Corrigendum:

Mutual Observability and the Convergence of Actions in a Multi-Person Two-Armed Bandit Model

Masaki Aoyagi* Osaka University

February 2, 2011

The proof of Lemma 1 in the paper claims in equation (a2) that $\hat{\alpha}^m$ converges μ_* -almost surely to 1 by the consistency of Bayes estimates. However, conditional on F_i , there is no guarantee that player i's trials on arm X are Bernoulli trials since the random outcomes on the arm may not be independent conditional on F_i . In this sense, (a2) is unwarranted. The proof below fixes this problem.

Proof of Lemma 1 Fix player i, and value $x = r_k$, and write α^t for $\alpha_{\sigma}^t(i,k)$: i's period t posterior belief that the value of arm X is r_k . Let q_{ix}^t be the outcome on arm X by player i in period t. Player i will observe q_{ix}^t in period t if he indeed plays arm X in that period. He does not observe q_{ix}^t if he chooses to play arm Y in period t. Let $\bar{z}_{ix}^0 = s_i$, $\bar{z}_{ix}^t = (s_i, q_{ix}^1, \dots, q_{ix}^t)$ and $\bar{z}^t = (\bar{z}_{1x}^t, \bar{z}_{1y}^t, \bar{z}_{2x}^t, \bar{z}_{2y}^t)$ $(t \in \mathbb{N} \cup \{\infty\})$. Denote by μ the distribution of the random variables x, y, and \bar{z}^{∞} . Note that μ is independent of the particular strategy profile σ . For each $m \in \mathbb{N}$, let $K_m \in \mathbb{N} \cup \{\infty\}$ be the random period in which player i plays arm X for the mth time. Set $K_m = \infty$ if arm X is played less than m times. Since each K_m is such that $\{K_m = t\}$ is measurable with respect to \bar{z}^{t-1} for $t = 1, 2, \dots, \infty$, it is a stopping time relative to $\sigma(z^{t-1})$. For each $m \in \mathbb{N}$, let $q_{ix}^{K_m}$ be the outcome on arm X by player i in period K_m if $K_m < \infty$. Let $q_{ix}^m = -1$ if $K_m = \infty$. Define now z_{ix}^m $(m \in \mathbb{Z})$ by $z_{ix}^0 = s_i$ and $z_{ix}^m = (s_i, q_{ix}^{K_1}, \dots, q_{ix}^{K_m})$ $(m \in \mathbb{N})$. Namely, z_{ix}^m is part of player i's private history recording only the outcomes of trials on arm X and the private signal

^{*}ISER, Osaka University, 6-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.

 s_i . Define $\hat{\alpha}^m = \mu(x = r_k \mid z_{ix}^m)$ to be *i*'s period K_m posterior belief that $x = r_k$ given z_{ix}^m as the only information. Since K_m and $q_{ix}^{K_m}$ are independent conditional on (x,y) (Cho and Teicher [1, Corollary 5.3.1]), it follows that if $K_m < \infty$ for every $m < \infty$, $q_{ix}^{K_1}, q_{ix}^{K_2}, \ldots, q_{ix}^{K_m}, \ldots$ consititutes Bernoulli trials on arm X. Since $F_i = \bigcap_{m \in \mathbb{N}} \{K_m < \infty\}$, we have

$$\mu_{\sigma}(\lim_{m\to\infty} \hat{\alpha}^m = 1, F_i \mid x = r_k) = 1$$

by the consistency of Bayes estimates.¹ Since $\mu_{\sigma}(x = r_k, F_i) > 0$ by assumption, the above implies that

$$\mu_{\sigma}(\lim_{m \to \infty} \hat{\alpha}^m = 1 \mid x = r_k, F_i) = 1. \tag{1}$$

We now turn to the proof of $\mu_{\sigma}(\lim_{t\to\infty} \alpha^t = 1 \mid x = r_k, F_i) = 1$. Write $\alpha^{\infty} = \mu_{\sigma}(x = r_k \mid h^{\infty}, z_i^{\infty})$ and $\hat{\alpha}^{\infty} = \mu(x = r_k \mid z_{ix}^{\infty})$. We then have $\lim_{t\to\infty} \alpha^t = \alpha^{\infty}$ and $\lim_{m\to\infty} \hat{\alpha}^m = \hat{\alpha}^{\infty}$ both μ_{σ} -almost surely by the martingale convergence theorem. Let E_{σ} be the expectation operator corresponding to μ_{σ} . Since $\sigma(z_{ix}^{\infty}) \subset \sigma(h^{\infty}, z_i^{\infty})$,

$$\hat{\alpha}^{\infty} = E_{\sigma}[1_{\{x=r_k\}} \mid z_{ix}^{\infty}] = E_{\sigma}[E_{\sigma}[1_{\{x=r_k\}} \mid h^{\infty}, z_i^{\infty}] \mid z_{ix}^{\infty}] = E_{\sigma}[\alpha^{\infty} \mid z_{ix}^{\infty}] \quad \mu_{\sigma}\text{-a.s.}$$
(2)

by the law of iterated expectations. Let $G = \{\hat{\alpha}^{\infty} = 1\}$ and note that by our assumption and (1),

$$\mu_{\sigma}(G) \ge \mu_{\sigma}(G \mid x = r_k, F_i) \,\mu_{\sigma}(x = r_k, F_i) = \mu_{\sigma}(x = r_k, F_i) > 0.$$
 (3)

We then have

$$1 = E_{\sigma}[\hat{\alpha}^{\infty} \mid G] = E_{\sigma}[E_{\sigma}[\alpha^{\infty} \mid z_{ix}^{\infty}] \mid G] = E_{\sigma}[\alpha^{\infty} \mid G], \tag{4}$$

where the first equality follows from the definition of G, the second from (2), and the third from the fact that the set G is $\sigma(z_{ix}^{\infty})$ -measurable. Since $\alpha^{\infty} \leq 1$, (3) and (4) show that $\mu_{\sigma}(\alpha^{\infty} = 1 \mid G) = 1$ must be true. This and (1) imply the desired conclusion $\mu_{\sigma}(\alpha^{\infty} = 1 \mid x = r_k, F_i) = 1$.

References

- Y. S. Chow, H. Teicher, Probability Theory, Second Edition, Springer-Verlag, New York, 1988.
- [2] M. DeGroot, Optimal Statistical Decisions, McGraw-Hill, New York, 1970.

¹See, for example, DeGroot [2, Sec. 10.5].