every β.

The agents play the BNE σ = (σA, σB) of the trading game after truthful reporting.

Characterization of an optimal mechanism requires the introduction of matching rules different

from PAM. First, a matching rule p is random (RM) if it ignores the agents’ types: p(αi, βj) = λiµj

(i, j = 1, 2), or equivalently,

(pA(α1 | β1), pA(α1 | β2)) = (λ1, λ1).

A matching rule p is B-squeeze (BSM) if the distribution of seller types faced by a low-valuation

buyer β1 equals the threshold value γ
1+γ for the high-valuation buyer. In other words, when a

high-valuation buyer β2 misreports his type as β1 in the subscription stage, then in the trading

game, his expected surplus γ from the high offer (α2) is exactly the same as his expected surplus

pA(α1 | β1)(1+ γ) from the low offer (α1). Formally, when (1+ γ)λ1 + µ1 ≤ 1+ γ, a matching rule

p is BSM if

(pA(α1 | β1), pA(α1 | β2)) =
(

γ

1 + γ
,
λ1

µ2
− µ1

µ2

γ

1 + γ

)
.

We can verify that pA(α1 | β1) ≤ pA(α1 | β2) ≤ 1 if and only if (1 + γ)λ1 + µ1 ≤ 1 + γ, and

λ1 ≥ γ
1+γ . In other words, the probability that a type β2 buyer is matched with a type α1 seller is

higher than the probability that a type β1 buyer is matched with α1. Unlike PAM, however, BSM

does not maximize the probability that β2 is matched with α1.

The characterization of the optimal mechanism is given by the following proposition and is

illustrated in Figure 2.

Proposition 5.1 Suppose that Γ is an optimal matching mechanism with buyer-offer bargaining.

Then its matching rule p and revenue R(Γ) are given as follows.

a. If (1 + γ)λ1 + µ1 > 1 + γ, then p is PAM and R(Γ) = (1 + γ)λ1 − λ1−µ2

µ1
.

b. If µ1 >
γ

1+γ , λ1 + γµ1 > γ, and (1 + γ)λ1 + µ1 ≤ 1 + γ, then p is PAM and

R(Γ) =

{
λ1−µ2

µ1
γ + µ2 if λ1 ≥ µ2,

(1 + γ)λ1 − µ2γ otherwise.

c. If λ1 >
γ

1+γ , (1+ γ)λ1+µ1 ≤ 1+ γ, and µ1 ≤ γ
1+γ , then p is BSM and R(Γ) = λ1(1+ γ)− γ

1+γ .

d. If λ1 ≤ γ
1+γ and λ1 + γµ1 ≤ γ, then p is RM and R(Γ) = γλ1.

11



Proposition 5.1 shows the existence of markets in which PAM is suboptimal and hence optimality

diverges from social efficiency. This presents a sharp contrast with the prevailing intuition in the

literature based on non-strategic interactions between subscribers.

γ
1+γ

γ
1+γ

0 λ1

µ1

1

1

γ

1 + γ

PAM

BSM
RM

(1 + γ)λ1 + µ1 = 1 + γ

λ1 + γµ1 = γ

Figure 2: Optimal Matching with Buyer-Offer Bargaining

As mentioned in the Introduction, the suboptimality of PAM is a direct consequence of the

strategic interactions between the subscribing agents. To see this, consider first the optimality of

BSM. As is standard in the screening models, the IR condition for the type β1 buyers and the

IC condition for the type β2 buyers bind. Hence, the transfer tB(β1) for β1 equals his expected

surplus from trade: tB(β1) = pA(α1 | β1) (β1 −α1) = pA(α1 | β1)γ. On the other hand, the surplus

from trade for type β2 after misreporting is given by pA(α1 | β1) (β2 − α1) = pA(α1 | β1)(1 + γ) if

pA(α1 | β1) ≥ γ
1+γ (from the offer α1 accepted only by α1), and β2 − α2 = γ if pA(α1 | β1) ≤ γ

1+γ

(from the offer α2 accepted by both seller types). Since β2’s IC condition is binding, his payoff

from subscription with truth-telling equals the payoff he would obtain by misreporting:

πB(σ, β2)− tB(β2) =

{
γ − tB(β1) = (1− pA(α1 | β1))γ if pA(α1 | β1) ≤ γ

1+γ ,

pA(α1 | β1)(1 + γ)− tB(β1) = pA(α1 | β1) if pA(α1 | β1) ≥ γ
1+γ .

As indicated in the right panel of Figure 3, this surplus is minimized when pA(α1 | β1) = γ
1+γ . When

the proportion µ2 of type β2 is sufficiently high in the population (i.e., µ2 ≥ 1
1+γ ⇔ µ1 ≤ γ

1+γ is low),

hence, the platform finds it optimal to squeeze their informational rents by setting pA(α1 | β1) = γ
1+γ

(and then choosing pA(α1 | β2) to satisfy Bayes plausibility).13

13We can think of tB(β1) as the base price and tB(β2) − tB(β1) as a markup required for type β2. Use of BSM

corresponds to keeping the base price relatively high and the markup relatively low (so as to minimize the informational

rents of β2). On the other hand, when µ1 > γ
1+γ

, BSM is dominated by PAM, which corresponds to minimizing
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Consider next the optimality of RM. When the proportion λ1 of low-cost sellers (α1) in the

population is low, the probability that type β2 is matched with α1 cannot be high, and hence type

β2 should optimally bid α2 regardless of whether he reports his type truthfully or not. With IC for

β2 binding, however, we have πB(σ, β2)−tB(β2) = γ−tB(β2) = γ−tB(β1) so that the buyer transfer

must be independent of the report: tB(β1) = tB(β2). This further implies that the matching rule

must also be independent of the reported type, and hence that only RM is feasible.

In the non-strategic benchmark of Section 4, the situation is different. As can be readily seen,

the surplus of type β2 in this benchmark is an increasing linear function of pA(α1 | β1) (the left

panel of Figure 3). It then follows that β2’s surplus is minimized when pA(α1 | β1) is minimized.

The optimality of PAM hence follows.

pA(α1 | β1)

pA(α1 | β1)kγ

k{pA(α1 | β1) + γ}

0 1

pA(α1 | β1)

pA(α1 | β1)γ

pA(α1 | β1) (1 + γ)

γ

0 1
γ

1+γ

Figure 3: Informational rent of a type β2 buyer in the non-strategic (left) and strategic (right)

interaction

The following corollary to Proposition 5.1 identifies the optimal matching rule in a symmetric

market in which the proportion of low-cost sellers equals that of high-valuation buyers: λ1 = µ2.

Corollary 5.1 Suppose that the market is symmetric with λ1 = µ2 = d. Then the optimal mech-

anism Γ with buyer-offer bargaining entails PAM and yields d if d ≤ 1
1+γ , and BSM and yields

d(1 + γ)− γ
1+γ if d > 1

1+γ .

Since a symmetric market allows one-to-one matching between low-cost sellers and high-valuation

buyers under PAM, it is striking to observe that it is dominated by BSM when the proportion of

those types is high. In such a market, efficiency distortion is caused by optimal creation of mis-

matches by the platform.14

Given that the optimal mechanism is not always first-best efficient, is it second-best efficient

in the sense that it maximizes the surplus from trade between the sellers and buyers subject

the base price and maximizing the markup (while leaving higher informational rents to β2). Intuitively, when µ1 is

high, keeping the base price tB(β1) = pA(α1 | β1)γ above its minimum level is too costly given the Bayes plausibility

condition µ1pA(α1 | β1) + µ2pA(α1 | β2) = λ1.

14Combining Proposition 4.1 and Corollary 5.1 reveals another interesting fact. Recall from Proposition 4.1 that

for any value of d = λ1 = µ2, the platform’s optimal revenue under non-strategic interaction equals d (as under PAM

in Corollary 5.1). Hence, the maximal revenue under BSM under strategic interactions is higher than the maximal

revenue with PAM under non-strategic interactions when d > 1
1+γ

.
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to the agents’ incentive constraints? In order to answer this question, we consider the efficient

mechanism in the class of IC and IR mechanisms. Specifically, the second-best mechanism Γ

maximizes max W (Γ) subject to the IC an IR constraints when the agents play the BNE σ specified

above in the buyer-offer bargaining game.

Proposition 5.2 Suppose that the matching mechanism Γ maximizes social welfare in the class of

IC and IR mechanisms with buyer-offer bargaining. Then the associated matching rule p and the

corresponding social welfare are given by

a. If λ1 + γµ1 > γ or λ1 ≥ γ
1+γ , then p is PAM and W (Γ) =

{
γλ1 + µ2 if λ1 ≥ µ2,

(1 + γ)λ1 if λ1 < µ2.

b. If λ1 + γµ1 ≤ γ and λ1 ≤ γ
1+γ , then p is RM and W (Γ) = λ1(γ + µ2).

γ
1+γ

γ
1+γ

0 λ1

µ1

1

1

γ

1 + γ

PAM

RM

Figure 4: Second-best matching with buyer-offer bargaining

The second-best matching mechanism is illustrated in Figure 4. It can be seen from Propositions

3.1 and 5.2 that the second-best mechanism with buyer-offer bargaining is first-best efficient when

λ1 ≥ µ2. Comparing Figures 2 and 4, we also see that revenue maximization is equivalent to welfare

maximization except when the optimal mechanism entails BSM. Put differently, when the market

has a high proportion of high-valuation buyers and a medium to large proportion of low-cost sellers,

the subscription revenue is maximized at the expense of social welfare.

6 Outcome-Based Pricing

We next consider the possibility that the platform can charge subscription fees contingent on the

outcome of the trading game. Specifically, we assume that a subscription fee is contingent on the
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reported types of the agents and on whether or not the transaction takes place, but not on the

transaction price. While such a fee scheme is observed in reality, it requires a different institutional

setting from our baseline model. First, the platform needs to monitor whether or not the transaction

has actually been consummated. In particular, it should prevent secret exchange arrangements

outside the system.15 Second, the platform needs to enforce the payment of the fee even after the

transaction. With the requirement of interim individual rationality as assumed elsewhere in the

paper, it is clear that the optimal mechanism with outcome-contingent subscription fees generates

a weakly higher revenue than the optimal mechanism in the baseline model since information about

the transaction can always be ignored. The following proposition shows that the optimal outcome-

contingent mechanism with buyer-offer bargaining entails PAM, and strictly dominates the optimal

mechanism Γ of Proposition 5.1 in the baseline model when Γ entails non-PAM matching rules.16

Denote by tA(α) and tB(β) the transfer payments required of a type α seller and a type β buyer,

respectively, when there is a successful transaction.17

Proposition 6.1 Suppose that the transfer can be contingent on the outcome of the transaction.

If Γ̃ is an optimal mechanism with buyer-offer bargaining that entails no transfer from sellers ( i.e.,

tA(α1) = tA(α2) = 0), then the associated matching rule is PAM, and the revenue is equal to

R(Γ̃) =

{
λ1(1 + γ) if λ1

µ2
≤ 1,

λ1(1 + γ)− λ1−µ2

µ1
if λ1

µ2
> 1.

(9)

Furthermore, R(Γ̃) = R(Γ) if (1 + γ)λ1 + µ1 ≥ 1 + γ, and R(Γ̃) > R(Γ) otherwise.

Comparison of Propositions 3.1 and 6.1 shows that Γ̃ extracts the full social surplus when

the market is symmetric (i.e., λ1 = µ2). The resurgence of PAM as the optimal matching rule

in Proposition 6.1 is a consequence of changes in the agents’ strategic incentives induced by the

outcome-contingent fees. Specifically, for a high-valuation buyer (β2), the surplus expected from

a high bid α2 and an aggressive bid α1 depends on the transfer payment required in the event of

a successful transaction. The platform finds it optimal to induce type β2 to bid α1 whether he

reports his type truthfully or not: When λ1 ≤ µ2, for example, the optimal fee for type β2 equals

tB(β2) = β2−α1 = 1+γ, inducing type β2 to bid α1 after truthful reporting. Misreporting by β2 is

prevented by never matching β1 with α1 (i.e., pA(α1 | β1) = 0), and setting tB(β1) = β2 − α2 = γ.

Minimization of pA(α1 | β1) is equivalent to the use of PAM. The outcome-based pricing hence

eliminates efficiency distortion, but induces a heavily unbalanced distribution of welfare.

15For example, information about the agents’ addresses need to be withheld so that physical trading of the good

will not be possible until after the payment is made.

16Note that the optimal rule in the baseline model is non-PAM if (1 + γ)λ1 + µ1 < 1 + γ.

17Positive subscription fees only in the event of a successful transaction ensure that the mechanism satisfies the

stronger requirement of ex post individual rationality. The proposition also assumes that no subscription fee is

required from a seller for simplicity. Consideration of a subscription fee for a seller with buyer-offer bargaining

complicates the analysis substantially with little added insight.

15



7 Auction Platform

Many platforms in reality match a single agent on one side of the market with multiple agents

on the other side. Unlike in our baseline model, this gives rise to another important form of

strategic interaction where agents from the same side compete against each other. In this section,

we formulate one such model by supposing that the platform matches two buyers with a single

seller and lets them competitively bid for the seller’s good.

Suppose that side A has a mass of sellers indexed by numbers in [0, 1], whereas side B has a

mass of buyers indexed by numbers in [0, 2]. Each seller is endowed with a single unit of a good of

quality α, which represents his type: The good is either high quality α2 or low quality α1.
18 Each

buyer has a unit demand for the good, and has type β that reflects his valuation of the good: The

type is either high β2 or low β1. For a buyer of type β, the value of the good of quality α is given

by v(α, β). Denote

v11 = v(α1, β1), v12 = v(α1, β2), v21 = v(α2, β1), and v22 = v(α2, β2).

We assume that v has increasing differences in the sense that

0 ≤ ∆1 ≡ v12 − v11 < v22 − v21 ≡ ∆2. (10)

Equivalently, the marginal increase in utility in response to an increase in quality is higher for the

high-valuation buyer than for the low-valuation buyer. The seller’s valuation of the good equals

zero regardless of its quality.19 Each seller is type αi with probability λi and each buyer is type

βi with probability µi. The type realizations are independent across agents so that we may again

identify λi as the proportion of type αi sellers in side A, and µi as the proportion of type βi buyers

on side B. We assume that when matched with a seller, buyers observe the quality α of the seller’s

good.

Matching between a seller and two buyers is implemented through the allocation of buyers

to two buyer slots: A buyer with index k ≤ 1 is allocated to the first slot while a buyer with

index k > 1 is allocated to the second slot.20 A matching rule p = (p111, . . . , p222) is a probability

distribution over A× B2: pijk (i, j, k ∈ {1, 2}) is the probability that any given match involves a

seller of type αi along with a buyer of type βj in the first slot, and a buyer of type βk in the second

slot. We assume that the platform treats the two buyer slots symmetrically:

pijk = pikj for any i, j, k ∈ {1, 2}. (11)

The matching rule p must also be consistent with the type distribution in the population:

p111 + 2p112 + p122 = λ1 ⇔ p211 + 2p212 + p222 = λ2,

p111 + p112 + p211 + p212 = µ1 ⇔ p121 + p122 + p221 + p222 = µ2.
(12)

18Uncertainty about the quality of the sellers’ good is also assumed in Tamura (2016).

19It follows that the aggregate surplus from trade in a match involving seller of type αi and buyers of types βj and

βk can be written as f(αi, βj , βk) = max {vij , vik}. (10) is not consistent with the supermodularity of f which would

require v12 − v11 = v22 − v21 = 0 when the ordering on the domain of f is induced by α1 ≺ α2 and β1 ≺ β2.

20Given the independence of type realizations, we may assume that the type distributions of buyers are the same

between the first and second intervals.
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(12) is a version of the Bayes plausibility conditions when every seller is matched with two buyers.

The set P of feasible matching rules is hence given by

P = {p ∈ A×B2 : p satisfies (11) and (12)}.

We suppose that each seller sells his good to the matched buyers through a first-price auction:

Each buyer submits a sealed bid and pays the price equal to his bid in the case of winning. Consider

now the game on the path where both buyers have reported their types truthfully. In this game,

the joint distribution of type profiles is given by p. Let σB(β | α) denote the BNE bidding strategy

of a type β buyer in this game when the quality of the seller’s good equals α. By the standard

argument, a low valuation buyer (β1) bids his value vα1: σB(β1 | α) = vα1. On the other hand, a

high valuation buyer (β2) randomizes his bid. The cumulative distribution Gα of β2’s random bid

has support [vα1, b̄α] for some b̄α. In the Appendix, we show that b̄α and Gα are given by

bα = Pr(β1 | α, β2)vα1 + Pr(β2 | α, β2)vα2,

and

Gα(b) =
Pr(β1 | α, β2)
Pr(β2 | α, β2)

(
b− vα1
vα2 − b

)
=

pα12
pα22

(
b− vα1
vα2 − b

)
.

As seen, a high-valuation buyer’s BNE bidding strategy σ(β2 | α) depends on his belief about the

type of the other buyer in his match. Specifically, when his belief places more weight on the other

buyer being also the high-valuation type (β2), the distribution of his bid is higher in the sense of

stochastic dominance.

To solve for the optimal matching mechanism, we first note that since a type β2 bidder is

indifferent over bids in the support of Gα, his BNE payoff in the game with a type α seller is

given by Pr(β1 | α, β2) (vα2 − vα1), which he would obtain by bidding slightly above vα1. When

he misreports, his expected payoff is likewise given by Pr(β1 | α, β1) (vα2 − vα1). For a type β1
seller, his expected payoff equals zero whether or not he reports truthfully. These considerations

give rise to the incentive conditions for the buyer. On the other hand, a seller’s expected payoff

after truthful reporting as well as misreporting can be computed from the expected payment by a

buyer.21

Note that PAM in this model would create a pair of high-valuation buyers as much as possible,

and also match a high-quality seller with a pair of high-valuation buyers as much as possible. It

turns out, however, that the optimal mechanism does not entail PAM in this sense. Instead, it is

a variation of assortative matching as follows. We say that p entails negative assortative matching

(NAM) between buyers if it matches a high type buyer with a low type buyer as much as possible,

and vice versa:

p ∈ PNAMBB ≡ argmax {p̂B(β1 | β2) : p̂ ∈ P},

where pB(βj | βk) =
∑

i pijk∑
i,j′ pij′k

is the probability that a type βk buyer is matched with a type βj

buyer. Next, p is PAM between a seller and a buyer pair subject to NAM between buyers if among

those rules in PNAMBB, it first maximizes the probability that a type α2 seller is matched with the

21The buyer’s IC and IR conditions are described by (30) and (31) in the Appendix whereas the corresponding

conditions for the seller are given by (34) and (35).
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buyer type pair (β2, β2), and then maximizes the probability that α2 is matched with the buyer

type pair (β1, β2):

p ∈ argmax {p̂BB(β1, β2 | α2) : p̂ ∈ P 1}, where P 1 ≡ argmax {p̂BB(β2, β2 | α2) : p̂ ∈ PNAMBB}.

The following proposition shows that the optimal matching rule combines PAM and NAM in the

sense described above.

Proposition 7.1 Suppose that the good is traded through a first-price auction. Then the matching

rule p under the optimal mechanism Γ entails PAM between a seller and a buyer pair subject to

NAM between buyers.

The intuition behind NAM between buyers is as follows. As before, the IC condition for a type

β2 buyer is binding so that

πB(σ, β2)− tB(β2) =
∑
α

{
Pr(α, β1 | β1) (vα2 − vα1) + Pr(α, β2 | β1) · 0

}
− tB(β1),

=
∑
α

Pr(α, β1 | β1)∆α − tB(β1),

where the right-hand side is β2’s payoff when he misreports his type as β1. It follows that β2’s

informational rent is minimized when pB(β1 | β1) =
∑

α Pr(α, β1 | β1) is minimized, or equivalently,

when pB(β2 | β1) is maximized as entailed by NAM between buyers.

Suppose now that the platform instead uses the second-price auction as the trading game. It is

then a weakly dominant strategy for a buyer to bid his true valuation. We hence specify σB as

σB(β | α) = v(α, β) for every (α, β).22

Unlike in the first-price auction, a buyer’s belief does not influence his bidding behavior. As can be

verified, however, the expected payoff of a buyer of each type is equal to that under the first-price

auction, and so is the seller’s expected payoff. It follows that the platform’s problem is unchanged,

and the optimal matching mechanism under the second price auction is the same as that under the

first-price auction.

Proposition 7.2 Suppose that the good is traded through the second-price auction. The matching

rule p under the optimal matching mechanism Γ is the same as that in Proposition 7.1 for the

first-price auction.

We next examine the welfare implication of the optimal matching mechanism Γ identified in

Proposition 7.1. Note that the efficiency of Γ is expressed in terms of its matching rule p by

W (p) = p111v11 + (2p112 + p122)v12 + p211v21 + (2p212 + p222)v22.

22Denote by fB(βj ;α, βk) the value of a match to a buyer in this BNE when his own type is βj , the other bidder’s

type is βk, and the seller’s type is α. The BNE value of a match to agents is not supermodular. In fact, when a

buyer’s type changes from β1 to β2, the difference in his payoff against (α2, β2) is smaller than that against (α1, β1):

fB(β1;α2, β2)− fB(β1;α1, β1) = 0 > −(v12 − v11) = fB(β2;α2, β2)− fB(β2;α1, β1).
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Proposition 7.3 The optimal mechanism Γ of the auction platform is efficient: If p is the match-

ing rule in the optimal mechanism Γ, then p ∈ argmax {W (p̂) : p̂ ∈ P}.

The first-best efficiency of the auction platform can be understood as follows. It is efficient for a

high-valuation buyer to win the object whenever possible, and it is not efficient to match two high-

valuation buyers when it can be avoided since then one of them must lose out. The NAM property

of the optimal matching rule suggests that the optimal mechanism also avoids the head-to-head

encounter of high-valuation buyers as much as possible. Subject to this, however, it is optimal for

the high-quality good to go to a high-valuation buyer, which is also implied by the PAM property

of the optimal matching between sellers and buyer pairs. The optimal matching is hence aligned

with first-best efficiency.

8 Conclusion

The starting point of our analysis is the observation that few platforms in the real world dictate the

terms of trade between their subscribers. When the subscribers play a strategic game against each

other, we note that the value of a match created by the platform is endogenously determined by the

BNE payoff of the game. Since the BNE depends on the type distribution of the players, there is

room for the platform to manipulate the subscribers’ beliefs through its matching rule and induce

its preferred BNE. Exploration of this possibility provides new insights into the possible distortion

created by a monopolistic platform. In a model of a one-to-one trading platform, we show that the

optimal mechanism entails matching rule different from positive assortative matching (PAM) for

some type distribution in the population, and discuss that the optimality of these non-PAM rules is

a direct consequence of strategic interactions and is a source of efficiency distortion that has not been

discussed in the literature. Specifically, the BSM matching rule results from the platform’s attempt

of to extract informational rents from high-valuation buyers under the strategic interaction. With

outcome-based pricing where the subscription fees can depend not only on the agents’ reported

types but also on the outcome of a transaction, we show that the optimal mechanism restores

efficiency, but that the welfare distribution is heavily skewed with the platform extracting large

rents from the agents. In a model of an auction platform that matches each seller with two buyers,

on the other hand, we show that the optimal matching rule combines negative assortative matching

(NAM) between buyers, but PAM between a seller and a buyer pair. Although this again results

from the attempt at rent extraction by the platform, we show that this is indeed consistent with

first-best efficiency.

One important question of empirical relevance concerns whether or not potential subscribers

correctly anticipate the matching rule adopted by a platform. While correct anticipation of a

mechanism is a standard assumption in equilibrium analysis, it is interesting to observe that poten-

tial subscribers often engage in extensive investigation into the relationship between their reported

type and their expected match. For example, potential subscribers to a dating platform extensively

search for the experiences of past subscribers through various review sites, and obtain very precise

ideas about what to expect from the subscription.

There are a number of possible extensions of the model studied in this paper. For simplicity,

we have confined ourselves to the setup with binary types on each side of the market. A natural

extension in line with discriminatory pricing models in the literature would involve a continuum
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of types on each side. A clear difficulty in such a model is in the extremely large and complex

set of feasible matching rules. In our model of an auction platform, each seller is matched with

two buyers. While this creates within-match competition between the buyers, it can be combined

with competition in the subscription stage where some buyers may be left unmatched with a seller.

We will then need to consider a model in which each seller is matched with a variable number of

buyers. While our analysis focuses on a monopoly platform, we do not discuss how it has acquired

the proprietary status in the market. Monopolization can be the outcome of competition, and formal

analysis is required on if and how competition among multiple platforms leads to monopolization.

An important consideration in modeling such competition is the fact that the externalities between

agents are also determined endogenously by their equilibrium decisions.

Appendix

The Appendix consists of three sections. Section A.1 studies a model of seller-offer bargaining and

compares it with buyer-offer bargaining in the text, whereas Section A.2 discusses the BNE of the

trading game most preferred by the platform. All the proofs of the results presented in the text

are collected in Section A.3.

A.1 Seller-Offer versus Buyer-Offer Bargaining

The analysis in the previous section studies the optimal matching mechanism under the pricing rule

k(z) = zB which corresponds to buyer-offer bargaining. A natural question concerns whether or not

the platform can do better by having the sellers make offers instead. Given the symmetric nature

of the problems, we expect the answer to depend on the proportion of types on each side. We begin

by describing the optimal mechanism with seller-offer bargaining, which is expressed formally by

setting the pricing rule k(z) = zA. Let σ = (σA, σB) be the strategy profile of this game in which

a buyer plays a weakly dominant strategy of bidding his own type: σB(β) = β for every β. Given

his belief p̃B about a buyer’s type, a seller’s optimal bid is then given by

z∗A(α, p̃B) =

{
β1 if α = α1 and p̃B(β2) <

γ
1+γ ,

β2 if α = α2, or if α = α1 and p̃B(β2) ≥ γ
1+γ .

Again, the only viable bid for the high-cost (α2) seller is β2, whereas the optimal bid for the low-cost

(α1) seller is either high or low depending on his belief about the type of the matched buyer. We

specify the seller’s strategy σA by letting σA(α) = z∗A(α, pB(· | α)) for every α. The assortative and

random matching rules are as defined in the previous section.23 As a counterpart to the B-squeeze

matching rule defined in the previous section, when λ1 + (1 + γ)µ1 ≥ 1, we define a matching rule

23They can alternatively be defined in terms of z = pB(β2 | α1) and w = pB(β2 | α2): p is assortative if

(pB(β2 | α1), pB(β2 | α2)) =


(
1, µ2−λ1

λ2

)
if µ2 > λ1,(

µ2
λ1

, 0
)

if µ2 < λ1,

and random if (pB(β2 | α1), pB(β2 | α2)) = (µ2, µ2).
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p to be S-squeeze (SSM) if

(pB(β2 | α1), pB(β2 | α2)) =
(µ2

λ1
− λ2

λ1

γ

1 + γ
,

γ

1 + γ

)
.

We can verify that 1 ≥ pB(β2 | α1) ≥ pB(β2 | α2) if and only if λ1 + (1 + γ)µ1 ≥ 1 and µ1 ≤ 1
1+γ .

This rule makes a low-cost seller α1 exactly indifferent between bidding high β2 and bidding low

β1 when he faces the type distribution of a buyer intended for a high-cost seller α2, and minimizes

the informational rent of the low-cost seller by the same logic as in the case of B-squeeze matching.

Proposition A.1 Suppose that the mechanism Γ is optimal with seller-offer bargaining. Then its

matching rule p and revenue R(Γ) are given as follows.

i. If λ1 + (1 + γ)µ1 ≤ 1, then p is PAM and R(Γ) = (1 + γ)µ2 − µ2−λ1

λ2
.

ii. If λ1 ≤ 1
1+γ , γλ1 + µ1 ≤ 1, and λ1 + (1 + γ)µ1 > 1, then p is PAM and

R(Γ) =

{
µ2−λ1

λ2
γ + λ1 if λ1 ≤ µ2,

(1 + γ)µ2 − λ1γ otherwise.

iii. If λ1 >
1

1+γ , λ1 + (1 + γ)µ1 > 1, and µ1 ≤ 1
1+γ , then p is SSM and R(Γ) = µ2(1 + γ)− γ

1+γ .

iv. If µ1 >
1

1+γ and γλ1 + µ1 > γ, then p is RM and R(Γ) = γµ2.

As seen in Figure 5, the optimal configuration with seller-offer bargaining is exactly symmetric

to that with buyer-offer bargaining with respect to the diagonal line λ1 + µ1 = 1 (⇔ λ1 = µ2).

In general, comparison of performance between buyer-offer and seller-offer bargaining is not

straightforward.24 We can however verify that PAM with buyer-offer (resp. seller-offer) bargaining

dominates RM with seller-offer (resp. buyer-offer) bargaining.

Proposition A.2 Let Γ be an optimal mechanism with either seller-offer or buyer-offer bargaining.

Then the associated matching rule p is either PAM, BSM, or SSM.

We next consider a market that deviates from symmetry just slightly. We say that side A has

higher (resp. lower) quality than side B if the proportion of low cost sellers on side A is higher

(resp. lower) than that of high valuation buyers on side B: λ1 > µ2. The following proposition shows

that in a slightly asymmetric market, the optimal mechanism employs a protocol where the side

with the lower quality makes an offer. Put differently, it is optimal to have seller-offer bargaining

if the proportion of low-cost sellers on side A is lower than the proportion of high-valuation buyers

on side B, and vice versa.

Proposition A.3 Take any d ∈ (0, 1). There exists ε > 0 such that if ∥(λ1, µ2) − (d, d)∥ < ε,

then the optimal mechanism Γ entails buyer-offer bargaining if λ1 > µ2 and seller-offer bargaining

if λ1 < µ2.

24In particular, it is difficult to establish the dominance relationship between PAM with buyer-offer (resp. seller-

offer) bargaining and SSM (resp. BSM) with seller-offer (resp. buyer-offer) bargaining.
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γλ1 + µ1 = 1

λ1 + (1 + γ)µ1 = 1

Figure 5: Optimal Matching with Seller-Offer Bargaining

A clear conclusion is possible regarding the comparison of buyer-offer and seller-offer bargaining

when the market is symmetric.

Proposition A.4 Suppose that the market is symmetric (λ1 = µ2). Then the optimal mechanism

with buyer-offer bargaining and that with seller-offer bargaining yield the same revenue.

It follows from Corollary 5.1 and Proposition A.4 that either with buyer-offer or seller-offer

bargaining, PAM is dominated by BSM or SSM when the market is symmetric and λ1 = µ2 >
1

1+γ .

A.2 Optimal Equilibrium of the Trading Game

Our analysis in the main text focuses on a weakly undominated BNE of a game of sequential moves

with a buyer making a take-it-or-leave-it offer. We suppose in this section that the agents play a

BNE σ that is most preferred by the platform.

Let the price equal k(z) = kzA + (1 − k)zB for a constant k ∈ [0, 1], and suppose that the

mechanism specifies a strategy profile σ = (σA, σB) such that

σA(α) =

{
ζ if α = α1,

β2 if α = α2,
and σB(β) = ζ for every β, (13)

where ζ ∈ [α1, β1]. σB is the buyer’s best response against σA regardless of his belief p̃A about

α. Furthermore, σA is also the seller’s best response against σB although the high cost type (α2)

will never trade his good under σ. The following proposition shows that when σ is as given in (13)
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Figure 6: Optimal Matching with Seller-Offer or Buyer-Offer Bargaining

PAM: Positive assortative with buyer- or seller-offer

BSM: B-squeeze with buyer-offer

SSM: S-squeeze with seller-offer

for ζ = α1, the platform’s revenue in the symmetric market equals the first-best level identified in

Proposition 3.1.

Proposition A.5 Suppose that the mechanism Γ entails PAM and the BNE σ in (13) with ζ = α1.

When the market is symmetric, Γ extracts full surplus from the agents and hence is optimal.

As noted above, σ in Proposition A.5 is not the most natural BNE when for example k = 0

(buyer-offer bargaining) or k = 1 (seller-offer bargaining): When k = 0, σA(α2) = β2 is weakly

dominated for the high-cost seller (α2), and when k = 1, σB(β) = α1 is weakly dominated for both

buyer types. In other words, it is not possible to replicate such a σ in a buyer-offer or seller-offer

game while requiring sequential rationality.

A.3 Proofs

For simplicity, we use the following notation in the analysis of the trading platform in the Appendix:

x = pA(α1 | β1), y = pA(α1 | β2),
z = pB(β2 | α1), w = pB(β2 | α2).

(14)
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Proof of Lemma 3.1. Take any (x, y) that satisfies the conditions. Define p by

p(α1, β1) = µ1x, p(α1, β2) = µ2y,

p(α2, β1) = µ1(1− x), p(α2, β2) = µ2(1− y).

We then have p ∈ P since
∑

β p(α1, β) = λ1,
∑

β p(α2, β) = 1 − λ1 = λ2,
∑

α p(α, β1) = µ1,

and
∑

α p(α, β2) = µ2. Furthermore, these imply that p satisfies (14): pA(α1 | β1) = µ1x
µ1

= x,

pA(α1 | β2) = µ2y
µ2

= y, pA(α2 | β1) = µ1(1−x)
µ1

= 1− x, and pA(α2 | β2) = µ2(1−y)
µ2

= 1− y.

Proof of Proposition 3.1. The mechanism is efficient only if α < β implies σA(α) ≤ σB(β) so

that transaction takes place with probability one between any such pair of agents. In this case, the

social welfare W is described as

W = γ{p11 + p22}+ (1 + γ)p12

= γ{µ1x+ µ2(1− y)}+ (1 + γ)µ2y

= γµ1x+ µ2y + γµ2.

Since µ1

µ2
> γµ1

µ2
, maximization of W with respect to (x, y) subject to the Bayes plausibility condition

(3) implies that y should be maximized subject to it. This shows that p is PAM. Substitution of

(x, y) for PAM in (5) yields (6).

Proof of Proposition 4.1. Define as in (14) x = pA(α1 | β1) and y = pA(α1 | β2). The IC and

IR conditions for a type β1 buyer can be written as:

xk(β1 − α1)− tB(β1) ≥ max {0, yk(β1 − α1)− tB(β2)},

and those for a type β2 buyer can be written as:

yk(β2 − α1) + (1− y)k(β2 − α2)− tB(β2) ≥ max {0, xk(β2 − α1) + (1− x)k(β2 − α2)− tB(β1)}.

Since these imply

(y − x)k(β1 − α1) ≤ tB(β2)− tB(β1) ≤ (y − x)k(α2 − α1),

we need y ≥ x for the feasibility of the mechanism. In this case, the optimal transfers are given by

tB(β1) = xkγ and tB(β2) = tB(β1) + (y − x)k.

On the other hand, the IC and IR conditions for a type α1 seller are given by

(1−z)(1−k)(β1−α1)+z(1−k)(β2−α1)−tA(α1) ≥ max {0, (1−w)(1−k)(β1−α1)+w(1−k)(β2−α1)−tA(α2)},

and those for a type α2 seller are given by

w(1− k)(β2 − α2)− tA(α2) ≥ max {0, z(1− k)(β2 − α2)− tA(α1)}.

Together, these imply

(z − w)(1− k)(β2 − α2) ≤ tA(α1)− tA(α2) ≤ (z − w)(1− k)(β2 − β1),
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and hence feasibility requires z ≥ w, or equivalently, y ≥ λ1.
25 In this case, the optimal transfers

are given by

tA(α2) =
µ2

λ2
(1− y)(1− k)γ and tA(α1) = tA(α2) +

(
µ2

λ1
y − µ2

λ2
(1− y)

)
(1− k).

It follows that the platform’s revenue from both sides of the market under the optimal transfer

functions is given by

R(Γ) = w(1− k)γ + λ1(z − w)(1− k) + xkγ + µ2(y − x)k

=
µ2

λ2
(1− y)(1− k)γ +

µ2

λ2
(y − λ1)(1− k) + xkγ + µ2(y − x)k

= k(γ − µ2)x+
µ2

λ2
{(1− k)(1− γ) + kλ2} y +

µ2

λ2
(1− k)(γ − λ1).

Note that the following relationship holds between the gradient vector (µ1, µ2) of the Bayes plau-

sibility condition (3) for x and y, and the gradient vector of R above:

µ1

µ2
>

k(γ − µ2)
µ2

λ2
{(1− k)(1− γ) + kλ2}

.

This implies that the maximization of R entails the maximization of y subject to Bayes plausibility

(3), and the feasibility constraints y ≥ x and y ≥ λ1. Therefore, the optimal matching rule p is

assortative. When λ1 ≥ µ2, substitution of x = λ1−µ2

µ1
and y = 1 yields the maximized revenue as

in the first line of (8), and when λ1 < µ2, substitution of x = 0 and y = λ1
µ2

yields the maximized

revenue as in the second line of (8).

Proof of Proposition 5.1. We proceed by separating cases based on the buyer’s belief about

the seller’s type induced by the matching rule p.

1. The optimal bid for the high-valuation buyer β2 is α1 when he has reported type β2 truthfully,

and also when he has misreported his type to be β1:

z∗B(β2, pA(· | β)) = α1 for any β ∈ B.

This requires that x, y ≥ γ
1+γ . In this case, Bayes plausibility implies that the proportion of

the low-cost seller must be high in the population:

λ1 = Pr(α1) = µ1x+ µ2y ≥ γ

1 + γ
.

The IC and IR conditions for a type β1 buyer are written as

pA(α1 | β1)(β1 − α1) + pA(α2 | β1) · 0− tB(β1)

≥ max {0, pA(α1 | β2)(β1 − α1) + pA(α2 | β2) · 0− tB(β2)}.
(15)

Note that the left-hand side is his expected payoff when he reports β1: The first term corre-

sponds to the event that he is matched against a low-cost seller so that his offer α1 will be

25This holds since z = µ2
λ1

y and w = µ2
λ2

(1− y).
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accepted and trade takes place. The second term correspond to the event that he is matched

against a high-cost seller so that his offer will be rejected and no trade takes place. The right-

hand side is the maximum between the buyer’s reservation payoff and his expected payoff

when he reports β2. The IC and IR conditions for a type β2 buyer are similarly given by

pA(α1 | β2)(β2 − α1) + pA(α2 | β1) · 0− tB(β2)

≥ max {0, pA(α1 | β2)(β2 − α1) + pA(α2 | β2) · 0− tB(β1)}.
(16)

Using the short-hand notation introduced in (14), we can summarize (15) and (16) as

(y − x)(β1 − α1) ≤ tB(β2)− tB(β1) ≤ (y − x)(β2 − α1),

tB(β1) ≤ x(β1 − α1),

tB(β2) ≤ y(β2 − α1).

This is feasible if

y = pA(α1 | β2) ≥ pA(α1 | β1) = x, (17)

and the optimal transfer function tB is given by

tB(β1) = x(β1 − α1) and tB(β2) = tB(β1) + (y − x)(β2 − α1).

Turning now to side A, we note that the seller’s payoff in the trading game equals zero

regardless of his type since both buyer types bid α1 under q. It follows that the only transfer

function tA that satisfies IC and IR for the seller is given by tA(α1) = tA(α2) = 0. The

platform’s revenue is then given by

R(Γ) = µ1tB(β1) + µ2tB(β2)

= x(β1 − α1) + µ2(y − x)(β2 − α1)

= x{γ − µ2(1 + γ)}+ yµ2(1 + γ).

Since R is linear in x and y, comparison of their coefficients against those in the Bayes

plausibility condition µ1x + µ2y = λ1 determines the optimal matching rule. Specifically,

since
µ1

µ2
>

γ − µ2(1 + γ)

µ2(1 + γ)
⇔ 1 + γ > γ,

the optimal p should maximize y subject to the feasibility constraints: x, y ≥ γ
1+γ , y ≥ x and

µ1x+ µ2y = λ1 ≥ γ
1+γ . As seen in Figure 7, this yields

(x, y) =


(

γ
1+γ ,

λ1
µ2

− µ1

µ2

γ
1+γ

)
if (1 + γ)λ1 + µ1 ≤ 1 + γ,(

λ1−µ2

µ1
, 1

)
if (1 + γ)λ1 + µ1 > 1 + γ.

The maximized revenue is given by

R∗ =

{
λ1(1 + γ)− γ

1+γ if (1 + γ)λ1 + µ1 ≤ 1 + γ,

γλ1 +
µ2

µ1
λ2 if (1 + γ)λ1 + µ1 > 1 + γ.
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optimal point in case 1

Figure 7: Optimal choice of (x, y) in case 1

2. The optimal bid for the buyer of type β2 equals α1 when he reports his type truthfully, but

α2 when he misreports his type to be β1. This requires x ≤ γ
1+γ ≤ y.

The IC and IR constraints of the type β2 buyer are given by

y(β2 − α1)− tB(β2) ≥ max {0, β2 − α2 − tB(β1)}.

The IC and IR constraints of the type β1 buyer are given by

x(β1 − α1)− tB(β1) ≥ max {0, y(β1 − α1)− tB(β2)}.

These can be summarized as:

(y − x)γ ≤ tB(β2)− tB(β1) ≤ y(1 + γ)− γ,

tB(β1) ≤ xγ,

tB(β2) ≤ y(1 + γ).

For this to be feasible, we need

(y − x)γ ≤ y(1 + γ)− γ ⇔ γx+ y ≥ γ. (18)

Furthermore, there exists (x, y) that satisfies 0 ≤ x ≤ γ
1+γ ≤ y ≤ 1, γx + y ≥ γ and Bayes

plausibility (3) if and only if

(1 + γ)λ1 + µ1 ≤ 1 + γ, and

either λ1 ≥
γ

1 + γ
or λ1 + γµ1 ≥ γ.

(19)
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The optimal transfer function tB for the buyer is then given by

tB(β1) = xγ and tB(β2) = tB(β1) + y(1 + γ)− γ.

The seller’s payoff in the trading game equals zero since both buyer types bid α1 according

to q. It follows that the transfer function for the seller equals tA(α1) = tA(α2) = 0, and that

the platform’s revenue is given by

R(Γ) = xγ + yµ2(1 + γ)− γµ2.

The optimal matching rule pmaximizes R subject to x ≤ γ
1+γ ≤ y, (18), and Bayes plausibility

µ1x + µ2y = λ1. In what follows, we separate cases depending on the values of λ1 and µ1.

For this, it is useful to note that

µ1 <
γ

1 + γ
⇔ γ >

µ1

µ2
⇔ γ

(1 + γ)µ2
>

µ1

µ2
, (20)

where the second term corresponds to the comparison between the normal vectors of (18)

and Bayes plausibility, and the third term corresponds to the comparison between the normal

vectors of the revenue function R and Bayes plausibility.

(a) λ1, µ1 <
γ

1+γ . There is no (x, y) that satisfies x ≤ γ
1+γ ≤ y, γx+y ≥ γ, and µ1x+µ2y =

λ1. No p hence satisfies feasibility in this case.

(b) µ1 < γ
1+γ < λ1. By (20), x should be as large as possible subject to feasibility, and the

optimal matching rule p is such that

(x, y) =

(
γ

1 + γ
,
λ1

µ2
− µ1

µ2

γ

1 + γ

)
.

The maximized revenue is given by

R∗ = (1 + γ)λ1 −
γ

1 + γ
.

(c) µ1 >
γ

1+γ . By (20), y should be as large as possible subject to feasibility, and the optimal

matching rule p is such that

(x, y) =


(
λ1−µ2

µ1
, 1

)
if λ1 > µ2,(

0, λ1
µ2

)
if λ1 < µ2.

The maximized revenue is give by

R∗ =

{
λ1−µ2

µ1
γ + µ2 if λ1 ≥ µ2,

(1 + γ)λ1 − µ2γ otherwise.

Figure 8 illustrates the optimal matching rules when λ1 >
γ

1+γ .
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Figure 8: Optimal choice of (x, y) in case 2

3. The optimal bid for the type β2 buyer is α2 whether he has reported his type truthfully or

not. This requires x, y ≤ γ
1+γ .

In this case, Bayes plausibility implies that the proportion of the type α1 seller is low in the

population:

λ1 = µ1x+ µ2y ≤ γ

1 + γ
.

The IC and IR constraints for a type β1 buyer are given by

xγ − tB(β1) ≥ max {0, yγ − tB(β2)},

and those for a type β2 buyer are given by

γ − tB(β2) ≥ max {0, γ − tB(β1)}.

These can be summarized as:

(y − x)γ ≤ tB(β2)− tB(β1) ≤ 0,

tB(β1) ≤ xγ,

tB(β2) ≤ γ.

This is hence feasible if y ≤ x. In this case, the optimal transfer function is given by

tB(β1) = tB(β2) = xγ.

On the other hand, the IC and IR constraints for the type α1 seller are given by

pB(β2 | α1)(α2 − α1)− tA(α1) ≥ max {0, pB(β2 | α2)(α2 − α1)− tA(α2)},
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and those for the type α2 seller are given by

−tA(α2) ≥ max {0, −tA(α1)}.

These can be summarized as

0 ≤ tA(α1)− tA(α2) ≤ {pB(β2 | α1)− pB(β2 | α2)}(α2 − α1),

tA(α1) ≤ pB(β2 | α1)(α2 − α1),

tA(α2) ≤ 0.

For this to be feasible, we need

pB(β2 | α1)− pB(β2 | α2) ≥ 0 ⇔ µ2

λ1
pA(α1 | β2) ≥

µ2

λ2
pA(α2 | β2)

⇔ y ≥ λ1.

In this case, the optimal transfer function is given by

tA(α1) =
µ2

λ1λ2
(y − λ1) and tA(α2) = 0.

It follows that the platform’s revenue equals

R(Γ) = γx+
µ2

λ2
(y − λ1).

The optimal matching rule p maximizes this subject to x, y ≤ γ
1+γ , x ≥ y ≥ λ1, and

µ1x+µ2y = λ1. The last two conditions however show that the feasible p is unique and such

that x = y = λ1. Therefore, the maximized revenue is given by

R∗ = λ1γ.

4. The optimal bid for a type β2 buyer is α2 when he reports his type truthfully, but α1 when

he misreports. This requires x ≥ γ
1+γ ≥ y.

The IC and IR constraints for the type β1 buyer are given by

xγ − tB(β1) ≥ max {0, yγ − tB(β2)},

and those for the type β2 buyer are given by

γ − tB(β2) ≥ max {0, x(1 + γ)− tB(β1)}.

Since these imply

(y − x)γ ≤ tB(β2)− tB(β1) ≤ γ − x(1 + γ),

feasibility requires

x+ γy ≤ γ.

On the other hand, the IC and IR constraints for the type α1 seller are given by

pB(β2 | α1)(α2 − α1)− tA(α1) ≥ max {0, pB(β2 | α2)(α2 − α1)− tA(α2)},
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and those for the type α2 seller are given by

−tA(α2) ≥ max {0, −tA(α1)}.

These together imply

0 ≤ tA(α1)− tA(α2) ≤ {pB(β2 | α1)− pB(β2 | α2)}(α2 − α1).

Feasibility requires

pB(β2 | α1) ≥ pB(β2 | α2) ⇔ µ2

λ1
pA(α1 | β2) ≥

µ2

λ2
pA(α2 | β2)

⇔ y ≥ λ1.

Note that x ≥ γ
1+γ ≥ y ≥ λ1 and µ1x + µ2y = λ1 imply that x = y = λ1 = γ

1+γ . In

other words, feasibility holds only if λ1 = γ
1+γ , and the optimal matching rule p is given by

x = y = λ1.

Summarizing the four cases above, we can conclude:

• If λ1 ≥ γ
1+γ and (1+γ)λ1+µ1 > 1+γ, then only case 1 is feasible, and the optimal matching

in case 1 is PAM. Hence, PAM is optimal.

• If λ1 ≥ γ
1+γ and (1 + γ)λ1 + µ1 ≤ 1 + γ, then both cases 1 and 2 are feasible. The optimal

matching in case 1 is BSM, whereas the optimal matching in case 2 is PAM if µ1 >
γ

1+γ , and

BSM otherwise. Hence, BSM is optimal if µ1 ≤ γ
1+γ , and comparison of the revenue shows

that PAM is optimal if µ1 >
γ

1+γ .

• If λ1 <
γ

1+γ and λ1 + γµ1 < γ, then only case 3 is feasible, and the only feasible matching in

case 3 is RM. Hence, RM is optimal.

• If λ1 < γ
1+γ and λ1 + γµ1 ≥ γ, then both cases 2 and 3 are feasible. The optimal matching

in case 2 is PAM, and optimal matching in case 3 is RM. Comparison of the revenue under

these two rules shows that PAM is optimal.

This completes the proof.

Proof of Proposition 5.2. As in the proof of Proposition 5.1, we separate cases depending on

the values of x and y. Note that (x, y) =
(
p11
µ1

, p12
µ2

)
.

1. x, y > γ
1+γ . In this case, a type β2 buyer bids α1 according to the BNE: σB(β2) = α1.

Social welfare is hence given by W (Γ) = γp11 + (1 + γ)p12 = γ x
µ1

+ (1 + γ) y
µ2
. The proof of

Proposition 5.1 shows that there exists an IC and IR mechanism if and only if y ≥ x. W (Γ)

is maximized when y is maximized subject to y ≥ x and Bayes plausibility (3). If follows that

p is PAM.
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2. x ≤ γ
1+γ ≤ y. A type β2 buyer bids α1 according to the BNE, and hence social welfare is

again given by W (Γ) = γ x
µ1

+(1+ γ) y
µ2
. The proof of Proposition 5.1 shows that there exists

an IC and IR mechanism if and only if γx+ y ≥ γ. The problem hence reduces to:

max
x,y

γ
x

µ1
+ (1 + γ)

y

µ2
subject to γx+ y ≥ γ, x ≤ γ

1 + γ
≤ y, and Bayes plausibility (3).

A feasible (x, y) exists if and only if (1+γ)λ1+µ1 ≤ 1+γ, and either λ1 ≥ γ
1+γ or λ1+γµ1 ≥ γ.

(a) If γ ≤ λ1
µ2

(⇔ λ1 + γµ1 ≥ γ), then PAM satisfies the constraints and maximizes W .

(b) If γ > λ1
µ2

(⇔ λ1 + γµ1 < γ), then a feasible (x, y) exists only if λ1 ≥ γ
1+γ . W is

maximized when γx+ y = γ. Solving this and (3) simultaneously, we obtain

(x, y) =

(
γµ2 − λ1

γ − (1 + γ)µ1
,

γ(λ1 − µ1)

γ − (1 + γ)µ1

)
, (21)

and

W (Γ) =
γ{γµ2λ1 − λ1µ1 + µ2(λ1 − µ1)}

γ − (1 + γ)µ1
.

3. x, y ≤ γ
1+γ . The proof of Proposition 5.1 shows that RM is the only feasible matching rule.

4. x ≥ γ
1+γ ≥ y. The proof of Proposition 5.1 shows that there exists no feasible matching rule.

When (1+γ)λ1+µ1 > 1+γ, only case 1 is feasible and PAM is optimal. When (1+γ)λ1+µ1 ≤
1+γ and λ1 ≥ γ

1+γ , cases 1 and 2 are feasible: If λ1+γµ1 ≥ γ in addition, PAM is optimal in both

cases. On the other hand, if λ1 + γµ1 < γ, then either PAM or the matching rule specified in (21)

is optimal. Comparison of social welfare associated with each rule shows that PAM is optimal. If

λ < γ
1+γ and λ1 + γµ1 ≥ γ, then cases 2 and 3 are feasible: PAM is optimal in case 2 and RM is

optimal in case 3. Comparison of social welfare in each case shows that PAM is optimal. If λ < γ
1+γ

and λ1 + γµ1 < γ, then only case 3 is feasible and RM is optimal.

Proof of Proposition 6.1. Since the expected payoff of a type α2 seller in the trading game

equals zero regardless of his report, and since tA(α1) = tA(α2) = 0, the IC and IR conditions of

type α1 always hold with equality. Let

k1 =
γ − tB(β1)

1 + γ − tB(β1)
and k2 =

γ − tB(β2)

1 + γ − tB(β2)
.26

The optimal bid for a type β2 buyer equals α1 if y = pA(α1 | β2) ≥ k2 when he reports his type

truthfully, and if x = pA(α1 | β1) ≥ k1 when he misreports his type. Note also that

x ≤ k1 ⇔ tB(β1) ≤ γ − x
1−x ,

y ≤ k2 ⇔ tB(β2) ≤ γ − y
1−y .

For any values of x and y, the IC and IR conditions of a type β1 buyer are given by:

x{γ − tB(β1)} ≥ max {0, y{γ − tB(β2)}}. (22)

26Let k2 = 0 if 1 + γ − tB(β2) = 0.
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γ

γ − y
1−y

γ

γ − x
1−x

tB(β1)

tB(β2)

(
γ − x

1−x , γ − x
1−x

)
ICβ1

ICβ2

(a)

γ

γ − y
1−y

γ

γ − x
1−x

tB(β1)

tB(β2)

(
γ − y

1−y , γ − x
1−y

)

ICβ1

ICβ2

(b)

γ

γ − y
1−y

γ

γ − x
1−x

tB(β1)

tB(β2)

(
γ − x

1−x , 1 + γ − x
y(1−x)

)

ICβ1

ICβ21 + γ

(c)

γ

γ − y
1−y

γ

γ − x
1−x

tB(β1)

tB(β2)

(
γ, 1 + γ − x

y

)
ICβ1

ICβ2

1 + γ

1 + γ

(d)

Figure 9: Optimal transfer (tB(β1), tB(β2)): (a) x ≤ k1, y ≤ k2, (b) x > k1, y ≤ k2, (c) x ≤ k1,

y > k2, (d) x > k1, y > k2.
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a) A type β2 buyer optimally bids α2 whether he has reported his type truthfully or not. This

requires x ≤ k1 and y ≤ k2. The IC and IR conditions of type β2 are given by

γ − tB(β2) ≥ max {0, γ − tB(β1)}. (23)

(22) and (24) together show that y ≤ x. As seen in Figure 9, the optimal transfer in this case

is given by

tB(β1) = tB(β2) = γ − x

1− x
.

On the other hand, the IC and IR conditions of a type α1 seller are given by

z(1− tA(α1)) ≥ max {0, w(1− tA(α2))}. (24)

Substitution of tA(α1) = tA(α2) = 0 yields z ≥ w, which in turn leads to

pB(β2 | α1) ≥ pB(β2 | α2) ⇔
µ2

λ1
pA(α1 | β2) ≥

µ2

λ2
pA(α2 | β2) ⇔ y ≥ λ1.

Along with x ≥ y above and Bayesian plausibility, this implies RM: x = y = λ1. It follows that

the maximized revenue of the platform in this case is given by

R∗ = µ1xtB(β1) + µ2tB(β2) = (λ1µ1 + µ2)

(
γ − λ1

1− λ1

)
.

b) A type β2 buyer optimally bids α2 when he has reported his type truthfully, but α1 when he

has misreported his type. This requires x ≥ k1 and y ≤ k2. The IC and IR conditions of type

β2 are given by

γ − tB(β2) ≥ max {0, x{1 + γ − tB(β1)}}. (25)

Since tB(β1) ≥ γ − x
1−x , tB(β2) ≤ γ − y

1−y , and ytB(β2)− xtB(β1) ≥ γ(y− x) by (22), a feasible

transfer (tB(β1), tB(β2)) exists only if

y

(
γ − y

1− y

)
− x

(
γ − x

1− x

)
≥ γ(y − x) ⇔ (y − x){1− (1− x)(1− y)} ≤ 0.

Since (1−x)(1−y) < 1 by (3), we must have y ≤ x. In this case, the optimal transfer is given by

(tB(β1), tB(β2)) =
(
γ− y

1−y , γ−
x

1−y

)
, which satisfies the IC conditions of β1 and β2 in (22) and

(25) with equality. It also satisfies the IR conditions of both types, as well as tB(β1) > γ − x
1−x

and tB(β2) ≤ γ − y
1−y .

On the other hand, the IC and IR conditions of a type α1 seller are the same as in case (a),

and reduce to z ≥ w. This coupled with x ≥ y implies RM: x = y = λ1. It follows that the

maximized revenue of the platform in this case is again given by

R∗ = µ1xtB(β1) + µ2tB(β2) = (λ1µ1 + µ2)

(
γ − λ1

1− λ1

)
.

c) A type β2 buyer optimally bids α1 when he has reported his type truthfully, but α2 when he

has misreported his type. This requires x ≤ k1 and y ≥ k2. The IC and IR conditions of β2 are

given by

y{1 + γ − tB(β2)} ≥ max {0, γ − tB(β1)}. (26)
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Since tB(β1) ≤ γ − x
1−x , tB(β2) ≥ γ − y

1−y , and ytB(β2) − tB(β1) ≤ y(1 + γ) − γ by (26), a

feasible transfer (tB(β1), tB(β2)) exists only if

y
(
γ − y

1− y

)
−
(
γ − x

1− x

)
≤ y(1 + γ)− γ ⇔ x ≤ y.

In this case, the optimal transfer is given by (tB(β1), tB(β2)) =
(
γ− x

1−x , 1+γ− x
y(1−x)

)
, which

satisfies type β2’s IC condition with equality and also x = k1. On the other hand, the IC and

IR conditions of a type α1 seller always hold with equality. Substituting y = λ1−µ1x
µ2

from (3),

we can write the platform’s expected revenue as:

R(Γ̃) = µ1x

(
γ − x

1− x

)
+ µ2

(
λ1 − µ1x

µ2

) (
1 + γ − µ2x

(λ1 − µ1x)(1− x)

)
,

which is strictly decreasing in x. This implies that the optimal matching rule in this case is

PAM, and the maximized revenue is given by

R∗ =

{
λ1(1 + γ) if λ1

µ2
≤ 1,

λ1(1 + γ)− λ1−µ2

λ2
if λ1

µ2
> 1.

d) A type β2 buyer optimally bids α1 whether he has reported his type truthfully or not. This

requires x ≥ k1 and y ≥ k2. The IC and IR conditions of β2 are given by

y{1 + γ − tB(β2)} ≥ max {0, x{1 + γ − tB(β1)}}. (27)

(22) and (27) together imply

(y − x)γ ≤ ytB(β2)− xtB(β1) ≤ (y − x)(1 + γ),

so that y ≥ x. In this case, the optimal transfer is given by (tB(β1), tB(β2)) =
(
γ, 1 + γ − x

y

)
,

which satisfies type β2’s IC condition and type β1’s IR condition both with equality. On the

other hand, the IC and IR conditions of a type α1 seller always hold. The expected revenue of

the platform then equals

R(Γ̃) = µ1xtB(β1) + µ2ytB(β2) = µ2(y − x)(1 + γ) + xγ.

By substituting y = −µ1

µ2
x+ λ1

µ2
, we can rewrite this as

R(Γ̃) = (1 + γ)

{
γ

1 + γ
− 1

}
x+ λ1(β2 − α1), (28)

which is a decreasing function of x. Hence, the optimal matching rule is PAM, and the maximized

revenue is given by

R∗ =

{
λ1(1 + γ) if λ1

µ2
≤ 1,

λ1(1 + γ)− λ1−µ2

µ1
if λ1

µ2
> 1.
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Comparison of the maximized revenue in the above four cases shows that the optimal mechanism

Γ̃ is one described in case (d), which entails PAM, and transfer given by

(tB(β1), tB(β2)) =

(γ, 1 + γ) if λ1
µ2

≤ 1,(
γ, 1 + γ − λ1−µ2

µ1

)
if λ1

µ2
> 1.

This mechanism induces a type β2 buyer to bid α1 after both truthful and untruthful reporting, and

yields the expected revenue as described in (9). The last claim of the proposition on the comparison

between R(Γ) and R(Γ̃) is established as follows.

1. (1 + γ)λ1 + µ1 > 1 + γ: Γ entails PAM.

R(Γ) = λ1(1 + γ)− λ1 − µ2

µ1
= R(Γ̃).

2. λ1 + µ1 > 1, (1 + γ)λ1 + µ1 ≤ 1 + γ and µ1 >
γ

1+γ : Γ entails PAM.

R(Γ) =
λ1 − µ2

µ1
γ + µ2 < R(Γ̃) = λ1(1 + γ)− λ1 − µ2

µ1
.

3. λ1+µ1 > 1, (1+γ)λ1+µ1 ≤ 1+γ and µ1 ≤ γ
1+γ : Γ entails BSM (and PAM if (1+γ)λ1+µ1 =

1 + γ).

R(Γ) = λ1(1 + γ)− γ

1 + γ
≤ R(Γ̃) = λ1(1 + γ)− λ1 − µ2

µ1
,

where the equality holds if and only if (1 + γ)λ1 + µ1 = 1 + γ.

4. λ1 + µ1 ≤ 1, λ1 >
γ

1+γ , and µ1 ≤ γ
1+γ : Γ entails BSM.

R(Γ) = λ1(1 + γ)− γ

1 + γ
< R(Γ̃) = λ1(1 + γ).

5. λ1 + µ1 ≤ 1, λ1 + γµ1 > γ, and µ1 >
γ

1+γ : Γ entails PAM.

R(Γ) = λ1(1 + γ)− µ2γ < R(Γ̃) = λ1(1 + γ).

6. λ1 ≤ γ
1+γ , and λ1 + γµ1 ≤ γ: Γ entails RM.

R(Γ) = λ1γ < R(Γ̃) = λ1(1 + γ).
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Proof of Propositions 7.1 and 7.2. We will show that the optimal mechanism Γ entails the

matching rule p such that

p111 p112 p122 p211 p212 p222

0 ≤ µ2 ≤ λ2
2 λ1 0 0 λ2 − 2µ2 µ2 0

λ2
2 < µ2 ≤ 1

2 1− 2µ2 µ2 − λ2
2 0 0 λ2

2 0
1
2 < µ2 ≤ 1− λ1

2 0 λ1
2 0 0 µ1 − λ1

2 1− 2µ1

1− λ1
2 < µ2 ≤ 1 0 µ1 λ1 − 2µ1 0 0 λ2

(29)

Given its simplicity, we prove this first for the second-price auction in which the bidders bid their

true values. We then show that the first-price auction yields them exactly the same incentives. In

the last step, we prove that the matching rule in (29) has the property that combines NAM between

buyers and PAM between a seller and a buyer pair subject to NAM between buyers.

Second-price auction When a buyer bids his true value, his IC and IR conditions are given as

follows. For type β1,

0− tB(β1) ≥ max
{
0− tB(β2), 0

}
, (30)

and for type β2,

Pr(α1, β1 | β2) (v12 − v11) + Pr(α2, β1 | β2)(v22 − v21)− tB(β2)

≥ max
{
Pr(α1, β1 | β1)(v12 − v11) + Pr(α2, β1 | β1)(v22 − v21)− tB(β1), 0

}
.

(31)

We have from (30) and (31) that

0 ≤ tB(β2)− tB(β1) ≤ {Pr(α1, β1 | β2)− Pr(α1, β1 | β1)}∆1

+ {Pr(α2, β1 | β2)− Pr(α2, β1 | β1)}∆2

=

(
p112
µ2

− p111
µ1

)
∆1 +

(
p212
µ2

− p211
µ1

)
∆2.

For the feasibility of these conditions, we hence need(
p112
µ2

− p111
µ1

)
∆1 +

(
p212
µ2

− p211
µ1

)
∆2 ≥ 0. (32)

We can also show that the IR condition for the low type (i.e., β1) and the IC condition for the high

type (i.e., β2) bind. Hence, when (32) holds, the optimal transfer from the buyer is given by

tB(β1) = 0,

tB(β2) =

(
p112
µ2

− p111
µ1

)
∆1 +

(
p212
µ2

− p211
µ1

)
∆2.

(33)

Turning now to the seller side, recall that their types are observable by the matched buyers. Hence,

the incentive compatibility and individual rationality conditions for type α1 are given by

{1− Pr(β2, β2 | α1)}v11 + Pr(β2, β2 | α1)v12 − tA(α1)

≥ max {{1− Pr(β2, β2 | α2)}v11 + Pr(β2, β2 | α2)v12 − tA(α2), 0} ,
(34)
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and those for type α2 are given by

{1− Pr(β2, β2 | α2)}v21 + Pr(β2, β2 | α2)v22 − tA(α2)

≥ max {{1− Pr(β2, β2 | α1)}v21 + Pr(β2, β2 | α1)v22 − tA(α1), 0} .
(35)

(34) and (35) together imply

{Pr(β2, β2 | α2)− Pr(β2, β2 | α1)}∆1 ≤ tA(α2)− tA(α1)

≤ {Pr(β2, β2 | α2)− Pr(β2, β2 | α1)}∆2,

which is equivalent to(
p222
λ2

− p122
λ1

)
∆1 ≤ tA(α2)− tA(α1) ≤

(
p222
λ2

− p122
λ1

)
∆2.

Since ∆2 > ∆1 by our assumption (10), this implies that the following feasibility condition must

hold:
p222
λ2

− p122
λ1

≥ 0. (36)

Again, the IR condition for the low type (i.e., α1) and the IC condition for the high type (i.e., α2)

bind. Hence, when (36) holds, the optimal transfer from the seller is given by

tA(α1) = v11 +
p122
λ1

∆1,

tA(α2) = tA(α1) +

(
p222
λ2

− p122
λ1

)
∆2.

(37)

(33) and (37) yield the maximal payoff for the platform given the matching rule p:

R(Γ) = λ1tA(α1) + λ2tA(α2) + 2 {µ1tB(β1) + µ2tB(β2)}

= v11 +
p122
λ1

∆1 + λ2

(
p222
λ2

− p122
λ1

)
∆2

+ 2µ2

(
p112
µ2

− p111
µ1

)
∆1 + 2µ2

(
p212
µ2

− p211
µ1

)
∆2.

(38)

The optimal matching rule p = (p111, . . . , p222) is one that solves

max
{
R(p) : p ∈ P satisfies (32) and (36)

}
.

Bayes plausibility (12) allows us to express p111, p211 and p212 in terms of p112, p122 and p222 as:
p111 = λ1 − p122 − 2p112,

p211 = λ2 − 2µ2 + 2p122 + 2p112 + p222,

p212 = µ2 − p222 − p122 − p112.

(39)

We then rewrite the feasibility condition (32) and the platform’s payoff (38) in terms of (p112, p122, p222):

{µ2(∆2 −∆1) + ∆2} p122 + (1 + µ2)(∆2 −∆1) p112 +∆2p222 ≤ µ2{(λ1 + µ2)∆2 − λ1∆1}, (40)
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and

R(Γ) = v11 −
2µ2

µ1
λ1∆1 + 2µ2

(
1− λ2 − 2µ2

µ1

)
∆2

−
{(

λ2

λ1
+ 2 +

4µ2

µ1

)
∆2 −

(
1

λ1
+

2µ2

µ1

)
∆1

}
p122

− 2

(
1 +

2µ2

µ1

)
(∆2 −∆1) p112

−
(
1 +

2µ2

µ1

)
∆2 p222.

Writing κ = 1 + 2µ2

µ1
, we see that this simplifies to

R(Γ) = v11 − (κ− 1)λ1∆1 + 2µ2

(
κ− λ2

µ1

)
∆2

−
{
κ∆2 +

(
κ+

λ2

λ1

)
(∆2 −∆1)

}
p122 − 2κ(∆2 −∆1) p112 − κ∆2 p222.

(41)

Figure 10 illustrates the feasible combinations of (p122, p222) for p112 < µ2 − λ2
2 .

p122 ≤ λ1 − 2p112

(36)

p222

p122

p122 + p222 ≤ µ2 − p112

2p122 + p222 ≥ 2µ2 − λ2 − 2p112

(40)

Figure 10: Feasible combinations of (p122, p222) (shaded area) when p112 < µ2 − λ2
2 .

p111 ≥ 0 ⇔ p122 ≤ λ1 − 2p112,

p211 ≥ 0 ⇔ 2p122 + p222 ≥ 2µ2 − λ2 − 2p112,

p212 ≥ 0 ⇔ p222 + p122 ≤ µ2 − p112.

1. µ2 ≤ λ2
2 . Let (p112, p122, p222) = (0, 0, 0). It clearly maximizes the platform’s payoff (41)

subject to (p112, p122, p222) ≥ (0, 0, 0). It satisfies (36) and (40) and hence is feasible. By (39),

we have

(p111, p211, p212) = (λ1, λ2 − 2µ2, µ2).
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2. µ2 >
λ2
2 . Since the platform’s payoff (41) is decreasing in p112, p122 and p222, if (p112, p122, p222)

is optimal, then it satisfies the constraint 2p112 + 2p122 + p222 ≥ 2µ2 − λ2 > 0 with equality.

Substituting p222 = 2µ2 − λ2 − 2p112 − 2p122 into (41), we obtain

R(Γ) = v11 −
2µ2

µ1
λ1∆1 + 2µ2

(
1− λ2 − 2µ2

µ1

)
∆2

−
{
κ∆2 +

(
κ+

λ2

λ1

)
(∆2 −∆1)

}
p122 − 2κ(∆2 −∆1) p112

− κ∆2 (2µ2 − λ2 − 2p112 − 2p122)

= v11 −
2µ2

µ1
λ1∆1 + 2µ2

(
1− λ2 − 2µ2

µ1

)
∆2 − κ∆2(2µ2 − λ2)

+

{
κ∆1 −

λ2

λ1
(∆2 −∆1)

}
p122 + 2κ∆1p112.

(42)

There are three subcases to consider.

(a) λ2
2 < µ2 ≤ 1

2 .

Let (p112, p122) =
(
µ2 − λ2

2 , 0
)
. Since 2κ∆1 > κ∆1 − λ2

λ1
(∆2 −∆1), this maximizes (42)

subject to the constraints (p112, p122) ≥ (0, 0) and p112 + p122 ≤ µ2 − λ2
2 (⇔ p222 ≥ 0).

We then have p222 = 2µ2 − λ2 − 2p112 − 2p122 = 0, and also by (39),

(p111, p211, p212) =

(
1− 2µ2, 0,

λ2

2

)
.

This p clearly satisfies (36). To see that it also satisfies (40), note that

(40) ⇔ (1 + µ2)(∆2 −∆1)

(
µ2 −

λ2

2

)
≤ µ2{λ1(∆2 −∆1) + µ2∆2}

⇔
{
(1 + µ2)

(
µ2 −

λ2

2

)
− µ2λ1

}
(∆2 −∆1) ≤ µ2

2∆2

⇐ (1 + µ2)

(
µ2 −

λ2

2

)
− µ2λ1 ≤ µ2

2

⇔ µ2
2 −

λ2µ1

2
≤ µ2

2.

(b) 1
2 < µ2 ≤ 1 − λ1

2 . We let (p112, p122) = (λ1
2 , 0). This maximizes platform’s payoff (42)

subject to 2p112 + p122 ≤ λ1 (⇔ p111 ≥ 0). We have p222 = 2µ2 − λ2 − 2p112 − 2p122 =

2µ2 − 1, and hence from (39),

(p111, p211, p212) =

(
0, 0, µ1 −

λ1

2

)
.
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This p satisfies (36), and also (40) since

(40) ⇔ (1 + µ2)
λ1

2
(∆2 −∆1) + ∆2(2µ2 − 1) ≤ µ2 {λ1(∆2 −∆1) + µ2∆2}

⇔
{
λ1

2
(1 + µ2)− µ2λ1

}
(∆2 −∆1) ≤ ∆2µ

2
1

⇔ λ1

2
(∆2 −∆1) ≤ ∆2µ1

⇐ 1− λ1

2
≥ µ2.

(c) µ2 > 1 − λ1
2 . Substituting p222 = 2µ2 − λ2 − 2p112 − 2p122 into the condition p212 ≥ 0

in (39), we obtain p112 + p122 ≤ µ2 − p222 = −µ2 + λ2 + 2p112 + 2p122, or equivalently,

p122 ≥ µ2 − λ2 − p112. This combined with p122 ≤ λ1 − p112 in (39) yields

p112 ≤ µ1.

We let (p112, p122) = (µ1, λ1 − 2µ1). This maximizes the platform’s payoff (42) subject

to 2p112+p122 ≤ λ1 (⇔ p111 ≥ 0) and p112 ≤ µ1. We then have p222 = 2µ2−λ2−2p112−
2p122 = λ2, and hence from (39),

(p111, p211, p212) = (0, 0, 0) .

This p satisfies (36) since p222
λ2

− p122
λ1

= 1− λ1−2µ1

λ1
> 0. To see that it also satisfies (40),

note that

(40) ⇔ {µ2(|Dt2 −∆1) + ∆2}(λ1 − 2µ1) + (1 + µ2)(∆2 −∆1)µ1 +∆2λ2

≤ µ2{λ1(∆2 −∆1) + µ2∆2

⇔ µ2
1(∆2 −∆1)− µ2

1∆2 ≤ 0.

This shows that the optimal mechanism Γ with the second-price auction entails the matching rule

described in (29).

First-price auction We now turn to the first-price auction. It is useful to analyze the buyers’

problem in two interim stages: In the reporting stage, a buyer only knows his own valuation type,

whereas in the bidding stage, a buyer also knows the quality of the good sold by the matched seller.

First, consider the bidding stage on the path after truthful reporting by both buyers. The

auction game is symmetric between the two buyers since pα12 = pα21 for each α, and hence has a

symmetric BNE in which the low valuation buyer (β1) bids vα1 whereas the high valuation buyer

(β2) chooses his bid according to some distribution Gα(b) with support [vα1, bα] for some bα > vα1.

Call this strategy σB. Against σB played by the other buyer, when the high valuation buyer β2
chooses bid b ∈ [vα1, bα], his expected payoff is given by

(vα2 − b) {Pr(β1 | α, β2) + Pr(β2 | α, β2)Gα(b)} .

Since type β2 is indifferent over bids in the support of Gα,

(vα2 − b) (Pr(β1 | α, β2) + Pr(β2 | α, β2)Gα(b)) = (vα2 − bα). (43)
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When b = vα1, we have (vα2 − bα) = (vα2 − vα1) Pr(β1 | α, β2), which yields

bα = Pr(β1 | α, β2)vα1 + Pr(β2 | α, β2)vα2,

and

Gα(b) =
Pr(β1 | α, β2)
Pr(β2 | α, β2)

(
b− vα1
vα2 − b

)
=

pα12
pα22

(
b− vα1
vα2 − b

)
.

Hence, the BNE payoff to the type β2 buyer in the auction game on the path after truthful reporting

equals

vα2 − bα = Pr(β1 | α, β2)(vα2 − vα1). (44)

It follows that the type β2’s expected payoff in the reporting stage from truthful reporting equals

Pr(α1 | β2) Pr(β1 | α1, β2)(v12 − v11) + Pr(α2 | β2) Pr(β1 | α2, β2)(v22 − v21)− tB(β2)

= Pr(α1, β1 | β2)(v12 − v11) + Pr(α2, β1 | β2)(v22 − v21)− tB(β2).
(45)

Consider now the auction game that follows when a buyer unilaterally misreports his type. If the

buyer is the low valuation type (β1), it is weakly dominant for him to bid vα1, and his expected

payoff equals zero. If the buyer is the high valuation type (β2), his payoff from bidding b ∈ [vα1, bα]

equals

(vα2 − b) {Pr(β1 | α, β1) + Pr(β2 | α, β1)Gα(b)}

= (vα2 − b)

{
pα11

Pr(α, β1)
+

pα21
Pr(α, β1)

Gα(b)

}
= (vα2 − b)

Pr(α, β2)

Pr(α, β1)

[
pα11

Pr(α, β2)
+

pα21
Pr(α, β2)

Gα(b)

]
=

Pr(α, β2)

Pr(α, β1)
(vα2 − bα).

where the last equality follows from (43). Using (44), we can further rewrite this as

Pr(α, β2)

Pr(α, β1)
Pr(β1 | α, β2)(vα2 − vα1) = Pr(β1 | α, β1)(vα2 − vα1). (46)

Hence, type β2’s expected payoff in the reporting stage from unilateral misreporting is given by

Pr(α1 | β1) Pr(β1 | α1, β1) (v12 − v11) + Pr(α2 | β1) Pr(β1 | α2, β1) (v22 − v21)− tB(β1)

= Pr(α1, β1 | β1) (v12 − v11) + Pr(α2, β1 | β1) (v22 − v21)− tB(β1).
(47)

Combining (45) and (47), we see that the IC and IR conditions for type β2 are just the same as

those for the second-price auction. On the other hand, since the expected payoff of type β1 equals

0 after truthful reporting as well as after misreporting, his IC and IR conditions are again the same

as those for the second-price auction given in (30) and (31).

For the checking of the seller’s incentive in reporting, we first compute the expected payment

by each buyer type in the bidding stage. When the seller is type α, the expected payment by a

type β1 buyer equals

Pr(β1 | α, β1)
1

2
vα1,
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and that by a type β2 buyer equals∫ bα

vα1

b [Pr(β1 | α, β2) + Pr(β2 | α, β2)Gα(b)] dGα(b).

Using (43) and (vα2 − bα) = (vα2 − vα1) Pr(β1 | α, β2), we can rewrite this as∫ bα

vα1

b [Pr(β1 | α, β2) + Pr(β2 | α, β2)Gα(b)] dGα(b)

= vα2 Pr(β2 | α, β2)
∫ bα

vα1

Gα(b)dGα(b) + Pr(β1 | α, β2)vα1

= Pr(β2 | α, β2)
1

2
vα2 + Pr(β1 | α, β2)vα1.

Hence, when the type α seller reports his type truthfully, the payment he can expect from a single

buyer is

Pr(β1 | α) Pr(β1 | α, β1)
1

2
vα1 + Pr(β2 | α)

[
Pr(β2 | α, β2)

1

2
vα2 + Pr(β1 | α, β2) vα1

]
= Pr(β1, β1 | α)

1

2
vα1 + Pr(β1, β2 | α) vα1 + Pr(β2, β2 | α)

1

2
vα2.

The seller’s expected revenue from two buyers when he reports his type truthfully is then given by

Pr(β1, β1 | α)vα1 + 2Pr(β1, β2 | α)vα1 + Pr(β2, β2 | α)vα2.

On the other hand, when the seller misreports his type, it will only change the probability that he

will be matched with each buyer type since his quality is observed by the buyers. It follows that

the seller’s IC and IR conditions are just the same as those for the second-price auction given in

(34) and (35).

NAM-PAM property of optimal matching The NAM between buyers implies that

p(β1 | β1) =

{
0 if µ2 ≥ µ1,

1− µ2

µ1
if µ2 < µ1,

and p(β2 | β2) =

{
1− µ1

µ2
if µ2 ≥ µ1,

0 if µ2 < µ1.

It follows that

p(β1, β1) =

{
0 if µ2 ≥ 1

2 ,

1− 2µ2 if µ2 <
1
2 ,

p(β2, β2) =

{
1− 2µ1 if µ2 ≥ 1

2 ,

0 if µ2 <
1
2 ,

and

2p(β1, β2) =

{
2µ1 if µ2 ≥ 1

2 ,

2µ2 if µ2 <
1
2 .

PAM between a seller and a buyer pair then implies the following for the probability of buyer type

profiles matched with a high type seller: When µ2 ≥ 1
2 , p(β1, β1 | α2) = 0,

2p(β1, β2 | α2) =

{
1− 1−2µ1

λ2
if 1− 2µ1 < λ2,

0 if 1− 2µ1 ≥ λ2,
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and

p(β2, β2 | α2) =

{
1−2µ1

λ2
if 1− 2µ1 < λ2,

1 if 1− 2µ1 ≥ λ2.

On the other hand, when µ2 ≤ 1
2 , p(β2, β2 | α2) = 0,

p(β1, β1 | α2) =

{
1− 2µ2

λ2
if 2µ2 < λ2,

0 if 2µ2 ≥ λ2,
and 2p(β1, β2 | α2) =

{
2µ2

λ2
if 2µ2 < λ2,

1 if 2µ2 ≥ λ2,

To summarize, we have

(p211, p212, p222) =


(λ2 − 2µ2, µ2, 0) if µ2 <

λ2
2 ,

(0, λ2
2 , 0) if λ2

2 ≤ µ2 <
1
2 ,

(0, µ1 − λ1
2 , 1− 2µ1) if 1

2 ≤ µ2 < 1− λ1
2 ,

(0, 0, λ2) if µ2 ≥ 1− λ1
2 ,

Likewise, the probability of buyer type profiles matched with a low type seller (α1) is given by

(p111, p112, p122) =


(λ1, 0, 0) if µ2 <

λ2
2 ,

(1− 2µ2, µ2 − λ2
2 , 0) if λ2

2 ≤ µ2 <
1
2 ,

(0, λ1
2 , 0) if 1

2 ≤ µ2 < 1− λ1
2 ,

(0, µ1, λ1 − 2µ1) if µ2 ≥ 1− λ1
2 ,

This p is identical to that described in (29). This completes the proof.

Proof of Proposition 7.3. Using (39), we can rewrite W in terms of (p112, p122, p222) as

W (p) = λ1v11 + λ2v21 + 2µ2∆2 − 2(∆2 −∆1)p112 − (2∆2 −∆1)p122 −∆2p222. (48)

We will identify the socially efficient matching rule p, which solves the following problem.

max
p112,p122,p222

W (p) subject to


p122 ≤ λ1 − 2p112,

2p112 + 2p122 + p222 ≥ 2µ2 − λ2,

p112 + p122 + p222 ≤ µ2,

p112, p122, p222 ≥ 0.

(49)

As in the proof of Proposition 7.1, we proceed by separating cases as follows:

1. µ2 < λ2
2 . Set (p112, p122, p222) = (0, 0, 0). This clearly maximizes W (p) in (48) subject to

(p112, p122, p222) ≥ (0, 0, 0). We can also verify that it satisfies other constraints in (49).

Substituting this back into (39), we obtain p111 = λ1, p211 = λ2 − 2µ2, and p212 = µ2.

2. µ2 ≥ λ2
2 . In this case, the constraint 2p112 + 2p122 + p222 ≥ 2µ2 − λ2 should hold with

equality since W (p) in (48) is decreasing in the three variables. Hence, we substitute p222 =

2µ2 − λ2 − 2p112 − 2p122 into W (p) to rewrite the maximization problem as:

max
p112,p122

λ1v11 + λ2v22 +∆1(2p112 + p122) subject to


µ2 − λ2 ≤ p112 + p122 ≤ µ2 − λ2

2 ,

2p112 + p122 ≤ λ1,

p112, p122 ≥ 0.
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(a) µ2 ≤ 1
2 . Since µ2 − λ2

2 ≤ λ1
2 , the constraint p112 + p122 ≤ µ2 − λ2

2 holds with equality.

The optimal p is then given by p112 = µ2 − λ2
2 and p122 = p222 = 0. Furthermore,

p111 = 1− 2µ1, p211 = 0 and p212 =
λ2
2 .

(b) 1
2 < µ2 ≤ 1− λ1

2 . If we choose (p112, p122) = (λ1
2 , 0), then it maximizes W (p) subject to

2p112 + p122 = λ1. It also satisfies the other constraints. Hence, we can take p such that

p112 =
λ1
2 , p122 = p111 = p211 = 0, p212 = µ1 − λ1

2 , and p222 = 2µ2 − 1.

(c) µ2 > 1− λ1
2 . If we choose (p112, p122) = (µ1, λ1 − 2µ1), then it maximizes W (p) subject

to p112+p122 = µ2−λ2 and 2p112+p122 = λ1. Hence, we can take p such that p112 = µ1,

p122 = λ1 − 2µ1, p111 = p211 = p212 = 0, and p222 = λ2.

Proof of Proposition A.2. We show that if RM is optimal with seller-offer bargaining for

(λ1, µ1), then it is dominated by PAM with buyer-offer bargaining. By Proposition A.1, RM is

optimal with seller-offer bargaining when (λ1, µ1) satisfies µ1 >
1

1+γ and γλ1 + µ1 > γ, and yields

γµ2.

Furthermore, Figure 5 shows that any such (λ1, µ1) satisfies λ1 ≥ 1 − µ1 = µ2, and Figure 2

shows that PAM with buyer-offer bargaining is feasible whenever RM is optimal with seller-offer

bargaining. By Proposition 5.1, we can evaluate the revenue raised by PAM with buyer-offer

bargaining as follows:

1. If (1 + γ)λ1 + µ1 > 1 + γ, then the revenue equals

(1 + γ)λ1 −
λ1 − µ2

µ1
> (1 + γ)λ1 − λ1 = γλ1 ≥ γµ2,

where the first inequality follows since λ1−µ2

µ1
< λ1 ⇔ λ1 < 1.

2. If µ1 >
γ

1+γ , λ1 + γµ1 > γ, (1 + γ)λ1 + µ1 ≤ 1 + γ, and λ1 ≥ µ2, then the revenue equals

λ1 − µ2

µ1
+ µ2 ≥ µ2 > γµ2.

In both cases, hence, PAM with buyer-offer bargaining yields a higher revenue than RM with seller-

offer bargaining. A similar argument shows that RM with buyer-offer bargaining is dominated by

PAM with seller-offer bargaining.

Proof of Proposition A.3.

We will specifically show the following.

• PAM with buyer-offer bargaining if 1
1+γ > λ1 > µ2,

• BSM with buyer-offer bargaining if λ1 > µ2 >
1

1+γ ,

• PAM with seller-offer bargaining if 1
1+γ > µ2 > λ1,
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• SSM with seller-offer bargaining if µ2 > λ1 >
1

1+γ .

1. First fix d < 1
1+γ . If ∥(λ1, µ2)− (d, d)∥ < ε for a sufficiently small ε > 0, then Figures 2 and

5 show that at (λ1, µ1), BSM is optimal with buyer-offer bargaining, and S-squeeze matching

is optimal with seller-offer bargaining. The former yields λ1(1+γ)− γ
1+γ in revenue, whereas

the latter yields µ2(1 + γ)− γ
1+γ . It follows that BSM with buyer offer is optimal if λ1 > µ2

and S-squeeze matching with seller offer is optimal if λ1 < µ2.

2. Next fix d < 1
1+γ . If ∥(λ1, µ2) − (d, d)∥ < ε for a sufficiently small ε > 0, then Figures

2 and 5 again show that at (λ1, µ1), PAM is optimal with both buyer-offer and seller-offer

bargaining. If λ1 > µ2, then buyer-offer yields λ1−µ2

µ1
γ + µ2 in revenue and seller-offer yields

(1 + γ)µ2 − λ1γ. The former dominates the latter since λ1−µ2

µ1
γ + µ2 > (1 + γ)µ2 − λ1γ ⇔

1 + µ1 > 0. If λ1 < µ2, a similar argument shows that PAM with seller-offer bargaining is

optimal.

3. Finally, fix d = 1
1+γ and suppose that ∥(λ1, µ2) − (d, d)∥ < ε for a sufficiently small ε > 0

and that λ1 > µ2. If λ1, µ2 > d, then we have the same situation as case 1 above. If λ1 < d

and µ2 < d, then we have the same situation as case 2 above. If λ1 > d and µ2 < d, then S-

squeeze matching is optimal with seller-offer bargaining and PAM is optimal with buyer-offer

bargaining. The former yields µ2(1 + γ)− γ
1+γ in revenue and the latter yields λ1−µ2

µ1
γ + µ2.

The latter dominates the former since{λ1 − µ2

µ1
γ + µ2

}
−
{
µ2(1 + γ)− γ

1 + γ

}
= γ

{λ1 − µ2

µ1
− µ2 +

1

1 + γ

}
> γ(d− µ2) > 0.

A similar argument proves that PAM with seller-offer bargaining is optimal when λ1 < µ2.

Proof of Proposition A.5. The IC and IR conditions for β1 are given by

x(β1 − ζ)− tB(β1) ≥ max {0, y(β1 − ζ)− tB(β2)},

and since x ≥ r, those for β2 are given by

y(β2 − ζ)− tB(β2) ≥ max {0, x(β2 − ζ)− tB(β1)}.

For this to be feasible, we need

(y − x)(β1 − ζ) ≤ (y − x)(β2 − ζ) ⇔ y ≥ x. (50)

We can verify that the IR condition for β1 and the IC condition for β2 bind so that tB(β1) = xγ

and tB(β2) = tB(β1) + (y − x)γ. On the other hand, the IC and IR conditions for α1 are given by

ζ − α1 − tA(α1) ≥ max {0, ζ − α1 − tA(α2)},

and those for α2 are given by

0− tA(α2) ≥ max {0, 0− tA(α2)}.
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We obtain from these the optimal transfer function for the seller:

tA(α1) = tA(α2) = 0.

It follows that the platform’s revenue is given by

R = x(β1 − ζ) + µ2(y − x)(β2 − ζ) = {β1 − ζ − µ2(β2 − ζ)}x+ µ2(β2 − ζ)y. (51)

Since this is decreasing in ζ, we set ζ = α1. Furthermore, comparing the gradient vector of R with

the normal vector of the Bayes plausibility condition, we see that PAM is optimal since

µ1

µ2
>

β1 − ζ − µ2(β2 − ζ)

µ2(β2 − ζ)
⇔ β2 > β1. (52)

When λ1 ≥ µ2, substitution of (x, y) = (λ1−µ2

µ1
, 1) yields

R∗ = γλ1 +
λ2µ2

µ1
,

and when λ1 < µ2, substitution of (x, y) = (1, λ1
µ2
) yield

R∗ = λ1(1 + γ).

Note from Proposition 3.1 that when the market is symmetric (λ1 = µ2), the maximized revenue

above equals the maximal social surplus. It follows that this mechanism is optimal among all

possible mechanisms under symmetry.
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