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agents’ effort incentive through the use of a feedback policy, which transforms
his private information into a public announcement. The optimal feedback pol-
icy is one that maximizes the agents’ expected effort. The paper identifies when
the principal should use the no-feedback policy that reveals no information, or
the full-feedback policy that reveals all his information.
Key words: interim performance evaluation, tournament, mechanism, informa-
tion revelation, Jensen’s inequality.
Journal of Economic Literature Classification Numbers: C72, D82.

∗This is a substantially revised version of an earlier paper under the same title (Aoyagi (2006)). I

am very grateful to anonymous referees and the associate editor of this journal for helpful comments.
†E-mail address: aoyagi@iser.osaka-u.ac.jp

1

Masaki Aoyagi
タイプライターテキスト
Games and Economic Behavior, 70, 242-260, 2010.

Masaki Aoyagi
タイプライターテキスト

Masaki Aoyagi
タイプライターテキスト



1 Introduction

As a prominent form of relative performance evaluation, tournaments have attracted
considerable attention in economic theory. The main focus of the theory is on the size
and allocation of rewards that maximize the performance of the competing agents,
and on the comparison of the relative incentive schemes against more general forms
of contracts. Beginning with the seminal work of Lazear and Rosen (1981), a partial
list of the literature on this subject includes Green and Stokey (1983), Nalebuff and
Stiglitz (1983), Glazer and Hassin (1988), Gradstein and Konrad (1999), Moldovanu
and Sela (2001), and others. While it is common in the literature to formulate a
tournament as a static game, tournaments in reality are often dynamic games in
which agents make multiple effort decisions over time.1 One important consideration
when designing a tournament as a dynamic game concerns the control of information
during the course of play. In other words, the organizer should strategically plan
how much information about agents’ performance should be revealed back to them
at what timing. A leading example is given by a job tournament, which typically
spans multiple stages and measures workers’ performance by subjective criteria such
as leadership, originality, ability to work in teams, etc. Workers’ performance in such
a case is most appropriately described as private information of their superior or
the firm’s personnel department, who communicates this information back to the
workers as a way of providing motivation, the process known as interim performance
evaluation. Research on performance management well recognizes that inducement
of the work incentive requires careful designing of information feedback.2

In this paper, we formulate a model of a dynamic tournament in which the
principal receives private information about agents’ performance, and then reveals
as a feedback some or all of his information to the agents. The analysis is dual to
that in the standard contest literature in that we fix prizes and focus exclusively on
the effects of information.

In our model of a two-stage tournament, agents make private effort choices in
each stage. Each agent’s performance score in each stage equals the sum of his effort
and a random noise term. After stage 1, the principal privately observes the stage 1
scores, and makes a public announcement about it before stage 2. A feedback policy is
a mapping that transforms the stage 1 scores into the interim public announcement.

1Moldovanu and Sela (2006) provide one theoretical justification of the use of a dynamic tour-

nament.
2See, for example, Williams (1998).
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An agent wins if the sum of his performance scores over the two stages exceeds that
of his opponent, and is awarded a prize of a fixed value such as a promotion to a
higher job rank. The optimal feedback policy is one that maximizes the principal’s
payoff which is an increasing function of the agents’ expected efforts.

The paper presents sufficient conditions for the existence of a perfect Bayesian
equilibrium (PBE) of this game, and characterizes equilibrium effort levels. The
optimal feedback policy is given as follows: When the stage 2 marginal cost of effort
is convex, the no-feedback policy is optimal in the class of feedback policies that
admit a symmetric PBE. On the other hand, the full-feedback policy is optimal in
the same class when the stage 2 marginal cost is concave. When the two agents’
efforts are sufficiently complementary to each other in the principal’s payoff function,
the no-feedback and full-feedback policies are also optimal within the wider class of
feedback policies that induce a possibly asymmetric PBE.

Existing theories provide varying intuitions on the optimal degree of information
revelation. In auction theory, the so-called linkage principle by Milgrom and Weber
(1982) asserts that under the affiliated distribution of signals, the seller’s expected
revenue is the highest when he is committed to revealing all of his private information
to the bidders.3 However, the intuition furnished by the linkage principle fails in
some other auction environments: Kaplan and Zamir (2000) analyze the problem
of an auctioneer privately informed about bidders’ valuations. In an independent
private values framework, they find that the auctioneer is better off revealing the
maximum of the valuations than fully revealing his information. In a model of twice-
repeated common-value auctions with affiliated signals, de-Frutos and Rosenthal
(1998) show that the auctioneer’s expected revenue (over two auctions) is lower
when information about stage 1 bids is made public than when it is not.4

The literature on dynamic models of a race also provides a closely related obser-
vation in the discussion of the closed- and open-loop formats.5 The open-loop format
reveals no information to the players during a competition, whereas the closed-loop
format reveals the competitors’ positions publicly and instantaneously. It is often
argued that the players tend to slack off in the closed-loop format since, when one
player has a lead over the others, the followers cannot catch up with the leader (in

3A probability distribution is affiliated if the joint density function is log-supermodular.
4Perry and Reny (1999) report the failure of the linkage principle in a multi-object auction based

on an entirely different logic.
5See, for example, Harris and Vickers (1985), and Fudenberg et al. (1983). Radner (1985) also

makes a related observation in the context of a repeated principal-agent game.
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expected terms) by making the same level of effort as him. For example, Fuden-
berg et al. (1983) demonstrate the phenomenon of ε-preemption, where players stop
making effort as soon as one of them establishes a small lead over others.

The problem of an agent’s effort incentive and information is studied mainly
in the context of dynamic principal-agent models. In the analysis of a repeated
principal-agent game with a public performance signal, Radner (1985) considers
a review strategy for the principal that evaluates the agent’s performance at the
end of each review phase that spans a large number of periods. He notes that
inefficiency is inevitable as the agent relaxes near the end of the review phase if
he realizes that his effort no longer influences the outcome of the review.6 In a
paper that is closely related to the present one, Lizzeri et al. (2002) study a two-
stage principal-agent problem where the agent’s performance information is the
principal’s private information as in the present paper. Comparison is made on
the agent’s effort and the principal’s payoff when the stage 1 performance (which
is either a success or a failure) is revealed to the agent and when it is not.7 They
find that the revelation of information leads to a higher expected effort under the
fixed wage profile and a quadratic cost function, but that the no-revelation scheme
implements the same expected effort less expensively when the wage profile itself
can be adjusted simultaneously. This independent finding by Lizzeri et al. (2002)
complements the present analysis.8

Recently, the subjects of interim performance evaluation and information feed-
back are beginning to receive more attention. A partial list of papers on the sub-
jects includes Ederer (2004), Gershkov and Perry (2006), Goltsman and Mukherjee
(2006), Yildirim (2005), and Wang and Zhang (2007).9 Ederer (2004) extends the
analysis of the present paper to include the possibility of private ability types. Ger-
shkov and Perry (2006) discuss the interaction of feedback and the relative impor-
tance of the outcome of each stage tournament when the principal can only observe
the identity of the leader. Goltsman and Mukherjee (2006) analyze a model with
binary outcomes. Yildirim (2005) examines the agents’ incentive to reveal informa-

6Also in a repeated environment, Abreu et al. (1991) analyze the problem of inducing effort

when the accuracy of monitoring changes.
7With the binary private signal, these are the only (deterministic) feedback policies in Lizzeri

et al. (2002).
8See Section 4 for more discussion on Lizzeri et al. (2002) as well as some other papers mentioned

below.
9These papers came to my attention after the first draft of this paper was completed.
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tion about their interim performance. Wang and Zhang (2007) study information
disclosure in elimination tournaments.

The paper is organized as follows: In the next section, we formulate a model
of a dynamic tournament. Section 3 characterizes a PBE and provides sufficient
conditions for its existence. Optimal feedback policies are studied in Section 4. We
conclude in Section 5 with some discussion.

2 Model of a Tournament

Two risk neutral agents i = 1, 2 compete in two stages. In each stage, the agents’
effort gives rise to stochastic performance scores. At the end of stage 2, the principal
aggregates the scores from the two stages to determine the winner.

Formally, suppose that agent i’s effort ai
t in stage t is chosen from the set R+

of non-negative real numbers. Agent i’s stage t score zi
t is a random variable whose

distribution depends on his effort ai
t in stage t. More specifically, we assume that

zi
t = ai

t + εi
t for a real-valued random variable εi

t. Let ξt be the joint density of
εt = (ε1

t , ε
2
t ) over R2. We assume that ξt is strictly positive, twice continuously

differentiable, and symmetric in the sense that ξt(εt) = ξt(ε̂t) when ε̂1
t = ε2

t and
ε̂2
t = ε1

t . Assume also that ε1 and ε2 are independent over stages. Let μt = ε1
t − ε2

t

be the difference of the noise levels between the two agents in stage t, and denote
the density of μt by φt and the corresponding cumulative distribution by Φt. φt can
be expressed in terms of ξt as

φt(μt) =
∫
R

ξt(u, u − μt) du,

and is symmetric around zero: φt(μt) = φt(−μt) for any μt. Now define

xt = z1
t − z2

t = a1
t − a2

t + μt

to be agent 1’s lead over agent 2 in terms of the stage t scores.10 We assume that the
principal observes xt after stage t (t = 1, 2).11 Using φt, we can write the density
of xt under the action profile at = (a1

t , a
2
t ) as

φt(xt − a1
t + a2

t ).
10In this formulation, hence, xt changes linearly with the difference of efforts a1

t − a2
t . The

conclusions of the paper continue to hold with minor modifications if xt = λ(a1
t − a2

t )+μt for some

differentiable function λ : R → R such that λ(0) = 0 and λ(d) = −λ(−d) for any d > 0.
11See the discussion later on this assumption.
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Let x = x1 + x2 be the aggregate lead of agent 1 over agent 2. Agent 1 wins if
x > 0, and agent 2 wins if x < 0. Each agent wins with equal probability in the
(probability zero) event of a tie x = 0. Let μ = μ1 + μ2 represent the noise in x,
and φ̄ denote its density:

φ̄(x) =
∫
R

φ1(x − u)φ2(u) du.(1)

Each agent derives one unit of positive utility from winning the prize (e.g., promotion
to a higher job rank), and incurs disutility from effort. The cost of effort in stage t is
described by a twice differentiable cost function ct : R+ → R+. Accordingly, agent
i’s overall utility equals 1 −∑2

t=1 ct(ai
t) if he wins, and −∑2

t=1 ct(ai
t) otherwise.

Throughout, we assume that in each stage t = 1, 2, the marginal cost of effort
equals zero at no effort, and is strictly increasing:

c′t(0) = 0, inf
a∈R+

c′′t (a) > 0.(2)

The principal’s payoff, on the other hand, is a function of both agents’ efforts over
the two stages: V (a1

1, a
2
1, a

1
2, a

2
2). The function V : R4

+ → R is assumed to be
increasing (V (â) ≥ V (a) if âi

t ≥ ai
t for each t, i = 1, 2), and symmetric with respect

to the agents (V (â) = V (a) if â1
t = a2

t and â2
t = a1

t for t = 1, 2). Furthermore, we
assume that when the stage 2 efforts are symmetric a1

2 = a2
2 = u, V (a1, a2) is an

increasing affine function of u. In other words, there exist functions A : R2
+ → R+

and B : R2
+ → R such that for any a1 ∈ R2

+ and u ∈ R+,

V (a1, a2) = A(a1)u + B(a1) if a2 = (u, u).(3)

In essence, (3) ensures that when the stage 2 effort profile is symmetric, the principal
cares only about their expected values. When the payoff function is time separable,
for example, then (3) holds when the stage 2 payoff is homogeneous of degree one
in the agents’ stage 2 efforts. Leading examples of this case include

V (a) =
2∑

t=1

(a1
t + a2

t ), V (a) =
2∑

t=1

min {a1
t , a2

t },

and more generally, the CES family V (a) =
∑

t

{
(a1

t )
m+(a2

t )
m
}1/m

(m ≤ 1, m �= 0).
Since the principal’s payoff may contain more information about the agents’ efforts
than x, which determines the winner of the tournament, we suppose that the payoff
is observed only ex post.
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Each agent’s effort ai
t is his private information and observed by neither the

principal nor the other agent. On the other hand, the principal privately observes
xt = z1

t −z2
t in each stage t and reveals either whole or part of his private information

x1 after stage 1. Specifically, suppose that the principal makes a public announce-
ment y about x1 at the end of stage 1. Formally, a feedback policy (or simply a
policy) is a pair of the set of possible announcements Y , and a measurable mapping
f : R → Y , which chooses the announcement y = f(x1) as a function of signal x1.
For simplicity, reference to Y will be omitted and the mapping f alone will be called
a feedback policy in what follows. It is understood that Y = {f(x1) : x1 ∈ R} so
that f is a surjection. The announcement y is credible in the sense that the principal
publicly announces his feedback policy f before stage 1 and uses it to generate y for
any signal x1.12 The principal’s objective is to maximize his expected payoff by con-
trolling f . Although we will restrict our analysis to deterministic feedback policies,
the paper’s conclusions hold even when we allow for stochastic feedback policies,
which choose the announcement y as a function of z1 and some (exogenous) random
variable.

As mentioned above, we suppose that the principal observes only the difference
x1 = z1

1 − z2
1 between the performance scores and not the scores themselves. This

is consistent with our supposition that the winner of the tournament is determined
by the difference in the aggregate scores x = x1 + x2. It is also justified by the
observation that the difference in performance levels is often much easier to capture
and evaluate than the levels themselves. This is particularly true when, for example,
the two scores are highly correlated due to the presence of a large, common random
shock. Technical aspects of this assumption are discussed after Theorem 3.3 in
the next section, and the consequence of alternative weaker requirements on f is
analyzed in the Appendix.13

Given any announcement y ∈ Y , let f−1(y) = {x1 ∈ R : f(x1) = y} denote
the inverse image of the (singleton) set {y} under f . In what follows, we will
restrict attention to feedback policies that satisfy the following regularity condition:
A feedback policy f is regular if for any y ∈ Y , f−1(y) ⊂ R either has positive
(Lebesgue) measure, or is countable. No other restriction is placed on the feedback
policy. For example, each announcement y ∈ Y may simply contain the name of the

12In other words, the principal commits to his policy. See Section 5 for more discussion.
13The assumption that feedback depends only on x1 is required only for the analysis of optimal

feedback policies. The characterization and existence of an equilibrium (Theorems 3.1 and 3.2)

hold more generally. See the Appendix.
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leader, or it may be an interval in R which indicates the range of x1 = z1
1 − z2

1 .
As mentioned in the Introduction, some simple feedback policies will play an

import role in our analysis. In particular, the no-feedback policy sends the same
message regardless of x1, and the full-feedback policy reveals x1 completely. Between
these two are numerous policies that reveal an intermediate amount of information.
For example, the following policy reveals full information when the lead is within
some range (−b, b) (b > 0), but nothing otherwise: Y = (−b, b) ∪ {N}, and

f(x1) =

⎧⎨
⎩x1 if |x1| < b,

N otherwise.

Of course, the agents hearing the announcement N under this policy would know
that |x1| ≥ b.

Given any policy f , agent i’s history hi after stage 1 is the information available
to agent i at the end of stage 1: hi consists of his own effort choice ai

1, and the
public announcement y by the principal. Agent i’s (pure) strategy σi is a pair
(σi

1, σ
i
2), where σi

1 ∈ R+ is the effort choice for stage 1, and σi
2 : R+ × Y → R+ is

a mapping that specifies the stage 2 effort after each possible history hi = (ai
1, y).

Given the strategy profile σ, let πi
2(a

i
2 | σ, hi

1) denote agent i’s expected payoff in
stage 2 (payoff from the possible prize minus the cost of stage 2 effort) when he
chooses ai

2 in stage 2, his history in stage 1 is hi
1, and agent j plays according to

the strategy σj in both stages. Likewise, let πi
1(a

i
1 | σ) denote agent i’s overall

expected payoff when he chooses ai
1 in stage 1 and plays according to σi

2 in stage
2, and agent j plays according to σj in both stages. Throughout, we consider a
perfect Bayesian equilibrium (PBE) of this tournament game in which each agent’s
effort choice is sequentially rational in the sense that it is optimally chosen even
after an off-equilibrium effort choice in stage 1. In the discussion of PBE, we omit
reference to an agents’ belief which is uniquely determined under the assumption
that the distribution ξ1 of noise ε1 has full support. Given an equilibrium strategy
σi = (σi

1, σ
i
2) of agent i and announcement y ∈ Y , we define

σi
2(y) = σi

2(σ
i
1, y)

to be i’s stage 2 effort on the equilibrium path following announcement y. When σ is
given, E[· | ai

1, y] denotes the expectation conditional on the public announcement
f(x1) = y when agent i chooses action ai

1 while agent j chooses σj
1 in stage 1.

Likewise, E[· | y] = E[· | σi
1, y] denotes the expectation conditional on f(x1) = y

8



when the stage 1 effort profile is σ1 = (σ1
1, σ

2
1). The unconditional expectations

E[· | ai
1] and E[·] are defined in a similar manner.

Let v(σ, f) denote the principal’s expected payoff in a PBE σ under the feedback
policy f :

v(σ, f) = Ez1 [V (σ1, σ2(f(x1)))] .

The principal’s objective is to maximize v(σ, f) by choosing a feedback policy f and
inducing a PBE σ under f .

3 Equilibrium Effort Levels

We begin by deriving the essential marginal equation in stage 2. When the stage 1
score is z1 and the stage 2 effort profile is (a1

2, a
2
2), the probability that agent 1 wins

is given by

1 − Φ2(−x1 − a1
2 + a2

2) = Φ2(x1 + a1
2 − a2

2),

where x1 = z1
1 − z2

1 , and the equality follows from the symmetry of φ2 around 0:
Φ2(x) = 1 − Φ2(−x) for any x. Hence, given the history h1

1 = (a1
1, y) of his own

action and public announcement, agent 1’s expected payoff in stage 2 can be written
as:

π1
2(a

1
2 | σ, h1

1) = Ez1,ε2 [1{z1
1+a1

2+ε1
2>z2

1+σ2
2(y)+ε2

2} | a1
1, y] − c2(a1

2)

= Ez1 [Φ2(x1 + a1
2 − σ2

2(y)) | a1
1, y] − c2(a1

2).

Taking the derivative with respect to a1
2, we see that the sequentially rational choice

of effort a1
2 = σ1

2(a
1
1, y) in stage 2 should satisfy the first-order condition

Ez1 [φ2(x1 + σ1
2(a

1
1, y) − σ2

2(y)) | a1
1, y] = c′2(σ

1
2(a

1
1, y)).

When a1
1 equals the equilibrium effort choice σ1

1 in stage 1, hence, the effort choice
σ1

2(y) = σ1
2(σ

1
1, y) on the path of play in stage 2 should satisfy

Ez1 [φ2(x1 + σ1
2(y) − σ2

2(y)) | y] = c′2(σ
1
2(y)).(4)

This is the marginal equation for agent 1 in stage 2 that balances the expected
marginal increment in the probability of winning with the marginal disutility of
effort. The corresponding condition for agent 2 is given by

Ez1 [φ2(−x1 − σ1
2(y) + σ2

2(y)) | y] = c′2(σ
2
2(y)).(5)
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With the symmetry of φ2, the expected marginal increments on the left-hand sides
of (4) and (5) are indeed the same, and so are σ1

2(y) and σ2
2(y). With the two

agents’ efforts canceling each other, the expected marginal increment reduces to
E[φ2(x1) | y] in equilibrium. The following theorem summarizes this argument and
also describes the first-order conditions for the stage 1 effort in any pure PBE. Recall
that φ̄ denotes the density of the aggregate noise μ1 + μ2 = ε1

1 − ε2
1 + ε1

2 − ε2
2.

Theorem 3.1. Suppose that

sup
x∈R

φ′
2(x) < inf

a∈R+

c′′2(a).

If σ is a pure PBE under any feedback policy f , then for any y ∈ Y ,

σ1
2(y) = σ2

2(y) = a∗2(σ1, y) ≡ (c′2)
−1 (Ez1 [φ2(x1) | f(x1) = y]) .(6)

If, in addition, σ1
1, σ2

1 > 0, then

c′1(σ
1
1) = φ̄(σ1

1 − σ2
1) +

∫
R

c2 (a∗2(σ1, f(x1))) φ′
1(x1 − σ1

1 + σ2
1) dx1,

c′1(σ
2
1) = φ̄(σ1

1 − σ2
1) −

∫
R

c2 (a∗2(σ1, f(x1))) φ′
1(x1 − σ1

1 + σ2
1) dx1.

(7)

Proof. See the Appendix. �

Note from Theorem 3.1 that information feedback has two separate effects on the
agents’ incentives. First, the revealed information influences the agents’ incentives
by changing their beliefs. This, which we call the ex post effect of information
feedback, is reflected in the conditioning event in the stage 2 effort in (6). Next,
agents choose their stage 1 effort so as to influence the content of the revealed
information. This is reflected in the second term on the left-hand sides of (7). We
call this the strategic effect of information feedback.

As seen above, the stage 2 effort is determined through the standard marginal
consideration, and the symmetry of the agents’ stage 2 effort profile holds for any
announcement whether the equilibrium itself is symmetric or not. It can also be
seen that the expected marginal cost in stage 2 is independent of the feedback policy
since by the law of iterated expectation

Ez1

[
c′2(a

∗
2(σ1, f(x1)))

]
= Ez1

[
Eẑ1

[
φ2(x̂1) | f(x̂1) = f(x1)

]]
= Ez1 [φ2(x1)]

= φ̄(0).

(8)
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One implication of (6) is as follows. Suppose for simplicity that f is the full-
feedback policy: f(x1) = x1. In this case, σi

2(z1) = (c′2)−1 (φ2(x1)) as is readily
verified. It follows that the stage 2 effort is maximized when φ2(x1) is the largest. If
φ2 is unimodal at the origin as in the case of the normal distribution, hence, the stage
2 effort is a monotone decreasing function of |x1|. Such a specification supports the
common intuition that the closer the competition, the higher the efforts the agents
exert. Note, however, that this intuition fails when, for example, φ2 is bimodal so
that φ2(x) = φ2(−x) > φ2(0) for some x > 0.

We next turn to the existence of a pure PBE. As discussed in Nalebuff and
Stiglitz (1983), the existence of an equilibrium in a moral hazard tournament re-
quires noise to be sufficiently large. Intuitively, if the noise is too small, then any
infinitesimal increase in effort results in almost sure winning, making it impossible
for the marginal equation to hold. The assumption below specifies how large the
noise should be for the existence of an equilibrium.14

Assumption 1. Let κ = min
{

1, inf
a∈R+

c′′1(a), inf
a∈R+

c′′2(a), lim
a→∞ c′2(a)

}
> 0. Then

sup
x∈R

φ2(x), sup
x∈R

φ′
2(x),

∫
R2

∣∣∣ ∂2ξ1

∂(εi
1)

2 (ε)
∣∣∣ dε,

∫
R2

(
∂ξ1

∂εi
1

(ε)
)2 1

ξ1(ε)
dε <

κ

2
.(9)

Theorem 3.2. Suppose that Assumption 1 holds. Given any feedback policy f ,
there exists a pure PBE under f if (7) has a solution σ1 = (σ1

1, σ
2
1) ≥ 0.

Proof. See the Appendix. �

For any set A ⊂ R, define −A = {−x : x ∈ A}. We say that a feedback
policy f is symmetric if f−1(f(x1)) = −f−1(f(−x1)) for any x1 ∈ R. Note that
this comprises two possibilities: When f(x1) = f(−x1), this implies that the set

14If, for example, εt = (ε1
t , ε

2
t ) has the normal distribution N(0, Σ) where Σ = σ2

�
1 ρ

ρ 1

�

(t = 1, 2) so that φt(εt) = 1
2π

Σ−1/2 exp {− 1
2

ε′tΣεt}, then Assumption 1 holds if the variance σ2 is

sufficiently large. In particular, note that�
R2

��� ∂2ξ1

∂(εi
1)

2 (ε)
��� dε =

�
R2

���− 1

σ2(1 − ρ2)
ξ1(ε) +

(ε1 − ρε2)2

σ4(1 − ρ2)2
ξ1(ε)

��� dε ≤ 2

σ2(1 − ρ2)
,

and �
R2

�
∂ξ1

∂εi
1

(ε)

�2

ξ1(ε)
−1 dε =

�
R2

(ε1 − ρε2)2

σ2(1 − ρ2)
ξ1(ε) dε =

1

σ2(1 − ρ2)
.
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f−1(f(x1)) itself is symmetric around 0, suggesting that the inference drawn from
the announcement f(x1) and that drawn from f(−x1) are the same. When f(x1) �=
f(−x1), symmetry implies that the sets f−1(f(x1)) and f−1(f(−x1)) are symmetric
with respect to 0, suggesting that the inference drawn from the announcement f(x1)
is the exact opposite of that drawn from f(−x1). The full- and no-feedback policies
are both symmetric. The focus on symmetric policies is in line with the symmetry
between the two agents.

A strategy profile σ is symmetric if the two agents choose the same effort level
on the path: σ1

1 = σ2
1 and σ1

2(y) = σ2
2(y) for any y ∈ Y . We now show that every

symmetric policy admits a symmetric PBE under Assumption 1. Summing the two
equations of (7), we see that the stage 1 effort in a symmetric PBE (if any) must
satisfy

σ1
1 = σ2

1 = a∗1 ≡ (c′1)
−1(φ̄(0)).(10)

The following theorem confirms that this a∗1 is indeed the equilibrium stage 1 effort
when f is symmetric.

Theorem 3.3. Suppose that Assumption 1 holds. If f is symmetric, there exists a
unique symmetric pure PBE σ. Furthermore, for a∗2 defined in (6) and a∗1 defined
in (10), σ satisfies

σ1
1 = σ2

1 = a∗1,(11)

and
σ1

2(y) = σ2
2(y) = a∗2(σ1, y) for any y ∈ Y .

Proof. See the Appendix. �

The following comments are in order on Theorem 3.3. First, the noise level re-
quired for the existence of a PBE is independent of the choice of a feedback policy.
Second, by (8) and (11), in the symmetric PBE, the marginal cost of effort in stage
1 and the expected marginal cost in stage 2 both equal φ̄(0). This is a very intuitive
intertemporal relationship and its counterpart forms the basis of, for example, the
theory of precautionary savings. Third, the stage 1 effort in symmetric PBE is in-
dependent of the choice of a feedback policy. The second and third properties above
are closely related to each other, and both may fail when the PBE is asymmetric
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or when the principal observes more than just x1. The following is a discussion on
this point in some detail.

As seen from (7), the strategic effect of information feedback on agent 1’s stage
1 incentive is exactly opposed with that on agent 2’s incentive. In other words,
whatever information may be expected regarding the difference between the stage
1 scores, if it raises agent 1’s stage 1 effort incentive, it reduces agent 2’s incentive,
and vice versa. If the two agents’ stage 1 effort choices are the same as in symmetric
PBE, it must then be the case that the strategic effect is null for both agents.
This explains why the stage 1 effort in symmetric PBE is the same under any
feedback policy. The same observation does not hold for information regarding the
aggregate performance score s1 = z1

1 + z2
1 in stage 1. Specifically, if the principal

observes and releases information about s1 in addition to that on x1, any information
expected on s1 works in the same direction for the two agents. For this reason,
when f is a function also of s1, the marginal cost of the agents’ stage 1 effort does
not necessarily equal the marginal cost of their stage 2 effort even in symmetric
PBE. In the Appendix, we identify the conditions under which the strategic effect
is nullified even with feedback of information on the aggregate score. Under these
conditions, the conclusions in the next section on the optimal policies in symmetric
PBE generalize.15

4 Optimal Feedback Policy

The following facts about the no-feedback and full-feedback policies are readily
implied by Theorem 3.3.

Proposition 4.1. If σ is the (unique) symmetric pure PBE under the no-feedback
policy, then the stage 1 effort equals σi

1 = a∗1 and the stage 2 effort equals

σi
2 = aN

2 ≡ (c′2)
−1
(
φ̄(0)

)
.

Likewise, if σ is the (unique) symmetric pure PBE under the full-feedback policy,
then the stage 1 effort equals σi

1 = a∗1 and the expected stage 2 effort equals

E[σi
2(y)] = aF

2 ≡
∫
R2

(c′2)
−1(φ2(x1)) φ1(x1) dz1.

15On the other hand, the conclusions on asymmetric PBE do not generalize given that the

discussion there is based on the fact that the two strategic effect terms in (7) cancel out each other.
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When (c′2)−1 is concave or convex, Proposition 4.1 can be used to rank the
no-feedback and full-feedback policies in terms of the expected stage 2 effort they
induce in the symmetric PBE. Suppose for example that (c′2)−1 is concave. Then
Jensen’s inequality implies the no-feedback policy induces a higher expected effort
than the full-feedback policy:

aF
2 =

∫
R2

(c′2)
−1(φ2(x1)) φ1(x1) dz1 ≤ (c′2)

−1

(∫
R2

φ2(x1) φ1(x1) dz1

)
= aN

2 .

The reverse inequality holds when (c′2)−1 is convex. This section considers general-
izations of these inequalities. Given that the stage 2 efforts in any PBE are always
symmetric between the two agents by (6), it follows from our assumption (3) on the
principal’s payoff function V that his expected payoff is an increasing function of
their expected stage 2 effort.16 Recall that v(σ, f) denotes the principal’s expected
payoff in a PBE σ under the feedback policy f .

4.1 Symmetric Equilibrium

Even when f admits multiple symmetric pure PBE’s, they all induce the same on-
the-path effort by Theorem 3.1 and equation (10). In this sense, the principal’s
payoff is independent of the choice of a symmetric PBE σ. Hence, we define

v̄∗(f) =

⎧⎨
⎩v(σ, f) if f admits a symmetric pure PBE σ,

0 otherwise.

Theorem 4.2. Suppose that Assumption 1 holds.

1. If the stage 2 marginal cost c′2 is convex over [0, (c′2)−1(supx∈R φ2(x))], then
the no-feedback policy maximizes v̄∗ among all policies.

2. If the stage 2 marginal cost c′2 is concave over [0, (c′2)−1(supx∈R φ2(x))], then
the full-feedback policy maximizes v̄∗ among all policies.

Proof. We only prove the case of the convex marginal cost since the proof of the
other case is similar. Take any policy f with a symmetric pure PBE σ. Since the
stage 1 effort is the same in any symmetric PBE, it suffices to show that the expected
stage 2 effort is maximized under the no-feedback policy. Since (c′2)−1 is concave

16In the consideration of a symmetric PBE in Section 4.1, we only need the linearity of V (a1, a
1
2 =

a2
2 = u) in u for a1 such that a1

1 = a2
1.
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over [0, supx∈R φ2(x)], it follows from Jensen’s inequality and the law of iterated
expectation that the expected stage 2 effort under f satisfies

Ey[a∗2(σ1, y)] = Ey

[
(c′2)

−1 (Ez1 [φ2(x1) | y])
]

≤ (c′2)
−1 (Ey [Ez1 [φ2(x1) | y]])

= (c′2)
−1
(
Ez1

[
φ2(x1)

])
= (c′2)

−1
(
φ̄(0)

)
= aN

2 ,

where the third equality follows from the symmetry of the stage 1 effort profile
σ1. �

The proof of Theorem 4.2 also indicates that when c′2 is concave (resp. convex),
the no-feedback (resp. full-feedback) policy yields the lowest expected payoff to the
principal. On the other hand, when the marginal cost function c′2 for stage 2 is
linear (and hence both concave and convex), the induced effort in either stage is not
affected by the feedback policy. The following corollary summarizes this immediate
consequence of Theorem 3.1.

Corollary 4.3. Suppose that the stage 2 cost function is quadratic: c2(a) = 1
2 ka2

for some k > 0. Suppose also that supx∈R φ′
2(x) < k. In any symmetric pure

PBE σ under f , the stage 1 effort equals σi
1 = a∗1, and the expected stage 2 effort

equals E[σi
2(y)] = 1

k φ̄(0). It follows that the principal’s expected payoff v(σ, f) is
independent of f .

Lizzeri et al. (2002) compare the no-feedback and full-feedback policies under
the assumption that effort cost is a quadratic function, and state (in Lemma 1)
that the expected stage 2 effort is the same with or without feedback provided that
the stage 1 effort is fixed at some level. Corollary 4.3 parallels this result since in
our model, the stage 1 effort is the same in symmetric PBE under any feedback
policy. Lizzeri et al. (2002) then conclude that full feedback is optimal (Proposition
2) based primarily on the comparison of stage 1 effort under the two policies. In
our terminology, this can be expressed as the higher strategic effect induced by
full feedback in their model. Note that our point of comparison is reversed: The
neutrality result above is based on the comparison of the expected ex post effects on
stage 2 effort since the strategic effect is zero in symmetric PBE. Ederer (2004) and
Goltsman and Mukherjee (2006) also reach some different conclusions on optimal
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feedback with the quadratic cost function. In a model where an agent’s performance
is a function not only of his effort but also of his (unknown) ability, Ederer (2004)
finds that when the ability and effort work additively, full feedback and no feedback
induce the same expected effort, but that when they work multiplicatively, full
feedback is better than no feedback. The latter conclusion can be attributed to the
agents’ learning about their abilities, which Ederer (2004) refers to as motivation.
In a model where each agent’s effort leads to either success or failure in each stage,
Goltsman and Mukherjee (2006) find that the optimal symmetric feedback policy is
to reveal whether both agents have failed or at least one agent has succeeded. This
non-neutrality result is likely to stem from the way performance is defined in their
model.

4.2 Asymmetric Equilibrium

We now allow a PBE σ to be asymmetric, and define

v̄(f) = sup
{
v(σ, f) : σ is a pure PBE under f and satisfies (7)

}
,

with v̄(f) = −∞ if the corresponding strategy profile does not exist. We need some
additional assumptions in order to evaluate the principal’s expected payoff when the
stage 1 effort profile is asymmetric. Specifically, we will identify the situations where
the principal obtains a higher payoff in a symmetric PBE than in an asymmetric
PBE. In such situations, the optimality of the no-feedback or full-feedback policies
is obtained just as before. Intuitively, a symmetric PBE is more desirable for the
principal than an asymmetric PBE if the two agents’ efforts enter his payoff function
in a complementary manner. In other words, we would want the principal’s payoff
to be higher when both agents make moderate efforts than when one agent makes
a high effort and the other makes a low effort. The assumption below specifies just
how much complementarity is sufficient for our conclusion.

Assumption 2. The principal’s payoff function V is differentiable, and for any
a =

(
(a1

1, a
2
1), (a

1
2, a

2
2)
) ∈ R4

+ such that a1
1 < a2

1 and a1
2 = a2

2, we have

c′′1(a1
1) − 2φ̄′(a1

1 − a2
1)

c′′1(a2
1) + 2φ̄′(a1

1 − a2
1)

<

∂V
∂a1

1
(a)

∂V
∂a2

1
(a)

.(12)

It can be seen that the left-hand side of (12) represents the slope of the curve

h(a1
1, a

2
1) ≡ c′1(a

1
1) + c′1(a

2
1) − 2φ̄(a1

1 − a2
1) = 0(13)
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in the (a1
1, a

2
1)-plane, which equals the sum of the two first-order conditions in (7).

On the other hand, the right-hand side of (12) represents the slope of the princi-
pal’s iso-payoff curve. Hence, (12) is a single-crossing condition asserting that the
iso-payoff curve always has a steeper slope than (13). To see that this implies com-
plementarity between the two agents’ efforts, suppose that V has the CES form:

V (a) =
∑

t

{
(a1

t )
m + (a2

t )
m
}1/m

, where m ≤ 1 and m �= 0. In this case, the right-
hand side of (12) equals (a1

1/a2
1)

m−1. Hence, (12) is easy to satisfy when m − 1
is negative and large in absolute value. In particular, it will hold for any c1 as
m → −∞, or V (a) =

∑
t min {a1

t , a
2
t } in the limit. On the other hand, in the case

of perfect substitutes m = 1, the inequality reduces to c′′1(a1
1)−c′′1(a2

1) < 4φ̄′(a1
1−a2

1),
which in effect requires c′′′1 to be not too negative. The second assumption below
requires that the density of the aggregate noise be maximized at the origin.

Assumption 3. φ̄(0) = maxx∈R φ̄(x).

It can be readily verified that Assumption 3 holds if both densities φ1 and φ2

are unimodal at the origin. As seen in the Appendix (Lemma A.2), Assumptions 2
and 3 together guarantee that the principal’s payoff is maximized at the symmetric
point (a∗1, a∗1) along (13) (provided that the stage 2 efforts are symmetric). The next
theorem shows that when these conditions hold, the principal’s payoff is maximized
in the symmetric equilibrium under the no-feedback policy if the stage 2 marginal
cost function is convex.

Theorem 4.4. Suppose that Assumptions 1-3 hold. If the marginal cost function
c′2 for stage 2 is convex over [0, (c′2)−1(supx∈R φ2(x))], then the no-feedback policy
maximizes v̄(·) among all policies.

Proof. See the Appendix. �

For the other type of the conclusion, we also need the density function of the
stage 2 noise to be unimodal.

Assumption 4. φ2 is unimodal at 0: φ2 is strictly increasing over (−∞, 0) and
strictly decreasing over (0,∞).

Under Assumptions 1-4, we obtain the optimality of the full-feedback policy
when the stage 2 marginal cost function is concave.
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Theorem 4.5. Suppose that Assumptions 1-4 hold. If the marginal cost function c′2
for stage 2 is concave over [0, (c′2)−1(φ2(0))], then the full-feedback policy maximizes
v̄(·) among all policies.17

Proof. See the Appendix. �

As in the case of symmetric PBE, the principal’s payoff is independent of the
choice of a feedback policy when the stage 2 cost function c2 is quadratic.

5 Discussions

The paper gives a first attempt to understand the use of the designer’s private
information in a dynamic tournament, and its conclusion shows that the optimal
feedback depends sensitively on the functional form of the agents’ disutility of effort.
Although the present model abstracts from many important features of real tourna-
ments, we believe that such sensitivity is at the core of the information revelation
problem. Below are discussions of some points.

− Principal’s commitment:
The most crucial assumption of the present model is that the principal commits

to his feedback policy.18 The assumption of commitment can be an issue when
the principal’s private information is largely subjective and not verifiable ex post
as in the case of a job tournament where a boss quantifies his impression of his
subordinates’ performance. The most effective commitment device in such a case
is delegation of the work of evaluation and feedback to a division (i.e., a personnel
department) or individual whose incentive is not directly affected by the agents’
effort. Another effective way is to involve multiple individuals in the evaluation and
feedback process so that a report from a single individual can be checked against
the reports from other individuals.19 The principal’s concerns for a reputation can
also be a source of his commitment power when the process is repeated over time: If

17Note that supx∈R φ2(x) = φ2(0) under Assumption 4.
18Note that commitment by the designer is a standard assumption of the mechanism design

literature. In the analysis of auctions, for example, an auctioneer is assumed to retain his good if

no bid reaches the reserve price.
19Some elements of these can be found in performance assessment of the real world. The multi-

layered evaluation requires not only the immediate superior of a worker but also the superior’s

superior to be involved. The 360-degree evaluation requires not only the superior of a worker but

also his subordinates, coworkers and customers to be involved.
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the announcements over some time span have led to stage 2 efforts whose empirical
distribution deviates significantly from the theoretical prediction, then the principal
must face the loss of a reputation.20

When the principal’s commitment is an issue, not all feedback policies are equally
credible: The no-feedback policy is the most credible since any release of information
is a clear deviation from the rule. Other policies are less credible since commitment
can only be checked when the principal’s announcement is compared with his private
information. Such a variation in credibility levels would be an important consid-
eration when we take the interpretation that a third party is called in to enforce
commitment. If the principal totally lacks commitment and optimally chooses his
announcement after seeing his signal, then his announcement becomes cheap talk.
In this case, if the stage 2 effort were influenced by the announcement, then the
message chosen would always be the one that maximizes the effort. However, this
implies that the announcement cannot have any informational content.21 In other
words, the lack of commitment is equivalent to no-feedback in the present frame-
work.

− More than two stages:
The conclusions of the two stage model partially generalize to a T -stage tourna-

ment. A feedback policy in a T -stage model is a contingent plan which determines
not only the amount of information revealed but also its timing. For example, the
principal may choose to reveal the stage 1 score before stage 3 if the stage 2 score is
in some range, but withhold it until stage 4 otherwise. Under a slightly stronger set
of assumptions on noise, we can prove that a symmetric PBE exists in the T -stage
model when a feedback policy is such that ft(x1, . . . , xt−1) = ft(−x1, . . . ,−xt−1)
for any stage t score difference xt = z1

t − z2
t and t = 1, . . . , T . Furthermore, among

such feedback policies, the no-feedback policy is optimal when the stage t marginal
cost functions are convex for t = 2, . . . , T , and the feedback policy that reveals the
absolute value of the stage score after every period, and hence is “most revealing”
in such a class, is optimal when the stage t marginal cost functions are concave.22

− Third derivatives:
As seen above, our theory of information feedback highlights the role of the

20The full analysis of a reputation model, however, is difficult and beyond the scope of this paper.
21Kaplan and Zamir (2000) find that the auctioneer cannot exploit his private information on

the bidders’ valuation if he cannot commit to an announcement policy.
22See Aoyagi (2006).
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third derivative of the agents’ disutility of effort. Lizzeri et al. (2002) also note
that the third derivative plays a key role in determining the optimal policies. While
economic theory often points out the relevance of the higher-order derivatives in
incentive problems, no general consensus exists on their signs.23 In this sense, it is
premature to discuss implications of the present analysis. However, it is important
to realize that optimizing over feedback policies can lead to a substantial improve-
ment in the induced expected effort, and that the optimal information feedback
sensitively depends on the underlying parameters. For example, an optimal policy
under concave marginal disutility is least desirable under convex marginal disutility,
and vice versa.

− Marginal cost that is neither concave nor convex:
One interesting question concerns the optimal feedback policy when the marginal

cost of effort is neither convex nor concave on the relevant domain. We provide
a partial answer to this question in the supplement by examining the marginal
cost function having a single reflection point at which its curvature changes from
convex to concave. Our candidate feedback policy reveals full information when the
absolute value of the score is less than some threshold, and reveals nothing (other
than the fact that the threshold has been exceeded) otherwise. We show that such a
feedback policy outperforms the full-feedback policy. A similar argument identifies
the circumstance in which no-feedback policy is dominated by the feedback policy
that only reveals whether or not the score has exceeded some threshold.

− Private feedback:
In some applications, it is more appropriate to suppose that the agents inher-

ently know their own performance. In a promotion tournament, for example, if
the performance of each agent is measured objectively by the number of products
they have sold, then each agent learns his own performance even if no information
feedback is provided. The only option for the principal in this case is whether to
reveal additional information to each agent on the performance of the other agent.

23For example, Rogerson (1985) shows in a two-stage principal-agent model with public infor-

mation that a condition involving the third derivative of the agent’s utility function determines

whether the expected wage should rise or fall over time. The precautionary saving motive in the

face of future uncertainty is also characterized by the third derivative of an individual’s utility

function. See, for example, Kimball (1990). In mechanism design, the optimality of a deterministic

mechanism is also associated with the third-order cross derivatives of an agent’s utility function.

See, for example, Fudenberg and Tirole (1991).
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The main difficulty in this problem is the possible asymmetry of the stage 2 efforts
caused by asymmetric information.24

A Appendix

A.1 Proofs

This section collects proofs of the theorems presented in the text. For some of
the results, including Theorems 3.1 and 3.2, we do not need to assume that the
feedback policy f is a function of x1. In the general specification, hence, we let
f : R2 → Y and denote by f(z1) the announcement when the stage 1 score profile
equals z1 = (z1

1 , z
2
1). Just as in the text, denote by f−1(y) ⊂ R2 the set of stage 1

score profiles z1 = (z1
1 , z

2
1) compatible with the announcement y. By the regularity

assumption, f−1(y) either has positive measure or is countable. For simplicity, the
analysis in the Appendix only deals with the case where f−1(y) has positive measure.
The treatment of the countable case is similar with the replacement of any integral
over f−1(y) by the corresponding summation.

Given a strategy profile σ and announcement y, let gσ
1 (z1 | ai

1, y) be the con-
ditional density of the stage 1 score profile z1 when the stage 1 effort profile is
(ai

1, σ
j
1) (i.e., when agent i chooses a possibly off-equilibrium action ai

1 while agent
j chooses the equilibrium effort level). For z1 ∈ f−1(y), the conditional density can
be explicitly written as

gσ
1 (z1 | a1

1, y) =
ξ1(z1

1 − a1
1, z

2
1 − σ2

1)∫
f−1(y) ξ1(ẑ1

1 − a1
1, ẑ

2
1 − σ2

1) dẑ1
, and

gσ
1 (z1 | a2

1, y) =
ξ1(z1

1 − σ1
1 , z

2
1 − a2

1)∫
f−1(y) ξ1(ẑ1

1 − σ1
1, ẑ

2
1 − a2

1) dẑ1
.

Note in particular that gσ
1 (· | ai

1, y) depends on σ only through the stage 1 profile σ1.
With slight abuse of notation, we define gσ

1 (z1 | y) = gσ
1 (z1 | σi

1, y): the density of
z1 conditional on y when both agents choose their effort according to σ. Its explicit
form is given by

gσ
1 (z1 | y) =

ξ1(z1 − σ1)∫
f−1(y) ξ1(ẑ1 − σ1) dẑ1

.

24Analysis of private feedback under the simplifying assumption that the performance noise

in stage 1 can take only one of two values is available at http://www.eonet.ne.jp/˜aoyagi/

private feedback.pdf.
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Proof of Theorem 3.1 We first state the first-order conditions (7) for the case
where f is a function of z1:

c′1(σ
1
1) = φ̄(σ1

1 − σ2
1) +

∫
R2

c2 (a∗2(σ1, f(z1)))
∂ξ1

∂ε1
1

(z1 − σ1) dz1,

c′1(σ
2
1) = φ̄(σ1

1 − σ2
1) +

∫
R2

c2 (a∗2(σ1, f(z1)))
∂ξ1

∂ε2
1

(z1 − σ1) dz1.

(14)

A change of variables from z1 = (z1
1 , z

2
1) to (x1, s1) = (z1

1 − z2
1 , z

1
1 + z2

1) shows that
(14) reduces to (7) when f is a function of x1 alone.

Fix any PBE σ. Recall that πi
2(a

i
2 | σ, ai

1, y) represents agent i’s expected payoff
in stage 2 when he chooses ai

2 in stage 2, his history after stage 1 is hi
1 = (ai

1, y),
and agent j plays according to the equilibrium strategy σj. For simplicity, write
πi

2(a
i
2 | ai

1, y) for πi
2(a

i
2 | σ, ai

1, y). As seen in the text, we have

∂π1
2

∂a1
2

(a1
2 | a1

1, y) = Ez1 [φ2(a1
2 − σ2

2(y) + x1) | a1
1, y] − c′2(a

1
2).

Since ∂π1
2

∂a1
2
(0 | a1

1, y) > 0 by c′2(0) = 0, the sequentially rational action σ1
2(a

1
1, y) in

stage 2 (if any) must satisfy the FOC

c′2
(
σ1

2(a
1
1, y)

)
= Ez1 [φ2(σ1

2(a
1
1, y) − σ2

2(y) + x1) | a1
1, y](15)

for every a1
1. Since infa∈R+ c′′2(a) > supx∈R φ′

2(x) by assumption, we also have
∂2π1

2

∂(a1
2)

2 (a1
2 | a1

1, y) < 0. It then follows that the above FOC is indeed sufficient for

global maximization, and also that σ1
2(a

1
1, y) is differentiable as a function of a1

1 by
the implicit function theorem. Likewise, agent 2’s stage 2 action satisfies

c′2
(
σ2

2(a
2
1, y)

)
= Ez1 [φ2(−σ1

2(y) + σ2
2(a

2
1, y) − x1) | a2

1, y](16)

for every a2
1. On the equilibrium path where ai

1 = σi
1, we have σi

2(σ
i
1, y) = σi

2(y)
and Ez1 [· | σi

1, y] = Ez1 [· | y]. Hence, (15) and (16) show that σ1
2(y) and σ2

2(y) must
satisfy

σ1
2(y) = σ2

2(y) = a∗2(y) ≡ (c′2)
−1
(
Ez1

[
φ2(x1) | y

])
.(17)

Now let πi
1(a

i
1) = πi

1(a
i
1 | σ) be agent i’s (overall) expected payoff when he takes ai

1

in stage 1 and σi
2(a

i
1, y) in stage 2, while agent j plays according to his equilibrium

strategy σj:

π1
1(a

1
1) =

∫
R2

{
Φ2

(
σ1

2(a
1
1, f(z1)) − σ2

2(f(z1)) + x1

)− c2

(
σ1

2(a
1
1, f(z1))

)}
× ξ1(z1

1 − a1
1, z

2
1 − σ2

1) dz1 − c1(a1
1),

(18)
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and

π2
1(a

2
1) =

∫
R2

{
Φ2

(
σ2

2(a
2
1, f(z1)) − σ1

2(f(z1)) − x1

)− c2

(
σ2

2(a
2
1, f(z1))

)}
× ξ1(z1

1 − σ1
1, z

2
1 − a2

1) dz1 − c1(a2
1).

Given that σ1
2 is differentiable in a1

1 as noted above, we use the envelope theorem to
differentiate π1

1:

(π1
1)

′(a1
1)

= −
∫
R2

Φ2

(
σ1

2(a
1
1, f(z1)) − σ2

2(f(z1)) + x1

) ∂ξ1

∂ε1
1

(z1
1 − a1

1, z
2
1 − σ2

1) dz1

+
∫
R2

c2

(
σ1

2(a
1
1, f(z1))

) ∂ξ1

∂ε1
1

(z1
1 − a1

1, z
2
1 − σ2

1) dz1 − c′1(a
1
1).

(19)

If the equilibrium stage 1 action a1
1 = σ1

1 is strictly positive, the FOC (π1
1)

′(σ1
1) = 0

must hold. Since σ1
2(y) = σ2

2(y) for any y ∈ Y by (17), this FOC is equivalent to

c′1(σ
1
1) =

∫
R2

{
−Φ2(x1) + c2 (a∗2(σ1, f(z1)))

} ∂ξ1

∂ε1
1

(z1 − a1) dz1.

Changing variables of the first integrand, and then integrating it by parts, we see
that this is equivalent to the first line of (14). The symmetric argument shows that
the second line of (14) is equivalent to the FOC for agent 2. �

Proof of Theorem 3.2 Write ε = κ/2, where κ is as defined in Assumption 1.
Suppose that σ1 = (σ1

1, σ
2
1) solves (14). We construct a PBE as follows. First, for

each a1
1, a2

1 ∈ R, and y ∈ Y , let

ϕ1
2(a

1
2 | a1

1, y) = Ez1 [φ2(a1
2 − a∗2(σ1, y) + x1) | a1

1, y] − c′2(a
1
2),

and
ϕ2

2(a
2
2 | a2

1, y) = Ez1 [φ2(a∗2(σ1, y) − a2
2 + x1) | a2

1, y] − c′2(a
2
2).

Define σ1
2(a

1
1, y) > 0 and σ2

2(a
2
1, y) > 0 to be the unique solutions to

ϕ1
2(a

1
2 | a1

1, y) = 0 and ϕ2
2(a

2
2 | a2

1, y) = 0,

respectively. To see that such a solution exists, note that ϕ1
2(0 | a1

1, y) > 0 since
c′2(0) = 0 and φ2 > 0, and that ϕ1

2(a
1
2 | a1

1, y) < 0 for a1
2 large enough since
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lima→∞ c′2(a) > ε > supx∈R φ2(x). Furthermore, it follows from infa∈R c′′2(a) >

ε > supx∈R φ′
2(x) that

∂ϕ1
2

∂a1
2

(a1
2 | a1

1, y) = −c′′2(a
1
2) + Ez1 [φ

′
2(a

1
2 − σ2

2(y) + x1) | a1
1, y]

< −κ + ε < 0.

(20)

Hence there indeed exists a unique solution σ1
2(a

1
1, y) > 0 to ϕ1

2(a
1
2 | a1

1, y) = 0.
The symmetric argument applies to agent 2. Note now that when ai

1 = σi
1, ai

2 =
a∗2(σ1, y) solves ϕi

2(a
i
2 | σi

1, y) = 0. We can hence replace a∗2(σ1, y) in the definition
of ϕ1

2(a
1
2 | a1

1, y) by σ2
2(y) = σ2

2(σ
2
1, y), and see that ϕ1

2(a
1
2 | a1

1, y) = 0 is equivalent
to the FOC ∂π1

2

∂a1
2
(a1

2 | a1
1, y) = 0 ((15) in the proof of Theorem 1) of agent 1’s stage

2 payoff maximization problem. To see that a1
2 = σ1

2(a
1
1, y) is sequentially rational,

note that it is a global maximizer of π1
2 since

∂2π1
2

∂(a1
2)

2 (a1
2 | a1

1, y) = −c′′2(a
1
2) + Ez1 [φ

′
2(a

1
2 − σ2

2(y) + x1) | a1
1, y]

< −κ + ε < 0.

The same observation holds for agent 2.
We now turn to the analysis of stage 1 action. As in the proof of Theorem 3.1,

write πi
1(a

i
1) = πi

1(a
i
1 | σ) for agent i’s overall payoff when he chooses ai

1 in stage 1
and σi

2(a
i
1, y) in stage 2, and agent j plays according to σ2. Given σi

2(a
i
1, y) defined

above, let for i = 1, 2,

ϕi
1(a

i
1) = (πi

1)
′(ai

1),

where the explicit form of the right-hand side is as in (19) in the proof of Theorem
3.1. Since (19) is identical to the left-hand sides of (14) when ai

1 = σi
1, ϕi

1(σ
i
1) = 0

holds by assumption, and σi
1 is a solution to the FOC of agent i’s payoff maximization

problem. In what follows, we will show that σi
1 is indeed the global maximizer of π1

1

by demonstrating (ϕi
1)

′ = (πi
1)

′′ < 0.
Since σ1

2 is differentiable with respect to a1
1 as noted in the proof of Theorem

24



3.1, we can differentiate (19) to obtain

(ϕ1
1)

′(a1
1) = −c′′1(a

1
1)

−
∫
R2

{
φ2

(
σ1

2(a
1
1, f(z1)) − σ2

2(f(z1)) + x1

)− c′2(σ
1
2(a

1
1, f(z1)))

}
× ∂σ1

2

∂a1
1

(a1
1, f(z1))

∂ξ1

∂ε1
1

(z1
1 − a1

1, z
2
1 − σ2

1) dz1

+
∫
R2

{
Φ2

(
σ1

2(a
1
1, f(z1)) − σ2

2(f(z1)) + x1

)− c2(σ1
2(a

1
1, f(z1)))

}
× ∂2ξ1

∂(ε1
1)

2 (z1
1 − a1

1, z
2
1 − σ2

1) dz1.

Note now that for any y ∈ Y , we have c′2(σ1
2(a

1
1, y)) ≤ ε by (16) and c2(σ1

2(a
1
1, y)) ≤ 1

by the above observation that σ1
2(a

1
1, y) maximizes π1

2(· | a1
1, y). Hence,∣∣∣φ2(σ1

2(a
1
1, f(z1)) − σ2

2(f(z1)) + x1) − c′2(σ
1
2(a

1
1, f(z1)))

∣∣∣ ≤ ε,

and ∣∣∣Φ2(σ1
2(a

1
1, f(z1)) − σ2

2(f(z1)) + x1) − c2(σ1
2(a

1
1, f(z1)))

∣∣∣ ≤ 1.

It follows that

(ϕ1
1)

′(a1
1) ≤ −c′′1(a

1
1) + ε

∫
R2

∣∣∣∣∣∂σ1
2

∂a1
1

(a1
1, f(z1))

∣∣∣∣∣
∣∣∣∂ξ1

∂ε1
1

(z1
1 − a1

1, z
2
1 − σ2

1)
∣∣∣ dz1

+
∫
R2

∣∣∣ ∂2ξ1

∂(ε1
1)

2 (z1
1 − a1

1, z
2
1 − σ2

1)
∣∣∣ dz1.

(21)

For simplicity, write Êz1 for Ez1 [· | a1
1], expectation given the stage 1 effort profile

(a1
1, σ

2
1). Define

q(z1) =

∣∣∣∂ξ1
∂ε1

1
(z1

1 − a1
1, z

2
1 − σ2

1)
∣∣∣

ξ1(z1
1 − a1

1, z
2
1 − σ2

1)
.

By Lemma A.1 below, the integral in the second term on the right-hand side of (21)
is evaluated as∫

R2

∣∣∣∣∣∂σ1
2

∂a1
1

(a1
1, f(z1))

∣∣∣∣∣
∣∣∣∂ξ1

∂ε1
1

(z1
1 − a1

1, z
2
1 − σ2

1)
∣∣∣ dz1

<
2ε

κ − ε

∫
R2

Êẑ1 [q(ẑ1) | f(ẑ1) = f(z1)]
∣∣∣∂ξ1

∂ε1
1

(z1
1 − a1

1, z
2
1 − σ2

1)
∣∣∣ dz1.
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Note now that the above integral can further be rewritten as∫
R2

Êẑ1 [q(ẑ1) | f(ẑ1) = f(z1)] q(z1) ξ1(z1
1 − a1

1, z
2
1 − σ2

1) dz1

= Êz1

[
Êẑ1

[
q(ẑ1) | f(ẑ1) = f(z1)

]
q(z1)

]
≤ Êz1

[
Êẑ1

[
q(ẑ1) | f(ẑ1) = f(z1)

]2]1/2

Êz1

[
q(z1)2

]1/2

≤ Êz1

[
Êẑ1

[
q(ẑ1)2 | f(ẑ1) = f(z1)

]]1/2
Êz1

[
q(z1)2

]1/2

= Êz1

[
q(z1)2

]
=
∫
R2

∂ξ1
∂ε1

1
(z1

1 − a1
1, z

1
1 − σ2

1)
2

ξ1(z1
1 − a1

1, z
2
1 − σ2

1)
dz1 < ε,

where the third line follows from Schwartz’ inequality, the fourth line from Jensen’s
inequality, and the last inequality from Assumption 1. It follows that we can evaluate
the right-hand side of (21) as

(ϕ1
1)

′(a1
1) < −κ +

2ε3

κ − ε
+ ε ≤ 0.

This proves the claim. �

Lemma A.1. ∣∣∣∣∣∂σ1
2

∂a1
1

(a1
1, y)

∣∣∣∣∣ < 2ε

κ − ε
Êz1 [q(z1) | y].

Proof. For z1 ∈ f−1(y), we have

∂gσ
1

∂a1
1

(z1 | a1
1, y) =

−∂ξ1
∂ε1

1
(z1

1 − a1
1, z

2
1 − σ2

1)∫
f−1(y) ξ1(ẑ1

1 − a1
1, ẑ

2
1 − σ2

1) dẑ1

+
ξ1(z1

1 − a1
1, z

2
1 − σ2

1)
∫
f−1(y)

∣∣∣∂ξ1
∂ε1

1
(ẑ1

1 − a1
1, ẑ

2
1 − σ2

1)
∣∣∣ dẑ1{∫

f−1(y) ξ1(ẑ1
1 − a1

1, ẑ
2
1 − σ2

1) dẑ1

}2 ,

and hence

∫
R2

∣∣∣∂gσ
1

∂a1
1

(z1 | a1
1, y)

∣∣∣ dz1 ≤ 2

∫
f−1(y)

∣∣∣∂ξ1
∂ε1

1
(z1

1 − a1
1, z

2
1 − σ2

1)
∣∣∣dz1∫

f−1(y) ξ1(z1
1 − a1

1, z
2
1 − σ2

1) dz1

= 2Êz1 [q(z1) | y].

(22)
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On the other hand,

∂ϕ1
2

∂a1
1

(a1
2 | a1

1, y) =
∫
R2

φ2

(
a1

2 − σ2
2(y) + x1

) ∂gσ
1

∂a1
1

(z1 | a1
1, y) dz1,

so that ∣∣∣∣∣∂ϕ1
2

∂a1
1

(a1
2 | a1

1, y)

∣∣∣∣∣ < ε

∫
R2

∣∣∣∣∣∂gσ
1

∂a1
1

(z1 | a1
1, y)

∣∣∣∣∣ dz1 ≤ 2ε Êz1 [q(z1) | y].

It then follows from the implicit function theorem and (20) that

∣∣∣∣∣∂σ1
2

∂a1
1

(a1
1, y)

∣∣∣∣∣ =

∣∣∣∂ϕ1
2

∂a1
1

(
σ1

2(a
1
1, y) | a1

1, y
)∣∣∣∣∣∣∂ϕ1

2

∂a1
2

(
σ1

2(a
1
1, y) | a1

1, y
)∣∣∣ <

2ε

κ − ε
Êz1 [q(z1) | y].

�

Proof of Theorem 3.3 Suppose that σ1
1 = σ2

1. We first show that a∗2(σ1, f(x1)) =
a∗2(σ1, f(−x1)) for any x1 ∈ R. Since f is symmetric, gσ

1 (x̃1 | f(x1)) = gσ
1 (−x̃1 |

f(−x1)) for any x̃1 ∈ R. This and the symmetry of φ2 imply that

a∗2(σ1, f(x1)) = (c′2)
−1

(∫
R

φ2(x̃1) gσ
1 (x̃1 | f(x1)) dx̃1

)

= (c′2)
−1

(∫
R

φ2(−x̃1) gσ
1 (−x̃1 | f(x1)) dx̃1

)

= (c′2)
−1

(∫
R

φ2(x̃1) gσ
1 (x̃1 | f(−x1)) dx̃1

)
= a∗2(σ1, f(−x1)).

With this equality, σ1
1 = σ2

1 = a∗1 solves (14) since φ′
1(−x1) = −φ′

1(x1) and hence∫
R

c2(a∗2(σ1, f(x1))) φ′
1(x1) dx1

=
∫ ∞

0
c2(a∗2(σ1, f(x1))) φ′

1(x1) dx1 +
∫ 0

−∞
c2(a∗2(σ1, f(x1))) φ′

1(x1) dx1

=
∫ ∞

0
c2(a∗2(σ1, f(x1))) φ′

1(x1) dx1 −
∫ ∞

0
c2(a∗2(σ1, f(−x1))) φ′

1(x1) dx1

= 0.

This completes the proof. �
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Lemma A.2. Suppose that Assumptions 2 and 3 hold and that lima→∞ c′1(a) >

2φ̄(0) for i = 1, 2. Then for any σ1 that solves (14) and any a2 such that a1
2 = a2

2,
the principal’s payoff function satisfies

V ((a∗1, a
∗
1), a2) ≥ V (σ1, a2).

Proof. Fix a2 ∈ R2
+ such that a1

2 = a2
2. Since h is continuous, the inverse image

h−1({0}) is closed. Furthermore, it is non-empty since (a∗1, a∗1) ∈ h−1({0}). To see
that it is bounded, note that (c′1)−1(2φ̄(0)) < ∞ by assumption. For any a1 such
that max {a1

1, a
2
1} > (c′1)−1(2φ̄(0)), we have

h(a1) ≥ c′1(a
1
1) + c′1(a

2
1) − 2φ̄(0) > 0,

where the first inequality follows from Assumption 3 and the second from the
monotonicity of c′1. This shows that h−1({0}) is a subset of the bounded set
{a1 : max {a1

1, a
2
1} ≤ (c′1)−1(2φ̄(0))} and hence is compact. It follows that the

continuous function V (·, a2) on the compact set h−1({0}) = {a1 ∈ R2
+ : h(a1) = 0}

achieves a maximum. Let ā1 = (ā1
1, ā

2
1) ∈ h−1({0}) be any maximizer of V (·, a2) in

h−1({0}). We show that ā1 = (a∗1, a∗1). Suppose that ā1
1 < ā2

1. Since ∂h
∂a2

1
�= 0 by

(12), the implicit function theorem shows that there exists a function γ defined in a
neighborhood of ā1

1 such that h(a1
1, γ(a1

1)) = 0. Furthermore, γ is differentiable at ā1
1

and the derivative γ′(ā1
1) is given by the left-hand side of (12) with āi

1 replacing ai
1.

Now let δ(a1
1) = V ((a1

1, γ(a1
1)), a2). δ is also differentiable at ā1

1 and its derivative is
given by

δ′(ā1
1) =

∂V

∂a1
1

(ā1, a2) +
∂V

∂a2
1

(ā1, a2) γ′(ā1
1).

It can be readily verified that Assumption 2 implies δ′(ā1
1) > 0. This contradicts our

assumption that V is maximized at ā1 in h−1({0}) = 0. The symmetric argument
shows that it cannot be maximized at ā such that ā1

1 > ā2
1 either. Hence, we must

have ā1
1 = ā2

1 = a∗1. �

Proof of Theorem 4.4 Let f be any feedback policy that admits a PBE σ for
which (14) holds. As in the proof of Theorem 4.2, Jensen’s inequality and the law of
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iterated expectation applied to (10) imply that the expected stage 2 effort satisfies

E[a∗2(σ1, y)] = E
[
(c′2)

−1 (E[φ2(x1) | y])
]

≤ (c′2)
−1 (E [E[φ2(x1) | y]])

= (c′2)
−1 (E[φ2(x1)])

= (c′2)
−1
(
φ̄(σ1

1 − σ2
1)
)

≤ (c′2)
−1
(
φ̄(0)

)
= aN

2 ,

where the last inequality follows from Assumption 3. It hence follows from (3) that

v(σ, f) = E
[
V
(
σ1, a

1
2 = a2

2 = a∗2(σ1, y)
)] ≤ V (σ1, (aN

2 , aN
2 )).

Since σ1 solves (14) by assumption,

V
(
σ1, (aN

2 , aN
2 )
) ≤ V

(
(a∗1, a

∗
1), (a

N
2 , aN

2 )
)

by Lemma A.2. Since the right-hand side of the above inequality equals the prin-
cipal’s expected payoff in the symmetric PBE under the no-feedback policy, the
desired conclusion follows. �

Proof of Theorem 4.5 We first show that Assumption 4 implies

P (|ζ̃2| ≥ κ)) = minδ∈R P (|ζ̃2 + δ| ≥ κ)) for any κ > 0.(23)

Let δ > 0 and κ > 0 be given. When δ < 2κ, we have

P (|ζ̃2| < κ)) − P (|ζ̃2 + δ| < κ))

= −
∫ −κ

−κ−δ
φ2(x) dx +

∫ κ

κ−δ
φ2(x) dx

> −δ φ2(−κ) + δ φ2(κ)

= 0.

On the other hand, when δ > 2κ, we have

P (|ζ̃2| < κ)) − P (|ζ̃2 + δ| < κ))

=
∫ κ

−κ
φ2(x) dx −

∫ κ−δ

−κ−δ
φ2(x) dx

> 2κ φ2(κ) − 2κ φ2(κ − δ)

> 0.
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The similar argument proves (23) when δ < 0.
We now show that the expected stage 2 effort implied by σ is less than or equal

to that implied by the symmetric PBE under the full-feedback policy:

E
[
a∗2(σ1, y)

]
≤ aF

2 ≡
∫
R2

(c′2)
−1(φ2(x1)) φ1(x1) dz1.(24)

By the same logic as in the proof of Theorem 4.4, it would then follow from Lemma
A.2 that v(σ, f) is ≤ the principal’s expected payoff in the symmetric PBE under
the full-feedback policy.

Note that since E
[
a∗2(σ1, y)

]
≤ E

[
(c′2)−1(φ2(x1))

]
as in the proof of Theorem

4.2, (24) is implied by

E
[
(c′2)

−1(φ2(x1))
]
≤ aF

2 .(25)

Let η2 : [0, φ2(0)] → R+ be the inverse of the restriction of φ2 to R+ with η2(0) = ∞.
In other words, for each u ∈ [0, φ2(0)], η2(u) ≥ 0 is the unique number such that
φ2(η2(u)) = u. Note that η2 is well-defined under Assumption 4. Given any δ ∈ R,
let the function G(· | δ) : [0, φ2(0)] → R+ be defined by G(u | δ) = 1−Φ2(η2(u)−δ)+
Φ2(−η2(u)− δ) = P

(
|ζ̃2 + δ| ≥ η2(u)

)
. Note that G(· | δ) is a distribution function

over [0, φ2(0)] since it is increasing, and satisfies G(0 | δ) = 0 and G(φ2(0) | δ) = 1.
If we write δ = σ1

1 − σ2
1 , then

E
[
(c′2)

−1 (φ2(x1)) | a1

]
=

∫
R2

(c′2)
−1 (φ2(x1)) φ1(x1 − δ) dz1

=
∫ φ2(0)

0
(c′2)

−1(u) φ1(η2(u) − δ) (−η′2(u)) du

+
∫ φ2(0)

0
(c′2)

−1(u) φ1(−η2(u) − δ) (−η′2(u)) du

=
∫ φ2(0)

0
(c′2)

−1(u) dG(u | δ),

where the second equality follows from first dividing the range of the integral and
then applying the change of variables from x1 to u = φ2(x1) or u = −φ2(x1).
By (23), G(u | δ) = P

(
|ζ̃2 + δ| ≥ η2(u)

)
≥ P

(
|ζ̃2| ≥ η2(u)

)
= G(u | 0) for any

u ∈ [0, φ2(0)] and δ ∈ R so that G(u | 0) first-order stochastically dominates
G(u | δ) with δ �= 0. Since (c′2)−1 is increasing, it follows that∫ φ2(0)

0
(c′2)

−1(u) dG(u | δ) ≤
∫ φ2(0)

0
(c′2)

−1(u) dG(u | 0).
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Changing variables back to x1, we see that the right-hand side of this inequality
equals aF

2 . �

A.2 Non-differential Feedback Policies

The analysis of optimal policies in Section 4 partially extends to a class of feedback
policies that are not necessarily a function of the difference x1 alone. For this, we
suppose that f : R2 → Y is a function of the performance profile z1 = (z1

1 , z
2
1)

and for any y ∈ Y , let f−1(y) = {z1 ∈ R2 : f(z1) = y} denote the inverse image
of {y}. For any set A ⊂ R2 and b ∈ R2, denote A + b = {a + b : a ∈ A} and
−A = {−a : a ∈ A}. The alternative conditions on f are as follows:

Assumption 5. Let z1, ẑ1 ∈ R2 and s ∈ R.

1. f(z1) = f(ẑ1) ⇒ f(z1 − (s, s)) = f(ẑ1 − (s, s)).

2. f−1(f(z1)) = −f−1(f(−z1)).

Intuitively, the first condition states that each level curve of f can be obtained
by shifting another level curve in the direction of the 45-degree line. The second
condition is the generalization of symmetry defined in the text. Any symmetric
feedback policy f that is a function of x1 alone satisfies Assumption 5. Other
examples of feedback policies that satisfy Assumption 5 are:

f(z1) =
z1
1 + z2

1

2
and f(z1) = z1

1 .

Assumption 6. The joint density ξ1 of ε1 satisfies ξ1(ε1) = ξ1(−ε1) for any ε1 ∈
R2.

Assumption 6 holds when, say, ε1 has the normal distribution N(0, Σ) with

Σ = σ2

(
1 ρ

ρ 1

)
. When f is a function of x1 alone, the key observations are that

the first-order conditions for the stage 1 effort in (14) can be rewritten as in (7), and
that the strategic effect equals zero for symmetric policies. The next lemma shows
that the same holds under Assumptions 5 and 6.

Lemma A.3. Suppose that Assumptions 1, 5 and 6 hold. There exists a unique
symmetric PBE σ. Furthermore, σi

1 = a∗1 and σi
2(y) = a∗2(σ1, y) for y ∈ Y and

i = 1, 2.
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Proof. Let σ1 ∈ R2
+ be such that σ1

1 = σ2
1. With the change of variables z̃1 = z1−σ1,

the integral in the first equation of (14) becomes∫
R2

c2 (a∗2(σ1, f(z̃1 + σ1)))
∂ξ1

∂ε1
1

(z̃1) dz̃1.(26)

Hence, we have

c′2 (a∗2(σ1, f(z̃1 + σ1))) = Ez1

[
φ2(x1) | z1 ∈ f−1(f(z̃1 + σ1))

]
= Eε1

[
φ2(ε1

1 − ε2
1) | ε1 ∈ f−1(f(z̃1 + σ1)) − σ1

]
= Eε1

[
φ2(ε1

1 − ε2
1) | ε1 ∈ f−1(f(z̃1))

]
=

∫
f−1(f(z̃1))

φ2(ε1
1 − ε2

1) φ1(ε1) dε1∫
f−1(f(z̃1))

φ1(ε1) dε1
,

where the second equality uses z1 = σ1 + ε1 and σ1
1 = σ2

1 , and the third equality
follows from the first condition of Assumption 5 since it is equivalent to25

f−1(f(z1 + (s, s))) = f−1(f(z1)) + (s, s) for any z1 ∈ R2 and s ∈ R.

Since the last quantity is independent of σ1, so is c2 (a∗2(σ1, f(z̃1 + σ1))), which we
denote by m(z̃1). By Assumptions 5 and 6, we have for any z1 ∈ R2,

m(z1) = m(−z1),(27)

and

∂ξ1

∂ε1
1

(z1) = −∂ξ1

∂ε1
1

(−z1).(28)

Now express (26) as∫
R2

m(z1)
∂ξ1

∂ε1
1

(z1) dz1

=
∫

z1
1>0,z2

1>0
m(z1)

∂ξ1

∂ε1
1

(z1) dz1 +
∫

z1
1>0,z2

1<0
m(z1)

∂ξ1

∂ε1
1

(z1) dz1

+
∫

z1
1<0,z2

1>0
m(z1)

∂ξ1

∂ε1
1

(z1) dz1 +
∫

z1
1<0,z2

1<0
m(z1)

∂ξ1

∂ε1
1

(z1) dz1.

25(⇒) Suppose z̃1 ∈ f−1(f(z1+(s, s)). Then f(z̃1) = f(z1+(s, s)) and hence f(z̃1−(s, s)) = f(z1)

by Assumption 5(1). This implies z̃1 − (s, s) ∈ f−1(f(z1)) or equivalently, z̃1 ∈ f−1(f(z1)) + (s, s).

On the other hand, if z̃1 ∈ f−1(f(z1)) + (s, s), then f(z̃1 − (s, s)) = f(z1) so that f(z̃1) = f(z1 +

(s, s)). This implies that z̃1 ∈ f−1(f(z1 + (s, s))). (⇐) Suppose f(z1) = f(ẑ1) but f(z1 − (s, s)) �=
f(ẑ1 − (s, s)) for some z1, ẑ1, and s. Write z̃1 = ẑ1 − (s, s). Then z1 ∈ f−1(f(z̃ + (s, s))). However,

z1 − (s, s) /∈ f−1(z̃1) so that z1 /∈ f−1(f(z̃1)) + (s, s).
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Applying the change of variables ẑ1 = −z1 to the third and fourth integrals and
then using (27) and (28), we obtain∫

R2

m(z1)
∂ξ1

∂ε1
1

(z1) dz1

=
∫

z1
1>0,z2

1>0
m(z1)

∂ξ1

∂ε1
1

(z1) dz1 +
∫

z1
1>0,z2

1<0
m(z1)

∂ξ1

∂ε1
1

(z1) dz1

+
∫

ẑ1
1>0,ẑ2

1<0
m(−ẑ1)

∂ξ1

∂ε1
1

(−ẑ1) dẑ1 +
∫

ẑ1
1>0,ẑ2

1>0
m(−ẑ1)

∂ξ1

∂ε1
1

(−ẑ1) dẑ1

= 0.

The symmetric argument proves that the integral in the second equation of (14) also
equals zero. This shows that (14) has a unique symmetric solution σ1

1 = σ2
1 = φ̄(0).

Hence, by Theorem 3.2, there exists a unique symmetric PBE σ under f and σ is
as specified in the lemma. �

Corollary A.4. Suppose that Assumptions 1 and 6 hold. Among the class of feed-
back policies that satisfy Assumption 5, the no-feedback policy maximizes v̄∗ if c′2 is
convex and the full-feedback policy maximizes v̄∗ if c′2 is concave.
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