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1 Introduction

As a prominent form of relative performance evaluation, tournaments have attracted
considerable attention in economic theory. The main focus of the theory is on the size
and allocation of rewards that would maximize the performance of the competing
agents, and on the comparison of the relative incentive schemes against more general
forms of contracts. Beginning with the seminal work of Lazear and Rosen (1981), a
partial list of the literature on this subject includes Green and Stokey (1983), Nale-
buff and Stiglitz (1983), Glazer and Hassin (1988), Gradstein and Konrad (1999),
Moldovanu and Sela (2001), and others. In most models, a tournament is described
as a static mechanism in which the agents’ one-time effort decision determines their
performance and hence the winner. In reality, however, many tournaments are more
appropriately described as dynamic games: Agents make sequential effort decisions
in multiple stages and the winner is determined by their overall performance. One
important consideration when designing a tournament as a dynamic mechanism con-
cerns the control of information during the course of play. In other words, the design
of a dynamic tournament should include the strategic planning of what information
to make available to the participants at what stage. The mode of such information
revelation will have a significant impact on the participants’ effort incentive. This
point is well exemplified by a tournament for job promotion within a firm: First,
such a tournament is dynamic in nature and spans multiple stages. Second, workers’
performance is often measured by subjective criteria such as leadership, originality,
ability to work in teams, etc. Such information is most appropriately described as
private information of their superior or the firm’s personnel department, and the
latter communicates this information back to the workers as a way of providing
motivation. Research on performance management well recognizes that inducement
of the work incentive requires careful designing of information feedback.1

In this paper, we formulate a model of a dynamic tournament in which the
principal receives private information about agents’ performance, and then reveals
as a feedback some or all of his information to the agents. The analysis is dual to
that in the standard contest literature in that we fix prizes and focus exclusively
on the effects of information. While strategic transmission of private information is
a much studied subject in economic theory, no general understanding exists about
how a designer’s private information should be incorporated into his mechanism.

1See, for example, Williams (1998).
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It is important to understand that information feedback has two separate effects
on the agents’ incentives. First, the revealed information influences the agents’ in-
centives by changing their beliefs. This is true irrespective of whether the principal’s
private information is given exogenously as in the case of the linkage principle, or
is generated endogenously by the agents’ own actions as in our model. We call this
the ex post effect of information feedback. On the other hand, when the private
information is generated endogenously, each agent will choose their actions strategi-
cally so as to influence the content of the revealed information. For example, agents
may exert extra effort in early stages to take the leading position and discourage
opponents. We call this the strategic effect of information feedback.

In our model of a multi-stage tournament, agents’ performance in each stage is
stochastically related to their effort in that stage. The principal privately observes
their performance realization after each stage, and reveals some or all of his pri-
vate information to the agents before the next stage. The principal’s feedback policy
transforms the raw observation of the agents’ performance into a public announce-
ment. In our terminology, the closed-loop and open-loop formats described above
correspond to the full-feedback and no-feedback policies, respectively.2 The princi-
pal is free to choose any feedback policy and publicly announces its use before the
tournament. For example, he may declare the use of a hybrid policy that reveals full
information for some signal realizations but no information for others.3 We assume
that the principal is committed to his feedback policy for any realization of the pri-
vate signal. The optimal feedback policy is one that maximizes the principal’s payoff
which is an increasing function of the agents’ expected efforts. As discussed below,
we find that whether he should reveal more information or not depends critically on
the functional form of the agents’ disutility of effort.

A more detailed description of our model is as follows: Two agents compete
in a tournament over two stages. The agent with the higher performance at the
end of the second stage wins and is awarded a prize of a fixed value such as a
promotion to a higher job rank. In each of the two stages, each agent chooses
an effort level, which is observed by neither the principal nor his opponent. The
agents’ cost function of effort is time-separable and can be expressed as the sum
of stage-cost functions, which are assumed to be all strictly convex. The score in
each stage is the difference between the performance levels of the two agents and

2Alternatively, the no-feedback policy can be interpreted as the simultaneous implementation of

multiple one-shot tournaments.
3Under such a policy, of course, “no announcement” also has an informational content.
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equals the sum of the difference between their effort levels and a random noise term.
The principal privately observes the score, and makes a public announcement about
it at the end of stage 1. Conditional on the announcement, the agents form their
inference about the score and decide on effort levels in the second stage. We study
how the choice of a feedback policy affects the agents’ effort levels in a pure perfect
Bayesian equilibrium (PBE) of this dynamic game.

The paper presents sufficient conditions for the existence of a PBE and charac-
terizes effort levels on the equilibrium path. Specifically, a pure PBE is shown to
exist if the noise component of the performance score is sufficiently large. In par-
ticular, the required level of noise can be taken independent of the feedback policy.
We then identify the optimal feedback policy based on the agents’ expected effort
in equilibrium. In short, revealing more information is better for the principal when
the marginal cost of effort is concave, and the converse is true when the marginal
cost is convex. More specifically, the following observations are made: When the
stage 2 marginal cost function of effort is convex, the no-feedback policy is optimal
in the class of feedback policies that admit a symmetric PBE. On the other hand,
the full-feedback policy is optimal in the same class when the marginal cost func-
tion is concave. When the two agents’ efforts are sufficiently complementary to each
other in the principal’s payoff function, the no-feedback and full-feedback policies
are also optimal within the wider class of feedback policies that induce a possibly
asymmetric PBE.

The intuition for the above conclusions is as follows: As is standard, the agents’
effort choice in each stage balances its marginal disutility with the expected marginal
increment in the probability of winning. In stage 2, note that the marginal increment
in the probability of winning depends in general on the stage 1 score x1 as well as the
stage 2 efforts of both agents. The key observation is that in any PBE (symmetric
or not), the two agents choose a symmetric effort profile in stage 2 following any
announcement. With the stage 2 efforts of the two agents canceling each other out,
the marginal increment in the probability of winning depends only on the stage 1
score x1 in equilibrium. It follows that the expected marginal increment equals the
expected value of a function of x1 alone, where the expectation is conditional on
the information partition generated by the feedback policy. Suppose, for the sake of
discussion, that the feedback policy distinguishes between only two events x1 ∈ A

and x1 ∈ B = R \ A. If M(x1) denotes the marginal increment in the probability
of winning at x1 in equilibrium, then the expected marginal increment given A
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equals E[M(x̃1) | A], and that given B equals E[M(x̃1) | B]. Ex ante, the expected
marginal increment is the sum of these two values weighted by the probabilities of
A and B, or equivalently, the unconditional expectation E[M(x̃1)]. Note, however,
that this is precisely equal to the marginal increment in equilibrium under the no-
feedback policy. Generalizing this argument to any information partition, we find
that the ex ante expected marginal disutility of effort is the same under any policy.
Since effort itself is the inverse of the marginal disutility, it can be seen through
Jensen’s inequality that the convexity or concavity of the marginal disutility function
dictates the relative magnitude of expected effort in stage 2. In stage 1, on the other
hand, it can be shown somewhat surprisingly that the agents’ effort is the same under
any feedback policy as long as the PBE is symmetric. This result can be seen as
follows. First, in any symmetric PBE, we can verify that the marginal disutility
in stage 1 equals the expected marginal disutility in stage 2.4 It then follows from
the constancy of expected marginal disutility in stage 2 that marginal disutility in
stage 1 is the same in symmetric PBE under any policy. This shows that the stage
1 effort in symmetric PBE is also independent of the choice of a feedback policy.

Given these observations, one interesting question concerns the optimal feedback
policy when the marginal cost of effort is neither convex nor concave on the relevant
domain. We attempt to answer this question by examining the marginal cost func-
tion having a single reflection point at which its curvature changes from convex to
concave. Our candidate feedback policy reveals full information when the absolute
value of the score is less than some threshold, and reveals nothing (other than the
fact that the threshold has been exceeded) otherwise. We show that such a feed-
back policy outperforms the full-feedback policy. A similar argument proves that
no-feedback policy is dominated by the feedback policy that only reveals whether
or not the score has exceeded some threshold.

In some applications, it is more appropriate to suppose that the agents inher-
ently know their own performance. In a promotion tournament, for example, if
the performance of each agent is measured objectively by the number of products
they have sold, then each agent learns his own performance even if no information
feedback is provided.5 The only option for the principal in this case is whether to
reveal additional information to each agent on the performance of the other agent.

4Although intuitive, intertemporal equality of marginal disutility cannot be assumed a priori

because of the strategic effect mentioned above. For example, agents may be willing to incur higher

marginal disutility in stage 1 in order to preempt the leading position.
5I thank the associate editor for prompting me to think about such a possibility.
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We analyze this problem in an alternative framework in which an agent’s individual
performance equals the sum of his own effort and a random noise term. Unlike
before, one major difficulty in this problem is the possible asymmetry of the stage 2
effort profile caused by the asymmetry of information between the agents. We avoid
this difficulty by assuming that the performance noise in stage 1 can take only one
of two values for each agent and that the stage 2 effort can influence the outcome
only when the stage 1 noise is the same for both agents. In this setup, we analyze
the expected effort induced under private feedback where the agents observe only
their own performance, and then compare it with those under the full-feedback and
no-feedback policies.6 We show that when the stage 2 marginal cost function is
convex, private feedback induces a higher expected effort from each agent than the
full-feedback policy but lower effort than the no-feedback policy. When the marginal
cost is concave, on the other hand, full-feedback induces the highest expected effort
followed by private feedback and no-feedback in this order. The stage 1 effort is the
same under the three policies. It is interesting to note that the expected effort is
related to the amount of revealed information in the same monotone manner as in
the original model.

While most of the analysis in this paper is on pure equilibria, it is interesting
to examine what happens when agents mix their effort choices. Intuitively, we may
consider a mixed choice of effort in stage 1 as an expression of the strategic effect
discussed earlier. In other words, an agent in stage 1 may mix over different effort
levels and choose a costly effort with positive probability because it can result in
the possible reduction in stage 2 effort through the discouragement of his opponent.
In a simplified environment with binary effort choices in stage 1, we show that this
is exactly what happens in a mixed equilibrium under the full-feedback policy. This
suggests that the stage 2 effort in a mixed PBE is on average lower than that in
a pure PBE. When the strategic effect of information feedback takes the form of
a mixed equilibrium, hence, the full-feedback policy may become less desirable in
comparison with the no-feedback policy.

As discussed below, existing theories provide varying intuitions on the optimal
degree of information revelation.

In auction theory, the so-called linkage principle by Milgrom and Weber (1982)
asserts that under the affiliated distribution of signals, the seller’s expected revenue

6The no-feedback policy represents the hypothetical scenario where the agents do not even

observe their own performance.
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is the highest when he is committed to revealing all of his private information to
the bidders.7 In a related framework, Milgrom (1981) shows that the seller of a
good maximizes his payoff by revealing all his private information to the buyer if
it is affiliated with the quality of his good. In some other situations, however, it
is shown that the intuition furnished by the linkage principle fails to hold: Kaplan
and Zamir (2000) analyze the problem of an auctioneer privately informed about
bidders’ valuations. In an independent private values framework, they find that the
auctioneer is better off revealing the maximum of the valuations than fully revealing
his information. In a model of twice-repeated common-value auctions with affiliated
signals, de-Frutos and Rosenthal (1998) show that the auctioneer’s expected revenue
(over two auctions) is lower when information about stage 1 bids is made public than
when it is not.8

The literature on dynamic models of a race also provides a closely related obser-
vation in the discussion of the closed- and open-loop formats.9 The open-loop format
reveals no information to the players during a competition, whereas the closed-loop
format reveals the competitors’ positions publicly and instantaneously. It is often
argued that the players tend to slack off in the closed-loop format since, when one
player has a lead over the others, the followers cannot catch up with the leader (in
expected terms) by making the same level of effort as him. For example, Fuden-
berg et al. (1983) demonstrate the phenomenon of ε-preemption, where players stop
making effort as soon as one of them establishes a small lead over others.

The problem of an agent’s effort incentive and information is studied mainly
in the context of dynamic principal-agent models. In the analysis of a repeated
principal-agent game with a public performance signal, Radner (1985) considers a
review strategy for the principal that evaluates the agent’s performance at the end
of each review phase that spans a large number of periods. He notes that inefficiency
is inevitable as the agent relaxes near the end of the review phase if he realizes that
his effort no longer influences the outcome of the review. Lizzeri et al. (2002) study
a two-stage principal-agent problem where the agent’s performance information is
the principal’s private information as in the present paper. Comparison is made on
the agent’s effort and the principal’s payoff when the stage 1 performance (which

7A probability distribution is affiliated if the joint density function is log-supermodular.
8Perry and Reny (1999) report the failure of the linkage principle in a multi-object auction based

on an entirely different logic.
9See, for example, Harris and Vickers (1985), and Fudenberg et al. (1983). Radner (1985) also

makes a related observation in the context of a repeated principal-agent game.
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is either a success or a failure) is revealed to the agent and when it is not.10 They
find that the revelation of information leads to a higher expected effort under the
fixed wage profile and a quadratic cost function, but that the no-revelation scheme
implements the same expected effort less expensively when the wage profile itself
can be adjusted simultaneously. This independent finding by Lizzeri et al. (2002)
complements the present analysis although no direct comparison is possible because
of the differences in the modeling choice over the number of agents and variability
of the reward.11

It is also instructive to interpret our conclusion in the light of the generalized
revelation principle in mechanism design as formulated by Myerson (1982).12 The
principle asserts that when the principal wants to induce an optimal course of action
from the agents as a function of their private information, he can restrict attention to
a direct revelation-suggestion mechanism in which reporting of private information
by the agents and the suggestion of actions by the principal are each done in a
single step and hence involve no exchange of information among the agents. At a
first glance, hence, this principle may seem to imply the optimality of no-feedback.
It should be noted, however, that suggestion of actions to the agents, whether it
is carried out publicly or privately, is itself a form of information feedback: the
principal chooses a suggestion to each agent as a function of other agents’ private
information. The question of optimal information feedback in this context is hence
how much functional relationship the principle should allow between the suggestion
to any agent and the information solicited from others. The revelation principle
provides no answer to this question. In terms of the modeling choice, of course, the
major difference is that we assume free acquisition of private information by the
principal, and instead focus on its strategic release.

As seen above, our theory of information feedback highlights the role of the third
derivative of the agents’ disutility of effort. It should be noted that economic theory
often points out the relevance of the higher-order derivatives in incentive problems.
In consumption theory, for example, it is well known that the precautionary saving
motive in the face of future uncertainty is characterized by the third derivative of

10Given the binary nature of the private signal, these are the only (deterministic) feedback policies

in Lizzeri et al. (2002).
11Although out of the scope of this paper, one natural question concerns the optimal scheme

when the principal also controls the size and allocation of the reward in the present framework.
12I thank an anonymous referee for suggesting the possible connection between the revelation

principle and information feedback.
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an individual’s utility function: Future uncertainty induces more current savings
when the stage marginal utility is convex, and less savings when it is concave.13

As another example, Rogerson (1985) shows in a two-stage principal-agent model
with public information that a condition involving the third derivative of the agent’s
utility function determines whether the expected wage should rise or fall over time.
In mechanism design, the optimality of a deterministic mechanism is also associated
with the third-order cross derivatives of an agent’s utility function.14 The major
difficulty in interpreting the results involving the higher-order derivatives is that
there is perhaps no common consensus on what signs they assume. In this sense,
the theory developed in this paper should be interpreted on the contingent basis
as follows. First, if we think that the common specification of the quadratic cost
function is a good approximation of the reality, then the theory predicts the in-
significance of information feedback: With quadratic disutility, in fact, not only are
the no-feedback and full-feedback policies optimal, but so is any feedback policy.
When the third derivative is estimated to be close to zero, hence, the efficiency loss
from using a suboptimal policy would be negligible if any. On the other hand, if
we believe that the third derivative is significantly different from zero, the theory
shows that information feedback is crucial. For example, one immediate implication
of the theory is that an optimal policy under concave marginal disutility is least de-
sirable under convex marginal disutility, and vice versa. In general, optimizing over
feedback policies can lead to a substantial improvement in the induced expected
effort.15 No matter which assumption on the third derivative one thinks is more
appropriate in each context, however, it should be emphasized that the evaluation
of information feedback programs requires a proper theory. This paper provides a
starting point for such analysis: It shows when information feedback has a crucial
consequence, and that what may otherwise be considered an irrelevant detail can
have a large impact in these problems.16

The paper is organized as follows: In the next section, we formulate a model
of a dynamic tournament. Section 3 characterizes a PBE and provides sufficient
conditions for its existence. Optimal feedback policies are studied in Section 4.

13See, for example, Kimball (1990, 1993).
14See, for example, Fudenberg and Tirole (1991).
15Reversing the argument, we may possibly use the theory to estimate the third-order derivatives.
16It is perhaps misleading to emphasize just the third derivatives. For example, in a related

model with discrete effort levels and hence with no derivatives, we find that the optimality of a

feedback policy depends rather subtly on the probability distribution of the noise term.
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Section 5 analyzes private feedback and Section 6 studies mixed equilibria. We
conclude in Section 7.

2 Model of a Tournament

Two risk neutral agents i = 1, 2 compete in two stages. In each stage, the agents’
effort gives rise to a stochastic performance score, which indicates the difference in
their performance. At the end of stage 2, the principal aggregates the scores from
the two stages to determine the winner.

Formally, suppose that agent i’s effort ai
t in stage t is chosen from the set R+

of non-negative real numbers. The stage t score xt is a random variable whose
distribution depends on the effort levels a1

t and a2
t of both agents in stage t. More

specifically, we assume that xt = a1
t −a2

t +ζt for a real-valued random variable ζt. In
other words, the score xt represents agent 1’s lead over agent 2, and is stochastically
related to the difference between their effort levels. Let φt be the density of ζt over
R, and denote by Φt the corresponding cumulative distribution. We assume that
φt is strictly positive and twice continuously differentiable, and symmetric around
zero in the sense that φt(x) = φt(−x) for any x ∈ R. We also assume that ζ1 and ζ2

are independent. Note that the density of xt under the action profile at = (a1
t , a

2
t )

is given by
φt(xt − a1

t + a2
t ).

The (aggregate) score x is the sum of scores in stages 1 and 2: x = x1 + x2. Agent
1 wins if x > 0, and agent 2 wins if x < 0. Each agent wins with equal probability
in the (probability zero) event of a tie x = 0. The sum of the two random variables
ζ1 and ζ2 represents the noise in the aggregate score. If we denote its density by φ,
then it can be expressed in terms of φ1 and φ2 as

φ̄(x) =
∫
R

φ1(x − u)φ2(u) du.(1)

This φ̄ is known as the convolution of φ1 and φ2, and is often denoted φ1 ∗ φ2.
Each agent derives one unit of positive utility from winning the prize (e.g.,

promotion to a higher job rank), and incurs disutility from effort. The cost of
effort in stage t is described by a twice differentiable cost function ct : R+ →
R+. Accordingly, agent i’s overall utility equals 1 − ∑2

t=1 ct(ai
t) if he wins, and

−∑2
t=1 ct(ai

t) otherwise. Throughout, we assume that in each stage t = 1, 2, the

10



marginal cost of effort equals zero at no effort, and is strictly increasing:

c′t(0) = 0, inf
a∈R+

c′′t (a) > 0.(2)

The principal’s payoff, on the other hand, is a function of both agents’ efforts over
the two stages: V (a1

1, a
2
1, a

1
2, a

2
2). The function V : R4

+ → R is assumed to be
increasing (V (â) ≥ V (a) if âi

t ≥ ai
t for each t, i = 1, 2), and symmetric with respect

to the agents (V (â) = V (a) if â1
t = a2

t and â2
t = a1

t for t = 1, 2). Furthermore,
we assume that when the stage 2 efforts are symmetric a1

2 = a2
2 = u, V (a1, a2) is a

linear increasing function of u. In other words, there exist functions A : R2
+ → R+

and B : R2
+ → R such that for any a1 and u,

V (a1, a2 = (u, u)) = A(a1)u + B(a1).(3)

In essence, (3) ensures that when the stage 2 effort profile is symmetric, the principal
cares only about their expected values. When the payoff function is time separable,
for example, then (3) holds when the stage 2 payoff is homogeneous of degree one
in the agents’ stage 2 efforts. Leading examples of this case include

V (a) =
2∑

t=1

(a1
t + a2

t ), V (a) =
2∑

t=1

min {a1
t , a2

t},

and more generally, the CES family V (a) =
∑

t

{
(a1

t )
m+(a2

t )
m

}1/m (m ≤ 1, m �= 0).
Since the principal’s payoff may contain more information about the agents’ efforts
than the scores xt, we suppose that the principal observes his payoff after the winner
has been determined so as to be in line with our assumption that the winner of the
tournament is determined only by x.

Each agent’s effort ai
t is his private information and observed by neither the

principal nor the other agent. On the other hand, the principal privately observes the
score xt in each stage t and reveals either whole or part of his private information x1

after stage 1. Specifically, suppose that the principal makes a public announcement
y about x1 at the end of stage 1. Formally, a feedback policy (or simply a policy) is a
pair of the set of possible announcements Y , and a measurable mapping f : R → Y ,
which chooses the announcement y = f(x1) as a function of the score x1. For
simplicity, the reference to Y will be omitted and the mapping f alone will be called
a feedback policy in what follows. It is understood that Y = {f(x1) : x1 ∈ R} so
that f is a surjection. The announcement y is credible in the sense that the principal
publicly announces his feedback policy f before the tournament begins and uses it to
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generate y for any signal x1. The principal’s objective is to maximize his expected
payoff by controlling f . Although we will restrict our analysis to deterministic
feedback policies, the paper’s conclusions hold even when we allow for stochastic
feedback policies, which choose the announcement y as a function of x1 and some
(exogenous) random variable.

Little restriction is placed on the nature of the public announcement y. For
example, each announcement y ∈ Y may simply contain the name of the leader, or
it may be an interval in R which indicates the range of x1.

As mentioned in the Introduction, some simple feedback policies will play an
import role in our analysis. In particular, the no-feedback policy sends the same
message regardless of x1, and the full-feedback policy reveals x1 completely. Between
these two are numerous policies that reveal an intermediate amount of information.
For example, we will later discuss the hybrid policies which reveal full information
when the score is within some range (−b, b) (b > 0), but nothing otherwise: Y =
(−b, b) ∪ {N}, and

f(x1) =

⎧⎨
⎩

x1 if |x1| < b,

N otherwise.

Of course, the agents hearing the announcement N under this policy would know
that |x1| ≥ b. Given any announcement y ∈ Y , let f−1(y) = {x1 ∈ R : f(x1) = y}
denote the inverse image of the (singleton) set {y} under f . In what follows, we will
restrict attention to feedback policies that satisfy the following regularity condition:
A feedback policy f is regular if for any y ∈ Y , f−1(y) ⊂ R either has positive
(Lebesgue) measure, or is countable. The above hybrid policy, for example, is
regular since f−1(N) = (−∞,−b)∪(b,∞) has positive measure and for x1 ∈ (−b, b),
f−1(x1) = {x1} is countable.17

Given any policy f , agent i’s history hi after stage 1 is the information available
to agent i at the end of stage 1: hi consists of his own effort choice ai

1, and the
public announcement y by the principal. Agent i’s (pure) strategy σi is a pair
(σi

1, σ
i
2), where σi

1 ∈ R+ is the effort choice for stage 1, and σi
2 : R+ × Y → R+ is

a mapping that specifies the stage 2 effort after each possible history hi = (ai
1, y).

Given the strategy profile σ, let πi
2(a

i
2 | σ, hi

1) denote agent i’s expected payoff in
stage 2 (payoff from the possible prize minus the cost of stage 2 effort) when he
chooses ai

2 in stage 2, his history in stage 1 is hi
1, and agent j plays according to the

17Feedback policy f fails to be regular if f−1(y) is, for example, the Cantor set for some y.
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strategy σj in both stages. Likewise, let πi
1(a

i
1 | σ) denote agent i’s overall expected

payoff when he chooses ai
1 in stage 1 and plays according to σi

2 in stage 2, and agent
j plays according to σj in both stages. Throughout, we consider an equilibrium of
this tournament game in which each agent’s effort choice is sequentially rational.
In other words, the stage 2 effort choice of each agent i maximizes his expected
payoff not only when his stage 1 effort choice is at the equilibrium level σi

1, but also
when it is at any other level ai

1. We also define an equilibrium simply in terms of
a strategy profile since an agents’ belief is unambiguously determined because of
the assumption of full support of the distribution φ1. Specifically, a strategy profile
σ = (σ1, σ2) is a (pure) perfect Bayesian equilibrium (PBE) if for i = 1, 2,

πi
1(σ

i
1 | σ) ≥ πi

1(a
i
1 | σ) for any ai

1 ∈ R+,

and

πi
2(σ

i
2(h

i
1) | σ, hi

1) ≥ πi
2(a

i
2 | σ, hi

1) for any ai
2 ∈ R+ and hi

1 ∈ R+ × Y .

For any strategy σi = (σi
1, σ

i
2) of agent i and announcement y ∈ Y , we define

σi
2,0(y) = σi

2(σ
i
1, y)

to be i’s stage 2 effort given announcement y when he follows the strategy σi in both
stages. If σ is an equilibrium, hence, σi

2,0(y) denotes i’s equilibrium effort choice
in stage 2 given y. Given any strategy profile σ, stage 1 effort choice ai

1 of agent
i, and public announcement y, Eσ,f [· | ai

1, y] denotes the conditional expectation
with respect to the stage 1 score x1 given y when agent i chooses action ai

1 while
agent j chooses σj

1 in stage 1. Likewise, Eσ,f [· | y] = Eσ,f [· | σi
1, y] denotes the

conditional expectation given y when the stage 1 effort profile is σ1 = (σ1
1 , σ

2
1). The

unconditional (ex ante) expectations Eσ,f [· | ai
1] and Eσ,f [·] are defined in a similar

manner.
Let v(σ, f) denote the principal’s expected payoff in a PBE σ under the feedback

policy f :
v(σ, f) = Eσ,f [V (σ1, σ2,0(ỹ))] .

The principal’s objective is to maximize v(σ, f) by choosing a feedback policy f and
inducing a PBE σ under f .
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3 Equilibrium Effort Levels

We begin by deriving the essential marginal equation in stage 2. When the stage 1
score is x1 and the stage 2 effort profile is (a1

2, a
2
2), the probability that agent 1 wins

is given by

1 − Φ2(−x1 − a1
2 + a2

2) = Φ2(x1 + a1
2 − a2

2),

where the equality follows from the symmetry of φ2 around 0: Φ2(x) = 1− Φ2(−x)
for any x. Hence, given the history h1

1 = (a1
1, y) of his own action and public

announcement, agent 1’s expected payoff in stage 2 can be written as:

π1
2(a

1
2 | σ, h1

1) = Eσ,f [Φ2(x̃1 + a1
2 − σ2

2,0(y)) | a1
1, y] − c2(a1

2).

Taking the derivative with respect to a1
2, we see that the sequentially rational choice

of effort a1
2 = σ1

2(a
1
1, y) in stage 2 should satisfy the first-order condition

Eσ,f [φ2(x̃1 + σ1
2(a

1
1, y) − σ2

2,0(y)) | a1
1, y] = c′2(σ

1
2(a

1
1, y)).

When a1
1 equals the equilibrium effort choice σ1

1 in stage 1, hence, the effort choice
σ1

2,0(y) = σ1
2(σ

1
1 , y) on the path of play in stage 2 should satisfy

Eσ,f [φ2(x̃1 + σ1
2,0(y) − σ2

2,0(y)) | y] = c′2(σ
1
2,0(y)).(4)

This is the marginal equation for agent 1 in stage 2: He balances the expected
marginal increment in the probability of winning with the marginal disutility of
effort. The corresponding condition for agent 2 is given by

Eσ,f [φ2(−x̃1 − σ1
2,0(y) + σ2

2,0(y)) | y] = c′2(σ
2
2,0(y)).(5)

With the symmetry of φ2, the expected marginal increments on the left-hand sides
of (4) and (5) are indeed the same, and so are σ1

2,0(y) and σ2
2,0(y). With the two

agents’ efforts canceling each other, the expected marginal increment reduces to
Eσ,f [φ2(x̃1) | y] in equilibrium. The following theorem summarizes this argument
and also describes the first-order conditions for the stage 1 effort in any pure PBE.
Recall that φ̄ denotes the density of the aggregate noise ζ1 + ζ2.

Theorem 3.1. Suppose that

sup
x∈R

φ′
2(x) < inf

a∈R+

c′′2(a).

14



If σ is a pure PBE under any feedback policy f , then for any y ∈ Y ,

σ1
2,0(y) = σ2

2,0(y) = α2(σ1, y) ≡ (c′2)
−1

(
Eσ,f [φ2(x̃1) | y]

)
.(6)

If, in addition, σ1
1, σ2

1 > 0, then⎧⎨
⎩

c′1(σ1
1) = φ̄(σ1

1 − σ2
1) +

∫
R c2 (α2(σ1, f(x1))) φ′

1(x1 − σ1
1 + σ2

1) dx1,

c′1(σ2
1) = φ̄(σ1

1 − σ2
1) −

∫
R c2 (α2(σ1, f(x1))) φ′

1(x1 − σ1
1 + σ2

1) dx1.
(7)

Proof. See the Appendix. �

As seen above, the stage 2 effort is determined through the standard marginal
consideration, and the symmetry of the agents’ stage 2 effort profile holds for any
announcement whether the equilibrium itself is symmetric or not. It can also be
seen that the expected marginal cost in stage 2 is independent of the feedback policy
since by the law of iterated expectation

Eσ,f
[
c′2(α2(σ1, ỹ))

]
= Eσ,f

[
Eσ,f

[
φ2(x̃1) | ỹ

]]

= Eσ,f [φ2(x̃1)]

= φ̄(0).

(8)

One implication of (6) is as follows. Suppose for simplicity that f is the full-feedback
policy: f(x1) = x1. In this case, σi

2,0(x1) = (c′2)−1 (φ2(x1)) as is readily verified.
It follows that the stage 2 effort is maximized when φ2(x1) is the largest. If φ2 is
unimodal at the origin as in the case of the normal distribution, hence, the stage
2 effort is a monotone decreasing function of |x1|. This supports the common in-
tuition that the closer the competition, the higher the efforts the agents exert.
Note, however, that this intuition fails when, for example, φ2 is bimodal so that
φ2(x) = φ2(−x) > φ2(0) for some x > 0.

We next turn to the existence of a pure PBE. Let

κ = min
{
1, inf

a∈R+

c′′1(a), inf
a∈R+

c′′2(a), lim
a→∞ c′2(a)

}
> 0.(9)

The next theorem identifies a sufficient condition for the existence.

Theorem 3.2. Suppose that

sup
x∈R

φ2(x), sup
x∈R

φ′
2(x),

∫
R

|φ′′
1(x)|dx,

∫
R

φ′
1(x)2

φ1(x)
dx <

κ

2
(10)

where κ is as defined in (9). Given any feedback policy f , there exists a pure PBE
under f if (7) has a solution σ1 = (σ1

1 , σ
2
1) ≥ 0.

15



Proof. See the Appendix. �

The conditions involving φt in Theorems 1 and 2 amount to requiring that the
performance score be a sufficiently noisy signal of agents’ effort. If, for example, ζt

has the normal distribution N(0, σ2
t ) (t = 1, 2), then these conditions are satisfied if

the variances σ2
1 and σ2

2 are sufficiently large.18 As discussed in Nalebuff and Stiglitz
(1983), large noise is a standard requirement for the existence of an equilibrium in a
tournament model with stochastic performance. Intuitively, if the noise is too small,
then any infinitesimal increase in effort results in almost sure winning, making it
impossible for the marginal equation to hold. It should also be emphasized that in
Theorem 2, the noise level required for the existence of an equilibrium is independent
of a particular feedback policy f .

In what follows, we assume for simplicity that Y is a vector space and normalize
f(0) = 0 ∈ Y . With this standardization, we say that a feedback policy f is odd if
f(x) = −f (−x) for any x ∈ R and even if f(x) = f(−x) for any x ∈ R. Intuitively,
if f is odd, then the inference drawn from the announcement when agent i leads
agent j in stage 1 is the exact opposite of that when their positions are reversed.
On the other hand, if f is even, then the announcement is the same regardless of
the identity of the leader as long as the size of the lead is the same. For example,
the full-feedback policy f(x) = x is odd (but not even), whereas the no-feedback
policy f(x) ≡ 0 is the only policy that is both odd and even.

A strategy profile σ is symmetric if the two agents always choose the same effort
level on the path: σ1

1 = σ2
1 and σ1

2,0(y) = σ2
2,0(y) for any y ∈ Y . We now show that

every even or odd policy admits a symmetric PBE when the noise is sufficiently
large. By summing the two equations of (7), we see that the stage 1 effort in a
symmetric PBE (if any) must satisfy

σ1
1 = σ2

1 = a∗1 ≡ (c′1)
−1(φ̄(0)).(11)

The following theorem confirms that this a∗1 is indeed part of an equilibrium when
f is even or odd.

18In fact, note that supx∈R φ2(x) = 1√
2πσ2

, supx∈R φ′
2(x) = 1√

2π σ2
2

e−1/2,

�
R

|φ′′
1 (x)| dx =

1√
2πσ1

�
R

���− 1

σ2
1

e−x2/2σ2
1 +

x2

σ4
1

e−x2/2σ2
1

��� dx ≤ 2

σ2
1

,

and �
R

φ′
1(x)2

φ1(x)
dx =

1

σ2
1

.
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Theorem 3.3. Suppose that condition (10) hold. If f is either odd or even, there
exists a unique symmetric pure PBE σ. Furthermore, for α2 defined in (6) and a∗1
defined in (11), σ satisfies

σ1
1 = σ2

1 = a∗1,(12)

and
σ1

2,0(y) = σ2
2,0(y) = α2(σ1, y) for any y ∈ Y .

Proof. See the Appendix. �

The following comments are in order on Theorem 3.3. First, it can be seen
from (8) and (12) that in symmetric PBE, the marginal cost of effort in stage 1
and the expected marginal cost in stage 2 both equal φ̄(0). This is a very intuitive
intertemporal relationship whose counterpart forms the basis of, for example, the
theory of precautionary savings. As mentioned in the Introduction, however, this
intertemporal equality holds only for a symmetric PBE in which the strategic effects
of both agents offset each other. Second, the stage 1 effort in symmetric PBE is
independent of the choice of a feedback policy. It is possible to interpret this fact
through the above intertemporal equality: As seen in (8), the expected stage 2
marginal cost is independent of the choice of a feedback policy, and so is the marginal
cost in stage 1 by virtue of the intertemporal equality. This shows that the stage
1 effort itself is the same in symmetric PBE under any policy. The following facts
about the no-feedback and full-feedback policies are readily implied by Theorem 3.3.

Proposition 3.4. If σ is the (unique) symmetric pure PBE under the no-feedback
policy, then the stage 1 effort equals σi

1 = a∗1 and the stage 2 effort equals

σi
2,0 = aN

2 ≡ (c′2)
−1

(
φ̄(0)

)
.

Likewise, if σ is the (unique) symmetric pure PBE under the full-feedback policy,
then the stage 1 effort equals σi

1 = a∗1 and the expected stage 2 effort equals

Eσ,f [σi
2,0(ỹ)] = aF

2 ≡
∫
R

(c′2)
−1(φ2(x1))φ1(x1) dx1.

17



When (c′2)−1 is concave or convex, Proposition 4 can be used to rank the no-
feedback and full-feedback policies in terms of the expected stage 2 effort they induce
in the symmetric PBE. Suppose for example that (c′2)−1 is concave. Then Jensen’s
inequality implies the no-feedback policy induces a higher expected effort than the
full-feedback policy:

aF
2 =

∫
R

(c′2)
−1(φ2(x1))φ1(x1) dx1 ≤ (c′2)

−1

(∫
R

φ2(x1)φ1(x1) dx1

)
= aN

2 .

The reverse inequality holds when (c′2)−1 is convex. In the next section, we consider
generalizations of these inequalities.

4 Optimal Feedback Policy

In this section, we will study the principal’s expected payoff in the pure PBE as
identified in Theorems 3.1-3.3. Given that the stage 2 efforts in any PBE are always
symmetric between the two agents by (6), it follows from our assumption (3) on the
principal’s payoff function V that his expected payoff is an increasing function of
their expected stage 2 effort.19 Recall that v(σ, f) denotes the principal’s expected
payoff in a PBE σ under the feedback policy f .

4.1 Symmetric Equilibrium

Even when f admits multiple symmetric pure PBE’s, they all induce the same on-
the-path effort by Theorem 3.1 and equation (11). In this sense, the principal’s
payoff is independent of the choice of a symmetric PBE σ. Hence, we define

v̄∗(f) =

⎧⎨
⎩

v(σ, f) if f admits a symmetric pure PBE σ,

0 otherwise.

Theorem 4.1. Suppose that condition (10) holds. If the marginal cost function
c′2 for stage 2 is convex over [0, (c′2)

−1(supx∈R φ2(x))], then the no-feedback policy
maximizes v̄∗ among all policies.

Proof. Take any policy f with a symmetric pure PBE σ. By the preceding discus-
sions, it suffices to show that the expected stage 2 effort is maximized under the

19In the consideration of a symmetric PBE in Section 4.1, we only need the linearity of V (a1, a
1
2 =

a2
2 = u) in u for a1 such that a1

1 = a2
1.
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no-feedback policy. Since (c′2)−1 is concave over [0, supx∈R φ2(x)], it follows from
Jensen’s inequality and the law of iterated expectation that the expected stage 2
effort under f satisfies

Eσ,f [α2(σ1, ỹ)] = Eσ,f
[
(c′2)

−1
(
Eσ,f [φ2(x̃1) | ỹ]

)]

≤ (c′2)
−1

(
Eσ,f

[
Eσ,f [φ2(x̃1) | ỹ]

])

= (c′2)
−1

(
Eσ,f

[
φ2(x̃1)

])

= (c′2)
−1

(
φ̄(0)

)
= aN

2 ,

where the third equality follows from the symmetry of the stage 1 effort profile
σ1. �

Theorem 4.2. Suppose that condition (10) holds. If the marginal cost function c′2
for stage 2 is concave over [0, (c′2)

−1(supx∈R φ2(x))], then the full-feedback policy
maximizes v̄∗ among all policies.

Proof. Take any policy f with a symmetric PBE σ. By the same logic as above, it
suffices to show that the expected stage 2 effort is maximized under the full-feedback
policy. Since (c′2)−1 is convex over [0, supx∈R φ2(x)], we now have

Eσ,f [α2(σ1, ỹ)] = Eσ,f
[
(c′2)

−1
(
Eσ,f [φ2(x̃1) | ỹ]

)]

≤ Eσ,f
[
Eσ,f

[
(c′2)

−1 (φ2(x̃1)) | ỹ
]]

= Eσ,f
[
(c′2)

−1 (φ2(x̃1))
]

=
∫
R

(c′2)
−1(φ2(x1))φ1(x1) dx1

= aF
2 .

where again the third equality follows from the symmetry of the stage 1 effort profile
σ1. �

The proofs of Theorems 4.1 and 4.2 also indicate that when c′2 is concave
(resp. convex), the no-feedback (resp. full-feedback) policy yields the lowest ex-
pected payoff to the principal. On the other hand, when the marginal cost function
c′2 for stage 2 is linear (and hence both concave and convex), the induced effort in ei-
ther stage is not affected by the feedback policy. The following corollary summarizes
this immediate consequence of Theorem 3.1.
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Corollary 4.3. Suppose that the stage 2 cost function is quadratic: c2(a) = 1
2 ka2

for some k > 0. Suppose also that supx∈R φ′
2(x) < k. Let f be any feedback policy.

In any symmetric pure PBE σ under f , the stage 1 effort equals σi
1 = a∗1, and the

expected stage 2 effort equals Eσ,f [σi
2,0(ỹ)] = 1

k φ̄(0). It follows that the principal’s
expected payoff v(σ, f) is independent of f .

4.2 Asymmetric Equilibrium

We now allow a PBE σ to be asymmetric, and define

v̄(f) = sup
{
v(σ, f) : σ is a pure PBE under f and satisfies (7)

}
,

with v̄(f) = −∞ if the corresponding strategy profile does not exist. We will make
some additional assumptions in order to evaluate the principal’s expected payoff
when the stage 1 effort profile is asymmetric. Specifically, we will identify the
situations where the principal obtains a higher payoff in a symmetric PBE than in
an asymmetric PBE. In such situations, the optimality of the no-feedback or full-
feedback policies is obtained just as before. Intuitively, a symmetric PBE is more
desirable for the principal than an asymmetric PBE if the two agents’ efforts enter
his payoff function in a complementary manner. In other words, we would want the
principal’s payoff to be higher when both agents make moderate efforts than when
one agent makes a high effort and the other makes a low effort. The assumption
below specifies just how much complementarity is sufficient for our conclusion.

Assumption 1. The principal’s payoff function V is differentiable, and for any
a =

(
(a1

1, a
2
1), (a

1
2, a

2
2)

) ∈ R4
+ such that a1

1 < a2
1 and a1

2 = a2
2, we have

c′′1(a
1
1) − 2φ̄′(a1

1 − a2
1)

c′′1(a2
1) + 2φ̄′(a1

1 − a2
1)

<

∂V
∂a1

1
(a)

∂V
∂a2

1
(a)

.(13)

It can be seen that the left-hand side of (13) represents the slope of the curve

h(a1
1, a

2
1) ≡ c′1(a

1
1) + c′1(a

2
1) − 2φ̄(a1

1 − a2
1) = 0(14)

in the (a1
1, a

2
1)-plane, which equals the sum of the two first-order conditions in (7).

On the other hand, the right-hand side of (13) represents the slope of the princi-
pal’s iso-payoff curve. Hence, (13) is a single-crossing condition asserting that the
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iso-payoff curve always has a steeper slope than (14). To see that this implies com-
plementarity between the two agents’ efforts, suppose that V has the CES form:
V (a) =

∑
t

{
(a1

t )m + (a2
t )m

}1/m, where m ≤ 1 and m �= 0. In this case, the right-
hand side of (13) equals (a1

1/a2
1)

m−1. Hence, (13) is easy to satisfy when m − 1
is negative and large in absolute value. In particular, it will hold for any c1 as
m → −∞, or V (a) =

∑
t min {a1

t , a
2
t } in the limit. On the other hand, in the case

of perfect substitutes m = 1, the inequality reduces to c′′1(a1
1)−c′′1(a2

1) < 4φ̄′(a1
1−a2

1),
which in effect requires c′′′1 to be not too negative. The second assumption below
requires that the density of the aggregate noise be maximized at the origin.

Assumption 2. φ̄(0) = maxx∈R φ̄(x).

It can be readily verified that Assumption 2 holds if both densities φ1 and φ2

are unimodal at the origin. As seen in the Appendix (Lemma A.1), Assumptions 1
and 2 together guarantee that the principal’s payoff is maximized at the symmetric
point (a∗1, a∗1) along (14) (provided that the stage 2 efforts are symmetric). The next
theorem shows that when these conditions hold, the principal’s payoff is maximized
in the symmetric equilibrium under the no-feedback policy if the stage 2 marginal
cost function is convex.

Theorem 4.4. Suppose that Assumptions 1-2 and condition (10) hold. If the marginal
cost function c′2 for stage 2 is convex over [0, (c′2)−1(supx∈R φ2(x))], then the no-
feedback policy maximizes v̄(·) among all policies.

Proof. See the Appendix. �

For the other type of the conclusion, we also need the density function of the
stage 2 noise to be unimodal.

Assumption 3. φ2 is unimodal at 0: φ2 is strictly increasing over (−∞, 0) and
strictly decreasing over (0,∞).

Under Assumptions 1-3, we obtain the optimality of the full-feedback policy
when the stage 2 marginal cost function is concave.

Theorem 4.5. Suppose that Assumptions 1-3 and condition (10) hold. If the marginal
cost function c′2 for stage 2 is concave over [0, (c′2)

−1(φ2(0))], then the full-feedback
policy maximizes v̄(·) among all policies.20

20Note that supx∈R φ2(x) = φ2(0) under Assumption 3.
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Proof. See the Appendix. �

As in the case of symmetric PBE, the principal’s payoff is independent of the
choice of a feedback policy when the stage 2 cost function c2 is quadratic.

4.3 Optimality of Intermediate Policies

Given the conclusions of the preceding sections, we now turn to the question of
optimal policies when the marginal cost of effort is neither convex nor concave over
the relevant domain. We are specifically interested in the existence of a feedback
policy that induces a higher effort than the no-feedback and full-feedback policies for
such a cost function. Among many different possibilities, we examine the simplest
case where the stage 2 marginal cost function c′2 has a single reflection point at
which the curvature changes from convex to concave. More specifically, we assume
that the density for the stage 2 noise is unimodal at the origin (Assumption 3), and
that c′2 satisfies the following condition.

Assumption 4. There exists r ∈ (
0, (c′2)

−1(φ2(0))
)

such that the stage 2 marginal
cost function c′2 is convex over [0, r] and concave over [r, (c′2)−1(φ2(0))].

Figure 1

c
2
'

e

r

c
2
'(r)

2
(0)

(c
2
')-1(

2
(0))0

Figure 1 illustrates c′2 satisfying the above condition. Let ρ > 0 be such that
φ2(ρ) = c′2(r). It follows that when the stage 1 score is such that |x1| < ρ, then
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φ2(x1) > c′2(r) so that c′2 is concave at (c′2)−1(φ2(x1)), and likewise, when |x1| ≥ ρ,
then φ2(x1) ≤ c′2(r) so that c′2 is convex at (c′2)

−1(φ2(x1)). By the discussion in
the previous sections, a natural focus is on the feedback policy that reveals full
information if x1 ∈ (−ρ, ρ) and no information otherwise. Let this feedback policy
be denoted by f∗:

f∗(x1) =

⎧⎨
⎩

x1 if |x1| < ρ,

ρ otherwise.
(15)

Note that f∗ is even, and that the announcement ρ under f∗ merely indicates the fact
that |x1| ≥ ρ. The following theorem shows that f∗ is optimal in a class of policies
that include the full-feedback policy. Recall that v̄∗(f) denotes the principal’s payoff
in the symmetric PBE under f .

Theorem 4.6. Suppose that Assumptions 3, 4 and condition (10) hold. Consider a
class of feedback policies f which reveal whether |x1| < ρ or not, i.e., f(x1) �= f(x′

1)
for any x1 and x′

1 such that |x1| < ρ and |x′
1| ≥ ρ. Then f∗ specified in (15)

maximizes v̄∗ in this class.

Proof. Let σ be the symmetric PBE under any feedback policy f in such a class.
We then have

|x1| < ρ =⇒ Eσ,f [φ2(x̃1) | ỹ = f(x1)] > c′2(r), and
|x1| ≥ ρ =⇒ Eσ,f [φ2(x̃1) | ỹ = f(x1)] ≤ c′2(r)

It follows that the expected stage 2 effort under f satisfies

Eσ,f
[
(c′2)

−1
(
Eσ,f [φ2(x̃1) | ỹ]

)]

= Eσ,f
[
(c′2)

−1
(
Eσ,f [φ2(x̃1) | ỹ]

) ∣∣∣ |x̃1| ≥ ρ
]

P σ,f (|x̃1| ≥ ρ)

+ Eσ,f
[
(c′2)

−1
(
Eσ,f [φ2(x̃1) | ỹ]

) ∣∣∣ |x̃1| < ρ
]

P σ,f (|x̃1| < ρ)

≤ (c′2)
−1

(
Eσ,f

[
Eσ,f [φ2(x̃1) | ỹ]

∣∣∣ |x̃1| ≥ ρ
])

P σ,f (|x̃1| ≥ ρ)

+ Eσ,f
[
Eσ,f

[
(c′2)

−1(φ2(x̃1)) | ỹ
] ∣∣∣ |x̃1| < ρ

]
P σ,f (|x̃1| < ρ)

= (c′2)
−1

(
Eσ,f [φ2(x̃1) | |x̃1| ≥ ρ]

)
P σ,f (|x̃1| ≥ ρ)

+ Eσ,f
[
(c′2)

−1(φ2(x̃1)) | |x̃1| < ρ
]
P σ,f (|x̃1| < ρ) ,

(16)

where the inequality follows from the above observation as well as Jensen’s inequal-
ity, and the last equality from the fact that the filtration induced by the announce-
ment ỹ includes the events {|x̃1| ≥ ρ} and {|x̃1| < ρ}. Since the far right-hand side of
(16) equals the expected stage 2 effort under f∗, the desired conclusion follows. �
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Since the full-feedback policy certainly distinguishes the two events |x1| ≤ ρ and
|x1| > ρ, the above theorem readily implies the following corollary.

Corollary 4.7. Suppose that Assumptions 3, 4 and condition (10) hold. Then f∗

specified in (15) yields the principal a higher expected payoff than the full feedback
policy.

The proof of Theorem 4.6 also suggests that any policy f measurable with respect
to some subset of {x1 : |x1| < ρ} or {x1 : |x1| ≥ ρ} is dominated by another policy.
To be more precise, let B ⊂ {x1 : |x1| < ρ} and suppose that f is measurable with
respect to B, i.e., f(x1) �= f(x′

1) for any x1 and x′
1 such that x1 ∈ B and x′

1 /∈ B.
Then a slight modification of the above proof shows that f is (weakly) dominated
by an alternative policy that reveals full information when x1 ∈ B, but is the same
as f when x1 /∈ B. The following theorem extends this kind of logic further to give
a sufficient condition for the no-feedback policy to be suboptimal.

Theorem 4.8. Suppose that Assumptions 3, 4 and condition (10) hold. If

φ̄(0) > c′2(r),

then there exists a feedback policy that induces a higher expected effort than the
no-feedback policy.

Proof. See the Appendix. �

The proof of the above theorem shows that the no-feedback policy is dominated
by a policy which only reveals whether or not φ2(x1) has exceeded a certain thresh-
old.

5 Private Feedback

Our analysis has so far assumed that the agents’ information at the beginning of
stage 2 consists only of his own action in stage 1 and feedback from the principal
about the stage 1 score. As mentioned in the Introduction, however, it may be more
appropriate in some applications to suppose that the agents privately observe their
own performance even with no information feedback. In this section, we model such
a situation and examine how revealing additional information affects the agents’
effort incentives. Interestingly, it can be shown that there still exists the same
monotone relationship as before between the amount of information revealed and
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the induced expected effort. Specifically, when the stage 2 marginal cost function
is concave, an agent’s expected effort is higher if he is informed of the other agent’s
stage 1 performance. If the marginal cost is convex, his expected effort is higher
when no such information is provided.

It should be noted that private observation of one’s own performance can be
interpreted in two ways. In one interpretation, the agents inherently know their
own performance as would be the case when there is an objective measure for per-
formance evaluation. In the other interpretation, the agents are initially ignorant
(as in the original setup) but privately learn their own performance as a result of
private feedback of such information form the principal. The two interpretations
are formally equivalent. We adopt the second interpretation in what follows and
refer to the situation where each agent is informed only of his own performance
as private feedback. A version of private feedback can also be found in Mares and
Harstad (2002), who show in a common-value auction setting that an auctioneer
may be better off revealing his private information in a non-public way.

Unlike in the preceding sections, we now suppose that each agent’s effort in
stage 1 gives rise to his individual performance. Formally, agent i’s performance zi

1

in stage 1 is the sum of his effort ai
1 and an exogenous random variable εi

1: zi
1 =

ai
1 + εi

1. The stage 1 score x1 is the difference between the two performance levels:
x1 = a1

1 − a2
1 + ε1

1 − ε2
1. Just as before, the performance score in stage 2 is generated

according to x2 = a1
2 − a2

2 + ζ2, and the winner is determined by the aggregate
score x = x1 + x2. With private feedback, the agents are asymmetrically informed
about their performance, and hence may choose an asymmetric effort profile in
stage 2. This is a significant departure from the preceding analysis and creates
much difficulty. For this reason, we make the following simplifying assumptions on
the distributions of noise. First, the joint distribution of the stage 1 noise profile
(ε1

1, ε
2
1) is finite and given by

P (ε̃1
1 = ε̃2

1 = 0) = α, P (ε̃1
1 = ε̃2

1 = q) = β,

P (ε̃1
1 = 0, ε̃2

1 = q) = P (ε̃1
1 = q, ε̃2

1 = 0) = γ,
(17)

where q, α, β, γ > 0 are constants and satisfy 2γ = 1 − α − β. Second, the density
function φ2 of the stage 2 noise ζ2 has bounded support such that

φ2(x) = 0 if |x| ≥ q − (c1)−1(1) − (c2)−1(1).(18)

Intuitively, this assumption states that q is large and represents an insurmountable
gap in performance levels. In other words, when εi

1 = q and εj
1 = 0, agent i becomes
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the ultimate winner as long as neither agent in any stage chooses an effort whose
cost exceeds the value of winning. This assumption simplifies the analysis since
then we can focus on the effort levels that follow the noise profile (ε1

1, ε
2
1) such that

ε1
1 = ε2

1. As in the previous sections, we also need to require the outcome to be
sufficiently noisy in order to guarantee the sufficiency of the first-order conditions
for maximization as well as the existence of an equilibrium. Specifically, we assume
throughout this section that

sup φ′
2(x) < min

{1
κ

inf c′′2(a),
(
1 − 1

κ

)
inf c′′1(a)

}
for some κ > 1.(19)

As mentioned above, we suppose that the agents initially do not know their own
stage 1 performance, but that the principal can use the private feedback policy that
informs each agent i of his own performance zi

1. Given the binary nature of the
noise distribution for each agent, we will consider the no-feedback and full-feedback
policies as alternatives. Our main objective is to compare the agents’ expected
effort under these three policies. As seen in Proposition 5.1, it can be shown that
there exists a unique PBE outcome under each one of these policies, and that the
equilibrium effort is characterized by the same marginal equation.

In what follows, we illustrate the derivation of a PBE σ under the private feed-
back policy. Note first that for agent i, learning zi

1 = ai
1 + εi

1 is equivalent to
observing the noise term εi

1. Given his stage 1 effort choice a1
1 and noise realization

ε1
1, agent 1’s stage 2 payoff function is given by

π1
2(a

1
2 | a1

1, ε
1
1)

= P (ε̃2
1 = ε1

1 | ε1
1)Φ2

(
a1

1 − σ2
1 + a1

2 − σ2
2,0(ε

1
1)

)
+ P (ε̃2

1 < ε1
1 | ε1

1) − c2(a1
2).

Hence, the sequentially rational choice of effort σ1
2(a

1
2, ε

1
1) satisfies the FOC

P (ε̃2
1 = ε1

1 | ε1
1)φ2

(
a1

1 − σ2
1 + σ1

2(a
1
1, ε

1
1) − σ2

2,0(ε
1
1)

)
− c′2(σ

1
2(a

1
1, ε

1
1)) = 0.

When the stage 1 effort a1
1 is at the equilibrium level σ1

1 , agent 1’s stage 2 effort
choice σ1

2,0(ε
1
1) = σ1

2(σ
1
1 , ε

1
1) on the path satisfies

P (ε̃2
1 = ε1

1 | ε1
1)φ2

(
σ1

1 − σ2
1 + σ1

2,0(ε
1
1) − σ2

2,0(ε
1
1)

)
= c′2(σ

1
2,0(ε

1
1)).

Since for j �= i,

P (ε̃j
1 = εi

1 | εi
1) =

⎧⎨
⎩

α
α+γ if εi

1 = 0,
β

β+γ if εi
1 = q,
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the above FOC and the corresponding condition for agent 2 yield

σi
2,0(ε

i
1) =

⎧⎨
⎩

(c′2)
−1( α

α+γ φ2(σ1
1 − σ2

1)) if εi
1 = 0,

(c′2)−1( β
β+γ φ2(σ1

1 − σ2
1)) if εi

1 = q.

With the stage 2 effort choice specified, we can write agent 1’s overall payoff as a
function of his stage 1 effort a1

1 as:

π1
1(a

1
1) = αΦ2

(
a1

1 − σ2
1 + σ1

2(a
1
1, 0) − σ2

2,0(0)
)
− (α + γ) c2(σ1

2(a
1
1, 0))

+ β Φ2

(
a1

1 − σ2
1 + σ1

2(a
1
1, q) − σ2

2,0(q)
)
− (β + γ) c2(σ1

2(a
1
1, q))

+ γ − c1(a1
1).

The FOC’s for maximization of π1
1 and the corresponding payoff function for agent

2 yield the equilibrium effort in stage 1:

σi
1 = (c′1)

−1((α + β)φ2(0)) for i = 1, 2.

We note in passing that exactly the same effort level is achieved in each stage under
the “reverse” private feedback policy that informs each agent only of their opponent’s
performance instead of their own. The following proposition summarizes the above
analysis.

Proposition 5.1. Let f be any of the no-feedback, full-feedback, and private feed-
back policies. Then there exists a PBE σ under each f . The PBE outcome is unique,
pure, and symmetric: The effort choice in stage 1 equals

σi
1 = (c′1)

−1((α + β)φ2(0))

under any feedback policy. On the other hand, the equilibrium effort choice in stage
2 equals

σi
2 = (c′2)

−1((α + β)φ2(0)).

under the no-feedback policy,

σi
2,0(z1) =

⎧⎨
⎩

(c′2)−1(φ2(0)) if z1
1 = z2

1,

0 otherwise.

under the full-feedback policy, and

σi
2,0(ε

i
1) =

⎧⎨
⎩

(c′2)
−1( α

α+γ φ2(0)) if εi
1 = 0,

(c′2)−1( β
β+γ φ2(0)) if εi

1 = q.

under the private feedback policy.

27



Proof. See the Appendix. �

The fact that the private feedback policy induces the same stage 1 effort as the
other two is a consequence of our simplifying assumption (18) on noise. The above
proposition allows us to compare the principal’s payoffs under the three policies.
Since the stage 1 effort is the same for every policy, the difference in the principal’s
payoffs arises solely from the stage 2 effort. The expected stage 2 effort can be
computed as

aN
2 = (c′2)

−1((α + β)φ2(0)).

under the no-feedback policy,

aF
2 = (α + β) (c′2)

−1(φ2(0))

under the full-feedback policy, and

aP
2 = (α + γ) (c′2)

−1
( α

α + γ
φ2(0)

)
+ (β + γ) (c′2)

−1
( β

β + γ
φ2(0)

)

under the private feedback policy. Suppose now that (c′2)−1 is concave, then Jansen’s
inequality implies that

aN
2 = (c′2)

−1
(
((α + γ)

α

α + γ
φ2(0) + (β + γ)

β

β + γ
φ2(0)

)

≥ (α + γ) (c′2)
−1

( α

α + γ
φ2(0)

)
+ (β + γ) (c′2)

−1
( β

β + γ
φ2(0)

)
= aP

2

≥ α(c′2)
−1(φ2(0)) + β(c′2)

−1(φ2(0))
= aF

2 .

It follows that in this case, the no-feedback policy induces the highest expected effort
followed by the private policy, and the full-feedback policy in this order. When (c′2)−1

is convex, all the inequalities are reversed so that the ordering is exactly reversed
as well. We summarize this observation in the following proposition.

Proposition 5.2. An agent’s stage 2 expected effort induced by each feedback policy
in the PBE is ranked as follows:

No-feedback ≥ Private feedback ≥ Full-feedback

if c′2 is convex, and

Full-feedback ≥ Private feedback ≥ No-feedback

if c′2 is concave.
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Again, when c′2 is linear, the three are all identical. The above relations on the
expected effort translate into the principal’s expected payoff as follows. When the
two agents’ efforts are perfect substitutes V (a) =

∑2
t=1 (a1

t + a2
t ), the principal’s

payoffs under the three policies are ordered in exactly the same way as above. On
the other hand, when the two agents’ efforts are complementary, then the principal’s
payoffs may have a different ordering: While the relative ranking of the full-feedback
and no-feedback policies remains the same, the private feedback policy becomes
less desirable given that it induces an asymmetric effort profile in stage 2 with
probability 2γ. For example, if the two agents’ efforts are perfect complements
V (a) =

∑2
t=1 min {a1

t , a2
t}, then it can be verified that the expected payoff under

the private feedback policy is lower than that under the full-feedback policy for any
c′2. With perfect complementarity, the private policy induces a lower payoff than
the no-feedback policy as well when c′2 is linear.

6 Mixed Equilibrium

In a dynamic contest such as the one studied in this paper, it is natural to think that
an agent may attempt to manipulate his opponent by making some unexpected move
early on. This is one expression of the strategic effect discussed in the Introduction.
While no surprise spurt is possible in equilibrium, such an intuition may in part
captured by a mixed equilibrium in which agents’ stage 1 efforts are stochastic and
their realizations become known to the opponent only ex post. In this section, we
point out that a mixed choice of effort in stage 1 leads to a lower expected effort in
stage 2.

The analysis of a mixed PBE is difficult for the following reasons. First, an
agent’s stage 2 effort is contingent on the realization of his stage 1 effort. This
implies that the stage 2 effort profile is in general asymmetric between the agents
as is the case with private feedback in the previous section. Second, it is difficult to
identify sufficient conditions for the existence of an equilibrium in which an agent is
indifferent between two or more effort choices. For these reasons, we will adopt the
simplified framework of Section 5 under the additional simplification that the stage
1 effort choice is binary. Furthermore, we focus on the full-feedback policy since our
interest is in an agent’s incentive for strategic manipulation through the revealed
information.

Formally, suppose that agent i’s effort in stage 1 can be either low ai
1 = 0 or
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high ai
1 = 1. The cost of effort equals c1(0) when ai

1 = 0 and c1(1) when ai
1 = 1 with

0 ≤ c1(0) < c1(1) < 1. The stage 2 action can take any non-negative real value.
The stage 1 noise has the same distribution as in Section 5, and the performance
gap of q is unrecoverable in the sense of (18). Let σ be any pure or mixed PBE
under the full-feedback policy. It can be verified that agent i’s stage 2 effort given
the announcement z1 = (z1

1 , z2
1) equals (i = 1, 2):

σi
2(a

i
1, z1) = λ(z1

1 − z2
1) ≡ (c′2)

−1(φ2(z1
1 − z2

1)) for any z1 and ai
1.(20)

The stage 2 effort choice is hence pure in any PBE. Let then pi be the probability
with which agent i chooses low effort ai

1 = 0 in stage 1. When agent 2 plays according
to σ2, agent 1’s overall payoff as a function of his stage 1 effort a1

1 can be written
as:

π1
1(a

1
1) = (α + β)

[
p2{Φ2(a1

1) − c2(λ(a1
1))} + (1 − p2){Φ2(a1

1 − 1) − c2(λ(a1
1 − 1))}

]
+ γ − c1(a1

1).

Since 0 < p1 < 1 implies the indifference π1
1(1) = π1

1(0), p2 in a completely mixed
equilibrium should satisfy

(α + β)
[
Φ2(1) − Φ2(0) + (2p2 − 1){c2(λ(0)) − c2(λ(1))}

]
= c1(1) − c1(0).

Solving this for p2, we readily obtain the following proposition.

Proposition 6.1. Suppose φ2(0) > φ2(1). Under the full feedback policy, there
exists a PBE in which the stage 1 effort choice is completely mixed if and only if

K =
c1(1)−c1(0)

α+β − Φ2(1) + Φ2(0)

c2(λ(0)) − c2(λ(1))
∈ (−1, 1),(21)

where λ is as defined in (20). In the mixed PBE, the stage 1 effort is ai
1 = 0 with

probability pi = (1 + K)/2, and ai
1 = 1 with probability 1 − pi = (1 − K)/2. The

stage 2 effort, on the other hand, equals λ(0) when a1
1 = a2

1, and λ(1) when a1
1 �= a2

1.
When (21) holds, there also exist two pure PBE in which stage 1 effort profiles are
(a1

1, a
2
1) = (0, 0) and (1, 1). The stage 2 effort in either pure PBE equals λ(0).

It is important to note that in the mixed equilibrium, an agent’s incentive to take
a costly action in stage 1 comes from two sources. First, the higher effort increases
the probability of winning. Second, the higher effort in stage 1 reduces the stage 2
cost: When only one agent has chosen a costly action in stage 1, both agents choose
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lower effort in stage 2 than when both have chosen low effort in stage 1. In fact,
since φ2(1) < φ2(0), the stage 2 effort λ(1) after the stage 1 profile a1 = (1, 0) is
lower than the stage 2 effort λ(0) after a1 = (0, 0). While the first effect is present
in the pure equilibrium as well, the second effect is unique to the mixed equilibrium.
Since a mixed choice of effort entails a mismatch of stage 1 actions with positive
probability, the stage 2 effort is lower on average in the mixed equilibrium than in
the pure equilibria. When φ2(1) > φ2(0), on the other hand, there exist one mixed
PBE and two pure PBE under (21). The pure PBE are both asymmetric with the
stage 1 profiles given by (1, 0) and (0, 1). It can be seen that in this case too, the
stage 2 effort in the mixed PBE is lower on average than in the pure PBE. This
observation is summarized below.

Corollary 6.2. Under the conditions of Proposition 6.1, an agent’s expected stage
2 effort in the mixed PBE is lower than that in either pure PBE.

It immediately follows from the above that the mixed PBE is dominated by the
pure PBE in which the stage 1 effort profile is a1 = (1, 1). We have no general
comparison of the mixed PBE with the other pure PBE with a1 = (0, 0) in terms of
the expected effort over the two stages. While obtained under a rather special set of
assumptions, the above logic underlying the mixed equilibrium appears quite general
and captures the essence of strategic manipulation: An agent would mix his action
in stage 1 precisely because it leads to a lower effort in stage 2. When the possibility
of such strategic manipulation is a major concern, hence, the full-feedback policy
becomes less desirable in comparison with the no-feedback policy.21

7 Conclusion

The paper gives a first attempt to understand the use of the designer’s private
information in a dynamic tournament, and its conclusion shows that the optimal
feedback depends sensitively on the functional form of the agents’ disutility of effort.
Although the present model abstracts from many important features of real tourna-
ments, we believe that such sensitivity is at the core of the information revelation
problem.

21Under some conditions, the no-feedback policy also admits a mixed PBE. However, if we take

the view that the mixed action results from the strategic manipulation, then the mixed PBE is not

plausible under the no-feedback policy.
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We note that the analysis can be generalized to a T -stage tournament in which
information feedback has many more dimensions than in the two-stage model. In
particular, a feedback policy in a T -stage model is a contingent plan which deter-
mines not only the degree of information revelation but also its timing. For example,
the principal may choose to reveal the stage 1 score before stage 3 if the stage 2
score is in some range, but withhold it until stage 4 otherwise. Under a slightly
stronger set of assumptions on noise, we can prove that a symmetric PBE exists in
the T -stage model when a feedback policy is even. Furthermore, among the class of
even feedback policies, the no-feedback policy is optimal when the stage t marginal
costs function are convex for t = 2, . . . , T , and the feedback policy that reveals the
absolute value of the stage score after every period, and hence is “most revealing”
in the class of even policies, is optimal when the stage t marginal cost functions are
concave.22

One key assumption of the present model is that the principal commits to the
announced feedback policy for any realization of his private signal. It should be
noted that such commitment is a standard assumption of mechanism design.23 If
the principal lacks commitment and optimizes his announcement after seeing his
signal, then the problem becomes one of cheap-talk: He would choose an announce-
ment that maximizes the stage 2 effort regardless of his private information. This in
turn implies that the principal’s announcement loses its informational content.24 In
other words, the assumption of no commitment is equivalent to no-feedback in the
commitment framework. One way to interpret the principal’s commitment to his
feedback policy is by assuming the enforcement by a third party, who monitors the
principal for a deviation from the announced policy. Under such an interpretation,
however, it should be noted that not all policies are equally credible. For example,
if the principal declares the use of the no-feedback policy, any release of information
afterward is a clear deviation. On the other hand, if the principal announces the use
of the full-feedback policy, his deviation cannot be detected unless his private infor-
mation is verified. This suggests that the full-feedback policy has more credibility
problems. Such a variation in credibility levels would be an important consideration
in the enforcement interpretation. Alternatively, even when the private information

22See Aoyagi (2005).
23For example, it is common in the analysis of auctions to assume that an auctioneer retains his

good if no bid reaches the reserve price.
24Kaplan and Zamir (2000) find that the auctioneer cannot exploit his private information on

the bidders’ valuation if he cannot commit to an announcement policy.
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is not verifiable, it may still be possible to use statistical testing to enforce a feed-
back policy when the tournaments are repeated over time under the same policy.
For example, a statistical test would reject the honesty of a tournament organizer
who always reports a close race for the sake of spurring competition. The analysis
of such a model, however, is not straightforward.

A Appendix

Recall that the set f−1(y) of stage 1 scores x1 compatible with the announcement
y either has positive measure or is countable by the regularity assumption. In the
Appendix, we assume for simplicity that the set f−1(y) has positive measure. When
it is countable, any integral over f−1(y) should be replaced by the corresponding
summation.

Given a strategy profile σ and announcement y, we denote by gσ,f
1 (x1 | ai

1, y)
the conditional density of the stage 1 score x1 when the stage 1 effort profile is
(ai

1, σ
j
1) (i.e., when agent i chooses a possibly off-equilibrium action ai

1 while agent
j chooses the equilibrium effort level). For x1 ∈ f−1(y), the conditional density can
be explicitly written as

gσ,f
1 (x1 | a1

1, y) =
φ1(x1 − a1

1 + σ2
1)∫

f−1(y) φ1(x′
1 − a1

1 + σ2
1) dx′

1

, and

gσ,f
1 (x1 | a2

1, y) =
φ1(x1 − σ1

1 + a2
1)∫

f−1(y) φ1(x′
1 − σ1

1 + a2
1) dx′

1

.

Note in particular that gσ,f
1 (· | ai

1, y) depends on σ only through the stage 1 profile
σ1. With slight abuse of notation, we define gσ,f

1 (x1 | y) = gσ,f
1 (x1 | σi

1, y): the
density of x1 conditional on y when both agents choose their effort according to σ.
Its explicit form is given by

gσ,f
1 (x1 | y) =

φ1(x1 − σ1
1 + σ2

1)∫
f−1(y) φ1(x′

1 − σ1
1 + σ2

1) dx′
1

.

Proof of Theorem 3.1 Fix any PBE σ. Recall that πi
2(a

i
2 | σ, ai

1, y) represents
agent i’s expected payoff in stage 2 when he chooses ai

2 in stage 2, his history after
stage 1 is hi

1 = (ai
1, y), and agent j plays according to the equilibrium strategy σj .

For simplicity, write πi
2(a

i
2 | ai

1, y) for πi
2(a

i
2 | σ, ai

1, y). As seen in the text, we have

∂π1
2

∂a1
2

(a1
2 | a1

1, y) = Eσ,f [φ2(a1
2 − σ2

2,0(y) + x̃1) | a1
1, y] − c′2(a

1
2).
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Since ∂π1
2

∂a1
2
(0 | a1

1, y) > 0 by c′2(0) = 0, the sequentially rational choice of effort in
stage 2 σ1

2(a
1
1, y) (if any) must satisfy the FOC

c′2
(
σ1

2(a
1
1, y)

)
= Eσ,f [φ2(σ1

2(a
1
1, y) − σ2

2,0(y) + x̃1) | a1
1, y](22)

for every a1
1. Since infa∈R+ c′′2(a) > supx∈R φ′

2(x) by assumption, we also have
∂2π1

2

∂(a1
2)

2 (a1
2 | a1

1, y) < 0. It then follows that the above FOC is indeed sufficient for

global maximization, and also that σ1
2(a

1
1, y) is differentiable as a function of a1

1 by
the implicit function theorem. Likewise, agent 2’s stage 2 action satisfies

c′2
(
σ2

2(a
2
1, y)

)
= Eσ,f [φ2(−σ1

2,0(y) + σ2
2(a

2
1, y) − x̃1) | a2

1, y](23)

for every a2
1. On the equilibrium path where ai

1 = σi
1, we have σi

2(σ
i
1, y) = σi

2,0(y)
and Eσ,f [· | σi

1, y] = Eσ,f [· | y]. Hence, (22) and (23) show that σ1
2,0(y) and σ2

2,0(y)
must satisfy

σ1
2,0(y) = σ2

2,0(y) = α2(y) ≡ (c′2)
−1

(
Eσ,f

[
φ2(x̃1) | y

])
.(24)

Now let πi
1(a

i
1) = πi

1(a
i
1 | σ) be agent i’s (overall) expected payoff when he takes ai

1

in stage 1 and σi
2(a

i
1, y) in stage 2, while agent j plays according to his equilibrium

strategy σj. For i = 1, we have

π1
1(a

1
1)

= −c1(a1
1)

+
∫
R

{
Φ2

(
σ1

2(a
1
1, f(x1)) − σ2

2,0(f(x1)) + x1

) − c2

(
σ1

2(a
1
1, f(x1))

)}

× φ1(x1 − a1
1 + σ2

1) dx1.

(25)

Given that σ1
2 is differentiable in a1

1 as noted above, we use the envelope theorem to
differentiate π1

1 :

(π1
1)

′(a1
1)

= −
∫
R

Φ2

(
σ1

2(a
1
1, f(x1)) − σ2

2,0(f(x1)) + x1

)
φ′

1(x1 − a1
1 + σ2

1) dx1

+
∫
R

c2

(
σ1

2(a
1
1, f(x1))

)
φ′

1(x1 − a1
1 + σ2

1) dx1 − c′1(a
1
1).

(26)

If the equilibrium stage 1 action a1
1 = σ1

1 is strictly positive, the FOC (π1
1)

′(σ1
1) = 0

must hold. Since σ1
2,0(y) = σ2

2,0(y) for any y ∈ Y by (24), this FOC is equivalent to

c′1(σ
1
1) = −

∫
R

Φ2(x1)φ′
1(x1 − σ1

1 + σ2
1) dx1

+
∫
R

c2 (α2(σ1, f(x1))) φ′
1(x1 − σ1

1 + σ2
1) dx1.
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Changing variables of the first integral, and then integrating it by parts, we see that
this is equivalent to the first line of (7). The symmetric argument shows that the
second line of (7) is equivalent to the FOC for agent 2. �

Proof of Theorem 3.2 Write ε = κ/2, where κ is as defined in (9). Suppose that
σ1 = (σ1

1 , σ
2
1) solves (7). We construct a PBE as follows. First, for each a1

1, a2
1 ∈ R,

and y ∈ Y , let

ϕ1
2(a

1
2 | a1

1, y) = Eσ,f [φ2(a1
2 − α2(σ1, y) + x̃1) | a1

1, y] − c′2(a
1
2),

and
ϕ2

2(a
2
2 | a2

1, y) = Eσ,f [φ2(α2(σ1, y) − a2
2 + x̃1) | a2

1, y] − c′2(a
2
2).

Define σ1
2(a

1
1, y) > 0 and σ2

2(a
2
1, y) > 0 to be the unique solutions to

ϕ1
2(a

1
2 | a1

1, y) = 0 and ϕ2
2(a

2
2 | a2

1, y) = 0,

respectively. To see that such a solution exists, note that ϕ1
2(0 | a1

1, y) > 0 since
c′2(0) = 0 and φ2 > 0, and that ϕ1

2(a
1
2 | a1

1, y) < 0 for a1
2 large enough since

lima→∞ c′2(a) > ε > supx∈R φ2(x). Furthermore, it follows from infa∈R c′′2(a) >

ε > supx∈R φ′
2(x) that

∂ϕ1
2

∂a1
2

(a1
2 | a1

1, y) = −c′′2(a
1
2) + Eσ,f [φ′

2(a
1
2 − σ2

2,0(y) + x1) | a1
1, y]

< −κ + ε < 0.

(27)

Hence there indeed exists a unique solution σ1
2(a

1
1, y) > 0 to ϕ1

2(a
1
2 | a1

1, y) = 0.
The symmetric argument applies to agent 2. Note now that when ai

1 = σi
1, ai

2 =
α2(σ1, y) solves ϕi

2(a
i
2 | σi

1, y) = 0. We can hence replace α2(σ1, y) in the definition
of ϕ1

2(a
1
2 | a1

1, y) by σ2
2,0(y) = σ2

2(σ
2
1 , y), and see that ϕ1

2(a
1
2 | a1

1, y) = 0 is equivalent

to the FOC ∂π1
2

∂a1
2
(a1

2 | a1
1, y) = 0 ((22) in the proof of Theorem 1) of agent 1’s stage 2

payoff maximization problem. To see that a1
2 = σ1

2(a
1
1, y) is a sequentially rational

choice, it suffices to note that

∂2π1
2

∂(a1
2)

2 (a1
2 | a1

1, y) = −c′′2(a
1
2) + Eσ,f [φ′

2(a
1
2 − σ2

2,0(y) + x̃1) | a1
1, y]

< −κ + ε < 0.

The same observation holds for agent 2.
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We now turn to the analysis of stage 1 effort. As in the proof of Theorem 1,
write πi

1(a
i
1) = πi

1(a
i
1 | σ) for agent i’s overall payoff when he takes action ai

1 in stage
1 and chooses σi

2(a
i
1, y) in stage 2, and agent j plays according to σ2. Define

ϕ1
1(a

1
1) = −c′1(a

1
1) + φ̄(a1

1 − σ2
1)

+
∫
R

c2

(
α2(a1

1, σ
2
1 , f(x1))

)
φ′

1(x1 − a1
1 + σ2

1) dx1,

ϕ2
1(a

2
1) = −c′1(a

2
1) + φ̄(σ1

1 − a2
1)

−
∫
R

c2

(
α2(σ1

1 , a
2
1, f(x1))

)
φ′

1(x1 − σ1
1 + a2

1) dx1.

By assumption, ai
1 = σi

1 solves ϕi
1(a

i
1) = 0. Furthermore, ϕi

1(a
i
1) = (πi

1)
′(ai

1) as seen
in the proof of Theorem 1 so that σi

1 is a solution to the FOC of agent i’s payoff
maximization problem. In what follows, We will show (ϕi

1)
′ = (πi

1)
′′ < 0 and hence

σi
1 is indeed the maximizer of π1

1 .
Since σ1

2 is differentiable with respect to a1
1 as noted in the proof of Theorem

3.1, we can differentiate (26) to obtain

(ϕ1
1)

′(a1
1) = −c′′1(a

1
1)

−
∫
R

{
φ2

(
σ1

2(a
1
1, f(x1)) − σ2

2,0(f(x1)) + x1

) − c′2(σ
1
2(a

1
1, f(x1)))

}

× ∂σ1
2

∂a1
1

(a1
1, f(x1))φ′

1(x1 − a1
1 + σ2

1) dx1

+
∫
R

{
Φ2

(
σ1

2(a
1
1, f(x1)) − σ2

2,0(f(x1)) + x1

) − c2(σ1
2(a

1
1, f(x1)))

}
× φ′′

1(x1 − a1
1 + σ2

1) dx1.

Note now that for any y ∈ Y , we have c′2(σ1
2(a

1
1, y)) ≤ ε by (23) and c2(σ1

2(a
1
1, y)) ≤ 1

by the above observation that σ1
2(a

1
1, y) maximizes π1

2(· | a1
1, y). Hence,

∣∣φ2(σ1
2(a

1
1, f(x1)) − σ2

2,0(f(x1)) + x1) − c′2(σ
1
2(a

1
1, f(x1)))

∣∣ ≤ ε,

and ∣∣Φ2(σ1
2(a

1
1, f(x1)) − σ2

2,0(f(x1)) + x1) − c2(σ1
2(a

1
1, f(x1)))

∣∣ ≤ 1.

It follows that

(ϕ1
1)

′(a1
1) ≤ −c′′1(a

1
1) + ε

∫
R

∣∣∣∣∂σ1
2

∂a1
1

(a1
1, f(x1))

∣∣∣∣ ∣∣φ′
1(x1 − a1

1 + σ2
1)

∣∣ dx1

+
∫
R

∣∣φ′′
1(x1 − a1

1 + σ2
1)

∣∣ dx1.

(28)
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For x1 ∈ f−1(y), we have

∂gσ,f
1

∂a1
1

(x1 | a1
1, y) =

−φ′
1(x1 − a1

1 + σ2
1)∫

f−1(y) φ1(x̂1 − a1
1 + σ2

1) dx̂1

+
φ1(x1 − a1

1 + σ2
1)

∫
f−1(y) φ′

1(x̂1 − a1
1 + σ2

1) dx̂1{∫
f−1(y) φ1(x̂1 − a1

1 + σ2
1) dx̂1

}2 ,

and hence
∫
R

∣∣∣∂gσ,f
1

∂a1
1

(x1 | a1
1, y)

∣∣∣ dx1 ≤ 2

∫
f−1(y) |φ′

1(x1 − a1
1 + σ2

1)| dx1∫
f−1(y) φ1(x1 − a1

1 + σ2
1) dx1

.(29)

For simplicity, write Ê for Eσ,f [· | a1
1], expectation with respect to x1 given the stage

1 effort profile (a1
1, σ

2
1). If we let

q(x1) =

∣∣φ′
1(x1 − a1

1 + σ2
1)

∣∣
φ1(x1 − a1

1 + σ2
1)

,

then (29) can be written as
∫
R

∣∣∣∂gσ,f
1

∂a1
1

(x1 | a1
1, y)

∣∣∣ dx1 ≤ 2Ê[q(x̃1) | y].

On the other hand,

∂ϕ1
2

∂a1
1

(a1
2 | a1

1, y) =
∫
R

φ2

(
a1

2 − σ2
2,0(y) + x1

) ∂gσ,f
1

∂a1
1

(x1 | a1
1, y) dx1,

so that ∣∣∣∣∂ϕ1
2

∂a1
1

(a1
2 | a1

1, y)
∣∣∣∣ < ε

∫
R

∣∣∣∣∂gσ,f
1

∂a1
1

(x1 | a1
1, y)

∣∣∣∣ dx1 ≤ 2ε Ê[q(x̃1) | y].

Therefore,

1
2ε

∫
R

∣∣∣∣∂ϕ1
2

∂a1
1

(a1
2 | a1

1, y = f(x1))
∣∣∣∣

∣∣φ′
1(x1 − a1

1 + σ2
1)

∣∣ dx1

≤
∫
R

Ê[q(x̃1) | ỹ = f(x1)] q(x1)φ1(x1 − a1
1 + σ2

1) dx1

= Ê
[
Ê[q(x̃1) | ỹ] q(x̃1)

]

≤ Ê
[
Ê[q(x̃1) | ỹ]2

]1/2
Ê

[
q(x̃1)2

]1/2

≤ Ê
[
Ê[q(x̃1)2 | ỹ]

]1/2
Ê

[
q(x̃1)2

]1/2

= Ê
[
q(x̃1)2

]
=

∫
R

∣∣∣∣φ
′
1(x1)

φ1(x1)

∣∣∣∣
2

φ1(x1) dx1 < ε,
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where the fourth line follows from Schwartz’ inequality and the fifth line from
Jensen’s inequality. Using the implicit function theorem and evaluating ∂ϕ1

2

∂a1
2

using
(27), we see that the second term on the right-hand side of (28) satisfies

ε

∫
R

∣∣∣∣∂σ1
2

∂a1
1

(a1
1, f(x1))

∣∣∣∣ ∣∣φ′
1(x1 − a1

1 + σ2
1)

∣∣ dx1

= ε

∫
R

∣∣∣∂ϕ1
2

∂a1
1
(σ1

2(a
1
1, f(x1)) | a1

1, y = f(x1))
∣∣∣∣∣∣∂ϕ1

2

∂a1
2
(σ1

2(a
1
1, f(x1)) | a1

1, y = f(x1))
∣∣∣
∣∣φ′

1(x1 − a1
1 + σ2

1)
∣∣ dx1

≤ ε

κ − ε

∫
R

∣∣∣∣∂ϕ1
2

∂a1
1

(σ1
2(a

1
1, f(x1)) | a1

1, f(x1))
∣∣∣∣ ∣∣φ′

1(x1 − a1
1 + σ2

1)
∣∣ dx1

≤ 2ε3

κ − ε

Hence,

(ϕ1
1)

′(a1
1) ≤ −κ +

2ε3

κ − ε
+ ε < 0.

This proves the claim. �

Proof of Theorem 3.3 Suppose that σ1
1 = σ2

1 . We first show that α2(σ1, f(x1)) =
α2(σ1, f(−x1)) for any x1. This would hold trivially if f is even since then f(x1) =
f(−x1). If f is odd, then gσ,f

1 (x1 | y) = gσ,f
1 (−x1 | −y), and hence the symmetry of

φ2 implies that

α2(σ1, y) = (c′2)
−1

(∫
R

φ2(x1) gσ,f
1 (x1 | y) dx1

)

= (c′2)
−1

(∫
R

φ2(−x1) gσ,f
1 (−x1 | −y) dx1

)

= α2(σ1,−y).

It follows that α2(σ1, f(−x1)) = α2(σ1,−f (x1)) = α2(σ1, f(x1)). With this equality,
σ1

1 = σ2
1 = a∗1 solves (7) since∫

R
c2(α2(σ1, f(x1)))φ′

1(x1) dx1

=
∫ ∞

0
c2(α2(σ1, f(x1)))φ′

1(x1) dx1 +
∫ 0

−∞
c2(α2(σ1, f(x1)))φ′

1(x1) dx1

=
∫ ∞

0
c2(α2(σ1, f(x1)))φ′

1(x1) dx1 −
∫ ∞

0
c2(α2(σ1, f(−x1)))φ′

1(x1) dx1

= 0.

This completes the proof. �

38



Lemma A.1. Suppose that Assumptions 1 and 2 hold and that lima→∞ c′1(a) >

2φ̄(0) for i = 1, 2. Then for any σ1 that solves (7) and any a2 such that a1
2 = a2

2,
the principal’s payoff function satisfies

V ((a∗1, a
∗
1), a2) ≥ V (σ1, a2).

Proof. Fix a2 ∈ R2
+ such that a1

2 = a2
2. Since h is continuous, the inverse image

h−1({0}) is closed. Furthermore, it is non-empty since (a∗1, a
∗
1) ∈ h−1({0}). To see

that it is bounded, note that (c′1)−1(2φ̄(0)) < ∞ by assumption. For any a1 such
that max {a1

1, a
2
1} > (c′1)

−1(2φ̄(0)), we have

h(a1) ≥ c′1(a
1
1) + c′1(a

2
1) − 2φ̄(0) > 0,

where the first inequality follows from Assumption 2 and the second from the
monotonicity of c′1. This shows that h−1({0}) is a subset of the bounded set
{a1 : max {a1

1, a
2
1} ≤ (c′1)−1(2φ̄(0))} and hence is compact. It follows that the

continuous function V (·, a2) on the compact set h−1({0}) = {a1 ∈ R2
+ : h(a1) = 0}

achieves a maximum. Let ā1 = (ā1
1, ā

2
1) ∈ h−1({0}) be any maximizer of V (·, a2) in

h−1({0}). We show that ā1 = (a∗1, a
∗
1). Suppose that ā1

1 < ā2
1. Since ∂h

∂a2
1
�= 0 by

(13), the implicit function theorem shows that there exists a function γ defined in a
neighborhood of ā1

1 such that h(a1
1, γ(a1

1)) = 0. Furthermore, γ is differentiable at ā1
1

and the derivative γ′(ā1
1) is given by the left-hand side of (13) with āi

1 replacing ai
1.

Now let δ(a1
1) = V ((a1

1, γ(a1
1)), a2). δ is also differentiable at ā1

1 and its derivative is
given by

δ′(ā1
1) =

∂V

∂a1
1

(ā1, a2) +
∂V

∂a2
1

(ā1, a2) γ′(ā1
1).

It can be readily verified that Assumption 1 implies δ′(ā1
1) > 0. This contradicts our

assumption that V is maximized at ā1 in h−1({0}) = 0. The symmetric argument
shows that it cannot be maximized at ā such that ā1

1 > ā2
1 either. Hence, we must

have ā1
1 = ā2

1 = a∗1. �

Proof of Theorem 4.4 Let f be any feedback policy that admits a PBE σ for
which (7) holds. As in the proof of Theorem 4.1, Jensen’s inequality and the law of
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iterated expectation applied to (11) imply that the expected stage 2 effort satisfies

Eσ,f [α2(σ1, ỹ)] = Eσ,f
[
(c′2)

−1
(
Eσ,f [φ2(x̃1) | ỹ]

)]

≤ (c′2)
−1

(
Eσ,f

[
Eσ,f [φ2(x̃1) | ỹ]

])

= (c′2)
−1

(
Eσ,f [φ2(x̃1)]

)
= (c′2)

−1
(
φ̄(σ1

1 − σ2
1)

)
≤ (c′2)

−1
(
φ̄(0)

)
= aN

2 ,

where the last inequality follows from Assumption 2. It hence follows from (3) that

v(σ, f) = Eσ,f
[
V

(
σ1, a

1
2 = a2

2 = α2(σ1, ỹ)
)] ≤ V (σ1, (aN

2 , aN
2 )).

Since σ1 solves (7) by assumption,

V
(
σ1, (aN

2 , aN
2 )

) ≤ V
(
(a∗1, a

∗
1), (a

N
2 , aN

2 )
)

by Lemma A.1. Since the right-hand side of the above inequality equals the prin-
cipal’s expected payoff in the symmetric PBE under the no-feedback policy, the
desired conclusion follows. �

Proof of Theorem 4.5 We first show that Assumption 3 implies

P (|ζ̃2| ≥ κ)) = minδ∈R P (|ζ̃2 + δ| ≥ κ)) for any κ > 0.(30)

Let δ > 0 and κ > 0 be given. When δ < 2κ, we have

P (|ζ̃2| < κ)) − P (|ζ̃2 + δ| < κ))

= −
∫ −κ

−κ−δ
φ2(x) dx +

∫ κ

κ−δ
φ2(x) dx

> −δ φ2(−κ) + δ φ2(κ)

= 0.

On the other hand, when δ > 2κ, we have

P (|ζ̃2| < κ)) − P (|ζ̃2 + δ| < κ))

=
∫ κ

−κ
φ2(x) dx −

∫ κ−δ

−κ−δ
φ2(x) dx

> 2κφ2(κ) − 2κφ2(κ − δ)

> 0.

40



The similar argument proves (30) when δ < 0.
We now show that the expected stage 2 effort implied by σ is less than or equal

to that implied by the symmetric PBE under the full-feedback policy:

Eσ,f
[
α2(σ1, ỹ)

] ≤ aF
2 ≡

∫
R

(c′2)
−1(φ2(x1))φ1(x1) dx1.(31)

By the same logic as in the proof of Theorem 4.4, it would then follow from Lemma
A.1 that v(σ, f) is ≤ the principal’s expected payoff in the symmetric PBE under
the full-feedback policy.

Note that since Eσ,f
[
α2(σ1, ỹ)

] ≤ Eσ,f
[
(c′2)−1(φ2(x̃1))

]
as in the proof of Theo-

rem 4.2, (31) is implied by

Eσ,f
[
(c′2)

−1(φ2(x̃1))
] ≤ aF

2 .(32)

Let η2 : [0, φ2(0)] → R+ be the inverse of the restriction of φ2 to R+ with η2(0) = ∞.
In other words, for each u ∈ [0, φ2(0)], η2(u) ≥ 0 is the unique number such that
φ2(η2(u)) = u. Note that η2 is well-defined under Assumption 3. Given any δ ∈ R,
let the function G(· | δ) : [0, φ2(0)] → R+ be defined by G(u | δ) = 1−Φ2(η2(u)−δ)+
Φ2(−η2(u)− δ) = P

(
|ζ̃2 + δ| ≥ η2(u)

)
. Note that G(· | δ) is a distribution function

over [0, φ2(0)] since it is increasing, and satisfies G(0 | δ) = 0 and G(φ2(0) | δ) = 1.
If we write δ = σ1

1 − σ2
1 , then

E
[
(c′2)

−1 (φ2(x1)) | a1

]
=

∫
R

(c′2)
−1 (φ2(x1)) φ1(x1 − δ) dx1

=
∫ φ2(0)

0
(c′2)

−1(u)φ1(η2(u) − δ) (−η′2(u))du

+
∫ φ2(0)

0
(c′2)

−1(u)φ1(−η2(u) − δ) (−η′2(u))du

=
∫ φ2(0)

0
(c′2)

−1(u) dG(u | δ),

where the second equality follows from first dividing the range of the integral and
then applying the change of variables from x1 to u = φ2(x1) or u = −φ2(x1).
By (30), G(u | δ) = P

(
|ζ̃2 + δ| ≥ η2(u)

)
≥ P

(
|ζ̃2| ≥ η2(u)

)
= G(u | 0) for any

u ∈ [0, φ2(0)] and δ ∈ R so that G(u | 0) first-order stochastically dominates
G(u | δ) with δ �= 0. Since (c′2)−1 is increasing, it follows that

∫ φ2(0)

0
(c′2)

−1(u) dG(u | δ) ≤
∫ φ2(0)

0
(c′2)

−1(u) dG(u | 0).
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Changing variables back to x1, we see that the right-hand side of this inequality
equals aF

2 . �

Proof of Theorem 4.8 For any r̂ ∈ (r, (c′2)−1(φ2(0))), define

p =
∫
{x1: φ2(x1)≥c′2(r̂)}

φ1(x1) dx1,

s =
1

1 − p

∫
{x1: φ2(x1)<c′2(r̂)}

φ2(x1)φ1(x1) dx1,

t =
1
p

∫
{x1: φ2(x1)≥c′2(r̂)}

φ2(x1)φ1(x1) dx1.

Now consider the even feedback policy f that only reveals whether φ2(x1) ≥ c′2(r̂)
or not. We can express the expected stage 2 effort in the symmetric PBE σ under
f as

Eσ,f
[
(c′2)

−1(Eσ,f [φ2(x̃1) | ỹ])
]

= Eσ,f
[
(c′2)

−1(Eσ,f [φ2(x̃1) | ỹ])
∣∣∣ φ2(x̃1) ≥ c′2(r̂)

]
P σ,f

(
φ2(x̃1) ≥ c′2(r̂)

)
+ Eσ,f

[
(c′2)

−1(Eσ,f [φ2(x̃1) | ỹ])
∣∣∣ φ2(x̃1) < c′2(r̂)

]
P σ,f

(
φ2(x̃1) < c′2(r̂)

)
= (1 − p) (c′2)

−1(s) + p(c′2)
−1(t),

where the second equality follows since the functions inside the expectations are
constant over the conditioning events by assumption. On the other hand, the stage
2 effort in the symmetric PBE under the no-feedback policy can be expressed as

(c′2)
−1((1 − p) s + p t).

Since s → φ̄(0) > c′2(r) as r̂ → (c′2)−1(φ2(0)), we can take r̂ close enough to
(c′2)−1(φ2(0)) so that s > c′2(r). Since t ≥ s, we have s, t ∈ [c′2(r), φ2(0)] for such an
r. Given that (c′2)−1 is convex over this interval by assumption, it follows that

(1 − p) (c′2)
−1(s) + p(c′2)

−1(t) ≥ (c′2)
−1((1 − p) s + p t).(33)

This proves the claim. �

Proof of Proposition 5.1 Take first the private feedback policy. Differentiation
of agent 1’s stage 2 payoff function yields

∂π1
2

∂a1
2

(a1
2 | a1

1, ε
1
1) = P (ε̃2

1 = ε1
1 | ε1

1)φ2

(
a1

1 − σ2
1 + a1

2 − σ2,0(ε1
1)

)
− c′2(a

1
2).
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From this follows the FOC in the text. Differentiating this, we also obtain the
second-order derivative:

∂2π1
2

∂(a1
2)

2 (a1
2 | a1

1, ε
1
1) = P (ε̃2

1 = ε1
1 | ε1

1)φ′
2

(
a1

1 − σ2
1 + a1

2 − σ2,0(ε1
1)

)
− c′′2(a

1
2)

< 0,

(34)

where the inequality follows from (19). Hence, the FOC characterizes the optimal
choice. For the equilibrium choice of stage 1 effort a1

1 = σ1
1 , a1

2 = σ1
2(σ

1
1 , ε

1
1) =

σ1
2,0(ε

1
1) satisfies the following FOC:

P (ε̃2
1 = ε1

1 | ε1
1)φ2

(
σ1

1 − σ2
1 + σ1

2,0(ε
1
1) − σ2

2,0(ε
1
1)

)
= c′2(σ

1
2,0(ε

1
1)).

The corresponding condition for agent 2 is given by

P (ε̃1
1 = ε2

1 | ε2
1)φ2

(
σ2

1 − σ1
1 + σ2

2,0(ε
2
1) − σ1

2,0(ε
2
1)

)
= c′2(σ

2
2,0(ε

2
1)).

It follows from these FOC’s that

σ1
2,0(ε

i
1) = σ2

2,0(ε
i
1) = (c′2)

−1
(
P (ε̃j

1 = εi
1 | εi

1)φ2(σ2
1 − σ1

1)
)

as given in the text. The inequality (34) also shows that agent 1’s sequentially
rational effort choice σ1

2(a
1
1, ε

1
1) in stage 2 is uniquely determined and is differentiable

as a function of a1
1. By the implicit function theorem, the derivative is given by

∂σ1
2

∂a1
1

(a1
1, ε

1
1) =

P (ε̃2
1 = ε1

1 | ε1
1)φ′

2(a
1
1 − σ2

1 + a1
2 − σ2,0(ε1

1))
c′′2(σ2(a1

1, ε
1
1)) − P (ε̃2

1 = ε1
1 | ε1

1)φ′
2(a

1
1 − σ2

1 + a1
2 − σ2,0(ε1

1))
.

It follows from (19) that
∣∣∣∂σ1

2

∂a1
1

(a1
1, ε

1
1)

∣∣∣ ≤ sup φ′
2(x)

inf c′′2(a) − sup φ′
2(x)

≤ 1
κ − 1

.(35)

As in the text, let π1
1(a

1
1) denote agent 1’s overall payoff when his stage 1 effort

equals a1
1:

π1
1(a

1
1) = αΦ2

(
a1

1 − σ2
1 + σ1

2(a
1
1, 0) − σ2

2,0(0)
)
− (α + γ) c2(σ1

2(a
1
1, 0))

+ β Φ2

(
a1

1 − σ2
1 + σ1

2(a
1
1, q) − σ2

2,0(q)
)
− (β + γ) c2(σ1

2(a
1
1, q))

+ γ − c1(a1
1).

Given that σ1
2 is differentiable with respect to a1

1, we can differentiate π1 using the
envelope theorem to get

(π1
1)

′(a1
1) = α φ2

(
a1

1 − σ2
1 + σ1

2(a
1
1, 0) − σ2

2,0(0)
)

+ β φ2

(
a1

1 − σ2
1 + σ1

2(a
1
1, q) − σ2

2,0(q)
)
− c′1(a

1
1).

43



The second-order derivative is given by

(π1
1)

′′(a1
1) = α φ′

2

(
a1

1 − σ2
1 + σ1

2(a
1
1, 0) − σ2

2,0(0)
) {

1 +
∂σ1

2

∂a1
1

(a1
1, 0)

}

+ β φ′
2

(
a1

1 − σ2
1 + σ1

2(a
1
1, q) − σ2

2,0(q)
) {

1 +
∂σ1

2

∂a1
1

(a1
1, q)

}
− c′′1(a

1
1).

Using (19) and (35), we can evaluate this as

(π1
1)

′′(a1
1) ≤ (α + β)

(
1 +

1
κ − 1

)
sup φ′

2(x) − inf c′′1(a) < 0.

It follows that the following FOC condition characterizes the optimal effort choice
σ1

1 in stage 1:

α φ2(σ1
1 − σ2

1) + β φ2(σ1
1 − σ2

1) = c′1(σ
1
1),

where we use the fact that σ1
2,0(ε1) = σ2

2,0(ε1) for ε1 = 0, q. Likewise, the FOC for
agent 2’s optimal stage 1 effort is given by

α φ2(σ1
1 − σ2

1) + β φ2(σ1
1 − σ2

1) = c′1(σ
2
1).

It follows that

σ1
1 = σ2

1 = (c′1)
−1((α + β)φ2(0)).

Take next the full-feedback policy which reveals z1 = (z1
1 , z2

1) = (a1
1 + ε1

1, a
2
1 + ε2

1)
at the end of stage 1. Since the stage 1 signal does not have full support unlike in
the previous analysis, some realizations of z1 are interpreted as off the equilibrium
path. An agent’s belief following any such z1 is not uniquely determined. In other
words, when agent 1, say, observes 2’s performance level z2

1 to be different from σ2
1

or σ2
1 + q, then Bayes rule does not pin down 1’s belief about 2’s stage 1 effort. In

this sense, let µ1(· | z1) be the probability measure over R+ representing agent 1’s
belief about agent 2’s stage 1 effort when observing z1. For any z1, we can write
agent 1’s stage 2 payoff function as

π1
2(a

1
2 | a1

1, z1)

=
∫
R+

Φ2

(
z1
1 − z2

1 + a1
2 − σ2

2(a
2
1, z1)

)
dµ1(a2

1 | z1) − c2(a1
2).

However, when agent 2 plays according to the equilibrium, z2
1 = σ2

1 or σ2
1 + q and

hence Bayes rule dictates that µ1 place probability one on σ2
1 , i.e.,

µ1({σ2
1} | z1) = 1 if z2

1 = σ2
1 or σ2

1 + q.
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Suppose from now on that z2
1 takes one of these values. In this case, differentiation

of the above payoff function yields

∂π1
2

∂a1
2

(a1
2 | a1

1, z1) = φ2

(
z1
1 − z2

1 + a1
2 − σ2

2,0(z1)
)
− c′2(a

1
2).

Since c′2(0) = 0, σ1
2(a

1
1, z1) satisfies the following FOC:

φ2

(
z1
1 − z2

1 + σ1
2(a

1
1, z1) − σ2

2(a
2
1, z1)

)
= c′2(σ

1
2(a

1
1, z1)).

The second-order derivative of π1
2 is strictly negative by (19), and hence the above

FOC characterizes the optimal effort choice. The equilibrium effort σ1
2,0(z1) satisfies

the above when a1
1 = σ1

1 . This and the corresponding condition for agent 2 yield

σ1
2,0(z1) = σ1

2,0(z1) = (c′2)
−1(φ2(z1

1 − z2
1)).

The rest of the argument parallels that given above for the private feedback policy
and is omitted. Finally, for the no-feedback policy, agent 1’s stage 2 payoff function
is given by

π1
2(a

1
2 | a1

1) = (α + β)Φ2(a1
1 − σ2

1 + a1
2 − σ2

2,0) − c2(a1
2).

The FOC, which characterizes the optimal choice by (19), is given by

(α + β)φ2(a1
1 − σ2

1 + σ1
2(a

1
1) − σ2

2,0) = c′2(σ
1
2(a

1
1)).

The equilibrium effort choice σ1
2,0 satisfies the above when a1

1 = σ1
1. This and the

corresponding condition for agent 2 yield

σ1
2,0 = σ2

2,0 = (c′2)
−1((α + β)φ2(σ1

1 − σ2
1)).

The rest of the argument is again similar and is omitted. �
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