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Abstract

This paper studies collusion in repeated Bertrand oligopoly when stochastic demand

levels for the product of each ¯rm are their private information and are positively corre-

lated. It derives general su±cient conditions for e±cient collusion through communication

and a simple grim-trigger strategy. This analysis is then applied to a model where the

demand signal has multiple random components which respond di®erently to price devia-

tions. In this model, it is shown that the above su±cient conditions hold if idiosyncratic

noise terms are su±ciently small.
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1. Introduction

In a seminal paper, Stigler [24] studies collusion in repeated Bertrand oligopoly when

¯rms observe stochastic demands for their own product only. Collusion is hard to sustain in

such an environment as no coordination device exists for punishing \secret price-cutting."

To see the problem, consider a grim-trigger strategy which reverts to the one-shot Nash

equilibrium after a low demand signal. If noisy (but informative) public signals are avail-

able, such a strategy can maintain collusion with su±ciently low discounting. Namely,

a bad public signal makes simultaneous reversion to punishment possible whether it was

caused by secret price-cutting or otherwise. Reversion to punishment is a best response

if every other ¯rm is doing the same. Such coordination is clearly impossible based only

on noisy private signals. The conclusions of Sekiguchi [23], Bhasker and Van Damme [5],

and Mailath and Morris [18] on this class of games all appear to indicate that (approxi-

mate) coordination is possible only if those private signals are accurate indicators of other

players' action choice or private signals conditional on every action pro¯le.

When players publicly communicate their signals during the course of play, on the

other hand, their announcements serve as public signals on which actions can be co-

ordinated. As demonstrated by Kandori and Matsushima [14] and Compte [6, 8], this

alternative formulation leads to a much more permissive conclusion. For e®ective commu-

nication, of course, each player must be given a proper incentive to report their signals

truthfully. This paper extends the analysis of communication in repeated games with pri-

vate monitoring when the ¯rms' private signals are correlated conditional on each price

pro¯le. Correlation of private signals is a distinguishing feature of this paper and gives

rise to a very simple grim-trigger collusion scheme based on a logic entirely di®erent from

that used in the above papers.

The collusion scheme considered in this paper is described as follows: Each ¯rm i

chooses the collusive price p¤
i during the collusion phase and reports a summary of their

private signal at the end of every period. In particular, ¯rm i reports either \0" or \1"

depending on whether his signal in that period was below or above a certain threshold

m¤
i . Play stays in the collusion phase if and only if the reported signals of all the ¯rms are

unanimous (i.e., all \0" or all \1"). Reversion to the punishment phase (with the one-shot
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Nash equilibrium) takes place otherwise. If the correlation of private signals is su±ciently

high conditional on the price pro¯le p¤ = (p¤
1; : : : ; p

¤
n), then reversion to punishment is a

rare event on the path so that the equilibrium will be almost e±cient.

Now consider the ¯rms' incentives. Facing the test described above, a patient ¯rm

would try to maximize the probability of unanimous report pro¯les in the reporting stage.

With correlated signals, it is shown that each ¯rm i which has chosen price pi ¯nds it

optimal to report \1" if and only if its signal is higher than some threshold mi(pi). In

particular, when i has chosen the collusive price p¤
i , the use of the threshold mi(pi) = m¤

i

as speci¯ed by the scheme is optimal. Suppose then that ¯rm i engages in secret price-

cutting pi < p¤
i . Since its price cut most likely reduces the demand level of every other

¯rm, ¯rm i may want to report \0" even if its signal is above m¤
i (i.e., set the threshold

mi(pi) higher than m¤
i ) in order to maintain unanimity. It will be shown that no such

deviation is pro¯table if it discontinuously lowers the level of correlation of private signals.

One natural interpretation of the above conditions can be obtained in a model where

the demand signal has multiple random components which respond di®erently to price

deviations. In this model, it will be shown that the above conditions on the correlation of

private signals hold when idiosyncratic noise terms are small.

Repeated games with imperfect private monitoring have received relatively little atten-

tion until recently. Although Stigler's [24] work on repeated Bertrand oligopoly motivates

Green and Porter [13] to study repeated games with imperfect monitoring, the latter choose

to work with public signals for tractability. Many useful theorems have since been obtained

for this case.1 For games with private monitoring, there exist two distinct approaches. The

¯rst approach, which assumes no communication among players, is taken by Bhasker and

Van Damme [5], Compte [7], Fudenberg and Levine [11], Lehrer [17], Mailath and Morris

[18], and Sekiguchi [23].2 Although it is largely inconclusive whether or not collusion is sus-

tained without communication, a strong indication is that e±ciency requires monitoring

to be near perfect or near public. The second approach, which assumes communication,

1See, for example, Abreu et al. [1] and Fudenberg et al. [12].
2See also Amarante [2].
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is ¯rst suggested by Matsushima [19].3 His idea is subsequently developed by Kandori and

Matsushima [14] and Compte [6, 8], who each identify informational conditions for folk

theorems.4 As mentioned above, the present paper belongs to the second category. Its

informational assumptions, however, are di®erent in nature from those in Kandori and

Matsushima [14] or Compte [6, 8]. More discussion on these points is given in Section 6.

The paper is organized as follows: The next section presents a formal model. Section

3 proves the optimality of cuto® reporting under correlated signals. The main theorem

of the paper is given in Section 4. Sections 5 applies this theorem to a model in which

demand signals consist of multiple random components. Some related issues are discussed

in Section 6. Although the discussion of this paper is totally embedded in the Bertrand

framework, it will be clear that all the conclusions will hold in any other games that have

the same information structure.

2. Model

The set I of n (¸ 2) ¯rms produce and sell products over in¯nitely many periods. In

every period t, ¯rm i chooses price pt
i from the set R+ of non-negative real numbers, and

then privately observes its own demand dt
i 2 R+ whose probability distribution depends

on the price pro¯le pt = (pt
1; : : : ; p

t
n) of all ¯rms.5 Denote the demand pro¯le in period t by

dt = (dt
1; : : : ; d

t
n). We suppose that d1; : : : ; dt; : : : are independent, and have the identical

probability distribution P(¢ j p) conditional on the price pro¯le p.

Firm i's payo® in any period is given by Gi(pi; di) when its own price is pi and

demand is di. Consequently, its expected stage-payo® under the price pro¯le p equals

gi(p) = E[Gi(pi; di) j p]. We assume that the function gi : Rn
+ ! R is bounded (i.e.,

supp2Rn
+

jgi(p)j < 1), and that the stage-game has a (pure) Nash equilibrium price pro¯le

pe = (pe
1; : : : ; p

e
n), i.e., gi(pi; pe

¡i) · gi(pe) for any i 2 I and pi 2 R+ . For simplicity, the

one-shot equilibrium payo® gi(pe) is normalized to zero.

3The idea of introducing communication into dynamic games is ¯rst proposed by Forges
[10] and Myerson [21].
4See also Ben-Porath and Kahneman [4].
5None of the conclusions will be a®ected if prices are instead assumed to be positive
integers.
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In the collusion scheme considered in this paper, every ¯rm i is required to publicly

report either rt
i = 0 or 1 given its demand signal dt

i at the end of each period t. Firm

i's reporting rule is a measurable mapping bi : R2
+ ! f0; 1g which chooses report ri as a

function of its price pi and signal di in the same period. Firm i's (pure) action ai in each

period is the pair (pi; bi) of its price and reporting rule. Let B be the set of i's reporting

rules and A = R+ £ B be the set of its actions.

Firm i's private history after period t is the sequence of its own prices and private

signals in periods 1; : : : ; t. On the other hand, the public history after period t is the

sequence of reports from all ¯rms in periods 1; : : : ; t. Firm i's (pure) strategy is a mea-

surable mapping ¾i :
S1

t=0 (f0; 1gn £R2
+)t ! A which chooses the action as a function of

its private history as well as the public history. Firm i's strategy is public if it depends

only on the public history and not on its private history.6 Let ± 2 [0; 1) be the common

discount factor of the ¯rms. Given the strategy pro¯le ¾ = (¾1; : : : ; ¾n), ¯rm i's average

payo® Vi(¾;±) in the repeated game is de¯ned in the usual manner. A (Nash) equilibrium

of the repeated game is a strategy pro¯le ¾ such that Vi(¾;±) ¸ Vi(¾ 0
i;¾¡i; ±) for every ¾0

i

and i 2 I . An equilibrium ¾ is public if each ¾i is public. A public equilibrium is perfect if

every continuation strategy pro¯le after any public history is again a (public) equilibrium.7

This paper analyzes a simple grim-trigger public equilibrium ¾¤ with the collusion and

punishment phases. It is characterized by three sets of parameters p¤ = (p¤
1; : : : ; p

¤
n) 2 R+,

T 2 N, and m¤ = (m¤
1; : : : ; m

¤
n) 2 Rn

+. p¤ is the price pro¯le to be sustained in the collusion

phase, and satis¯es g¤
i = gi(p¤) > 0 for each i 2 I. For example, it can be the price vector

that maximizes the collusive pro¯t
Pn

i=1 gi(p) over p 2 Rn
+. T is the cycle of the game

as explained below. m¤
i is the threshold that ¯rm i is supposed to use in the reporting of

its private signals in the collusion phase: it should report rt
i = 1 if dt

i ¸ m¤
i and rt

i = 0 if

dt
i < m¤

i .

We suppose that ¾¤ is T -segmented in the sense that it divides the repeated game

into T separate component games that are independent of each other.8 Speci¯cally, the

6Note that a ¯rm's report can depend on the current private signal even if it uses a public
strategy.
7See Fudenberg et al. [12].
8This construction follows that of Ellison [9]. This technique is also used in Sekiguchi [23].
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tth component game (1 · t · T ) consists of periods t; T + t; 2T + t; : : :, and the reported

signals in any period only a®ect the continuation play in the same component game. Within

each component game, ¾¤ is the standard grim-trigger strategy pro¯le: It starts with the

collusion phase and stays there if and only if report pro¯le r is unanimous in the sense

that r1 = ¢ ¢ ¢ = rn. It will revert to the punishment phase otherwise. Firm i's strategy

¾¤
i chooses p¤

i and reports signal di based on the threshold m¤
i as speci¯ed above in the

collusion phase. In the punishment phase, it chooses the one-shot Nash equilibrium price

pe
i .

It is clear that the ¯rms face no incentive problem in the punishment phase. The

numbers T and m¤ will be chosen so that it is optimal for every ¯rm to choose p¤
i and

report truthfully in the collusion phase.

3. Correlated Signals and Cuto® Reporting

The threshold m¤
i for reporting by ¯rm i is speci¯ed so that if every other ¯rm j uses

threshold m¤
j , the probability of unanimous report pro¯les under the price pro¯le p¤ is

maximized when ¯rm i also uses the threshold m¤
i . Formally, we assume that there exists

m¤ = (m¤
1 ; : : : ; m¤

n) 2 (0; 1)n such that

(1a) P (min
j2I

(dj ¡ m¤
j ) ¸ 0 j p¤) > 0; P(max

j2I
(dj ¡ m¤

j ) < 0 j p¤) > 0;

and for every i 2 I,

m¤
i 2 arg max

mi2R+

©
P (min

j 6=i
(dj ¡ m¤

j ) ¸ 0; di ¸ mi j p¤)(1b)

+P (max
j 6=i

(dj ¡ m¤
j ) < 0; di < mi j p¤)

ª
:

In general, it is di±cult to establish the existence of m¤ that satis¯es these conditions.9

If n = 2, or if the distribution P (¢ j p¤) is symmetric, however, it can be veri¯ed that

some mild regularity conditions on P guarantee the existence of such thresholds.10 Based

9Note that (1b) alone would be trivially satis¯ed if m¤
i is a lower or upper bound of the

support of di for each i 2 I. (1a) prevents this type of choice. On the other hand, any
interior solution to the ¯rst-order conditions can be shown to satisfy (1) under a condition
similar to Assumption 1 below. In this case, numerical computation of m¤ from the ¯rst-
order conditions is possible.
10See Section 5 for a discussion of the symmetric case.
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on these m¤
1 ; : : : ; m¤

n, the demand levels are assumed to be \positively correlated" across

¯rms in the following sense:

Assumption 1: For each i 2 I and pi 2 R+, there exists mi(pi) 2 [0;1] such that

P (min
j 6=i

(dj ¡ m¤
j ) ¸ 0 j di; pi; p

¤
¡i) ¸ P (max

j 6=i
(dj ¡ m¤

j ) < 0 j di; pi; p
¤
¡i)

for P (¢ j pi; p¤
¡i)-a.e. di ¸ mi(pi), and

P (min
j 6=i

(dj ¡ m¤
j ) ¸ 0 j di; pi; p

¤
¡i) · P (max

j 6=i
(dj ¡ m¤

j ) < 0 j di; pi; p
¤
¡i)

for P (¢ j pi; p¤
¡i)-a.e. di < mi(pi).

It can be seen that Assumption 1 is a single-crossing property of the conditional probabil-

ities. In particular, Assumption 1 holds if the demand pro¯le d = (d1; : : : ; dn) is a±liated

given each price pro¯le (pi; p¤
¡i) since then P (minj 6=i (dj ¡ m¤

j ) ¸ 0 j di; pi; p¤
¡i) (resp.

P (maxj 6=i (dj ¡ m¤
j ) < 0 j di; pi; p¤

¡i)) is an increasing (resp. decreasing) function of di.11

We set mi(p
¤
i ) = m¤

i when pi = p¤
i . This is justi¯ed as follows: Suppose that mi(p

¤
i ) >

m¤
i . Note that the probability of unanimous report pro¯les can be written as

P(min
j 6=i

(dj ¡ m¤
j ) ¸ 0; di ¸ mi j p¤) + P (max

j 6=i
(dj ¡ m¤

j ) < 0; di < mi j p¤)

=

Z mi

0
P (max

j 6=i
(dj ¡ m¤

j ) < 0 j di; p
¤) dP (di j p¤)

+

Z mi(p
¤
i )

mi

P (min
j 6=i

(dj ¡ m¤
j ) ¸ 0 j di; p

¤) dP(di j p¤)

+

Z 1

mi(p¤
i )

P (min
j 6=i

(dj ¡ m¤
j ) ¸ 0 j di; p

¤) dP (di j p¤):

The fact that this quantity is maximized when mi = m¤
i by (1), as well as the de¯nition

of mi(p¤
i ), implies that

P(min
j 6=i

(dj ¡ m¤
j ) ¸ 0 j di; p

¤) = P (max
j 6=i

(dj ¡ m¤
j ) < 0 j di; p

¤) for a.e. di 2 [m¤
i ; mi(p

¤
i )).

11The conditional probabilities for a±liated distributions are interpreted as the regular
version derived from the densities. For the discussion of a±liation, see Milgrom and Weber
[20], and Karlin and Rinott [16].
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Thus any number in the interval [m¤
i ; mi(p¤

i )) also quali¯es as mi(p¤
i ), and in particular,

we can take mi(p¤
i ) = m¤

i . The same is true when mi(p¤
i ) < m¤

i . Of course, mi(p¤
i ) = m¤

i

must hold when mi(p
¤
i ) is uniquely determined.

Let b̂i 2 B be the reporting rule de¯ned by

b̂i(pi; di) =

½
1 if di ¸ mi(pi),

0 otherwise.

Namely, b̂i is the cuto® reporting rule with the threshold mi(pi). We suppose that ¯rm

i's public strategy ¾¤
i described in the previous section plays the pair a¤

i = (p¤
i ; b̂i) in the

collusion phase, and ae
i = (pe

i ; b̂i) in the punishment phase. With slight abuse of notation,

we let P(¢ j a) denote the probability distribution of the report pro¯le r under the action

pro¯le a = (a1; : : : ; an). Theorem 1 below states that the reporting rule b̂i maximizes

the probability of unanimous pro¯les (and hence the likelihood of staying in the collusion

phase) regardless of ¯rm i's price choice. For each report pro¯le r = (r1; : : : ; rn) 2 f0; 1gn,

let s(r) = 0 if r is unanimous in the sense that r1 = ¢ ¢ ¢ = rn, and s(r) = 1 otherwise.

Lemma 1. Suppose that Assumption 1 holds at p¤. Then for any i 2 I , pi 2 R+ and

bi 2 B,

P (s(r) = 0 j pi; bi; a
¤
¡i) · P(s(r) = 0 j pi; b̂i; a

¤
¡i):

Proof: See the Appendix.

By Lemma 1, it su±ces to check the pro¯tability of (one-step) deviations of the form

(pi; b̂i).

4. E±cient Collusion

Let

® = P (min
j2I

(dj ¡ m¤
j ) < 0 · max

j2I
(dj ¡ m¤

j ) j p¤)

be the probability that the report pro¯le is not unanimous when every ¯rm plays a¤
i =

(p¤
i ; b̂i). Similarly, let

¯i(pi) = P (min
j 6=i

(dj ¡ m¤
j ) < 0; di ¸ mi(pi) j pi; p

¤
¡i)

+ P (max
j 6=i

(dj ¡ m¤
j ) ¸ 0; di < mi(pi) j pi; p

¤
¡i)
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be the probability of the same event when ¯rm i unilaterally deviates to price pi and uses

the reporting rule b̂i (i.e., uses threshold mi(pi) in reporting di). Assumption 2 below

asserts that no price deviation, whether pro¯table in the short-run or not, lowers the

probability of non-unanimous report pro¯les.

Assumption 2: For each i 2 I, ® · infpi2R+ ¯i(pi).

Since no deviation (pi; b̂i) such that gi(pi; p¤
¡i) · g¤

i will increase ¯rm i's overall payo®

by Assumption 2, it su±ces to consider a deviation (pi; b̂i) which strictly increases the stage

payo®. Let

¯i = inf f¯i(pi) : gi(pi; p
¤
¡i) > g¤

i g:

Let vi(±) = Vi(¾¤; ±) denote ¯rm i's overall average payo® in the repeated game under the

T -segmented grim-trigger strategy pro¯le ¾¤ described earlier. Since vi(±) equals ¯rm i's

average payo® in each component game, it satis¯es the following recursive equation:

vi(±) = (1 ¡ ±T )g¤
i + ±T P(s(r) = 0 j a¤) vi(±):

Noting P(s(r) = 0 j a¤) = 1 ¡ ®, we can solve the above equation to obtain

(2) vi(±) =
(1 ¡ ±T ) g¤

i

1 ¡ ±T (1 ¡ ®)
:

Consider next a one-step deviation (pi; b̂i) such that gi(pi; p¤
¡i) > g¤

i in any period during

the collusion phase of any component game. Since ¯rm i's e®ective discount factor is ±T ,

no such deviation is pro¯table if

(1 ¡ ±T ) ¹gi + ±T P(s(r) = 0 j pi; b̂i; a
¤
¡i) vi(±) · (1 ¡ ±T ) g¤

i + ±T P (s(r) = 0 j a¤) vi(±);

where ¹gi = suppi2R+
gi(pi; p¤

¡i). Note in particular that the above inequality is inde-

pendent of whether other component games are in the collusion phase or not. Since

P (s(r) = 0 j pi; b̂i; a
¤
¡i) · 1 ¡ ¯i by de¯nition, the above inequality is implied by

(3)
±T

1 ¡ ±T
(¯i ¡ ®) vi(±) ¸ ¹gi ¡ g¤

i :

Theorem 1 below describes the conditions on ® and ¯i which ensure the existence of

an almost e±cient equilibrium for su±ciently patient ¯rms. In particular, the desired

conclusion holds if ® is su±ciently small in absolute terms as well as when compared to

¯i.
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Theorem 1. Suppose that Assumptions 1 and 2 hold and let ² > 0 be any small number.

If ® and ¯i satisfy

(4) min
i2I

(¯i ¡ ®)(g¤
i ¡ ²)

¹gi ¡ g¤
i

> max
i2I

®(g¤
i ¡ ²)

²
;

then there exists ± < 1 such that for any ± > ±, the T -segmented grim-trigger strategy

pro¯le ¾¤ is a perfect public equilibrium for some T and yields payo® vi(±) = Vi(¾¤; ±) >

g¤
i ¡ ² for every i 2 I.

Proof: Note that (4) implies

max
i2I

¹gi ¡ g¤
i

(¯i ¡ ®)(g¤
i ¡ ²) + ¹gi ¡ g¤

i

< min
i2I

²

®(g¤
i ¡ ²) + ²

:

Take ± < 1 large enough so that for any ± > ±, there exists T 2 N such that

max
i2I

¹gi ¡ g¤
i

(¯i ¡ ®)(g¤
i ¡ ²) + ¹gi ¡ g¤

i

· ±T < min
i2I

²

®(g¤
i ¡ ²) + ²

:

The right inequality and (2) imply vi(±) > g¤
i ¡ ², while the left inequality implies (3). //

5. Demand Functions with Multiple Random Components

In this section, the above theorem is applied to a symmetric model in which the

demand signal di is expressed as the sum of three non-negative random variables u, w and

zi as follows:

(5) di = qi(p)u + w + ½zi;

where qi : Rn
+ ! R+ is a (deterministic) function of the price pro¯le p, and ½ > 0 is a

constant. Note that u and w are common for every i, while zi is idiosyncratic to each

¯rm. One interpretation is that u (resp. w) describes the behavior of \global" consumers

who regard the products of the n ¯rms as substitutes (resp. complements) because of their

technology or taste, while zi captures \local" consumers for whom the n products are

highly di®erentiated. For concreteness, suppose that the function qi is strictly decreasing

in pi and strictly increasing in pj (j 6= i). For symmetry, we require that qi(p) = qj (p0)

for any i, j 2 I and p, p0 such that pi = p0
j, pj = p0

i, and p¡i¡j = p0
¡i¡j. The assumption
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that w or zi does not depend on price is purely for simplicity.12 We assume that u and w

are independent and have the density functions fu and fw, respectively. The idiosyncratic

terms z1; : : : ; zn are independent of one another and of u and w, and have the identical

density function fz. In accordance with the assumption that u, w and zi are all non-

negative, fu, fw and fz all equal zero on (¡1;0). It is also assumed that each one of them

is strictly positive and continuous on R+ .

The following property of a density function implies the positive correlation of demand

signals in the sense of Assumption 1: A density function f on R is a Polya function of

degree 2 (PF2, Karlin [15]) if

(6) f(x2 ¡ y2) f(x1 ¡ y1) ¸ f(x2 ¡ y1) f(x1 ¡ y2) for any x1 < x2 and y1 < y2.

For example, any Gamma distribution, including the exponential distributions, is PF2.

More generally, it can be veri¯ed from (6) that the density function f of a non-negative

random variable is PF2 if for any y > 0,

f(x + y)

f(x)
is (weakly) decreasing in x 2 R+.

In what follows, it is assumed that fu, fw and fz are all PF2.

Lemma 2. Suppose that the demand signals (d1; : : : ; dn) are generated according to (5).

If fu, fw and fz are all PF2, then Assumption 1 holds for any m¤ and p¤.

Proof: See the Appendix.

Suppose that the ¯rms attempt to sustain a symmetric price pro¯le p¤ = (p¤
1 ; : : : ; p¤

n),

p¤
1 = ¢ ¢ ¢ = p¤

n, such that q¤ = qi(p¤) > 0. Let m¤
1 = ¢ ¢ ¢ = m¤

n be the common threshold

for reporting as de¯ned by (1). Note that such a threshold indeed exists: Under the above

assumption on the distribution, it can be checked that m¤ satisfying (1) can be obtained

as a solution to the following equation of mi:

P (min
j 6=i

dj ¸ mi j di = mi; p
¤) ¡ P (max

j 6=i
dj ¸ mi j di = mi; p

¤) = 0;

12See the discussion after Theorem 2.
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where the conditional probabilities are understood to be the regular version derived from

the densities. The above equation can be rewritten as:

Z

[mi ;1)n¡1

dP(d¡i j di = mi; p
¤) ¡

Z

[0;mi)n¡1

dP (d¡i j di = mi; p
¤) = 0:

The left-hand side is continuous in mi by the above assumptions on the distribution, and

equals 1 when mi = 0 and ¡1 when mi = 1. Therefore, the intermediate value theorem

implies that there exists mi = m¤
i which solves this equation.

The last assumption concerns the functional form of qi. As is usually the case in

Bertrand models, a small price deviation by any ¯rm i from the symmetric price pro¯le p¤

is assumed to have a \discontinuous" e®ect on the behavior of qi(pi; p¤
¡i) and qj(pi; p¤

¡i).

Speci¯cally, assume that there exists · > 1 such that for any i 6= j ,

(7)
qi(pi; p¤

¡i)

qj (pi; p¤
¡i)

> · for any pi < p¤
i , and

qi(pi; p¤
¡i)

qj(pi; p¤
¡i)

<
1

·
for any pi > p¤

i ,

where the fraction is interpreted as 1 if the denominator is zero. Namely, if ¯rm i lowers

its price slightly from p¤, then the price-dependent component of its own demand jumps

up compared to that of every other ¯rm. If ¯rm i raises its price slightly, on the other

hand, the price-dependent component of its own demand jumps down compared to that

of every other ¯rm. Note that this is a local condition around p¤, and satis¯ed in the

standard Bertrand model in which qi(p) itself is the demand function. It is also naturally

satis¯ed if prices are restricted to positive integers.

Theorem 2. Suppose that the demand signals (d1; : : : ; dn) are generated according to

(5), that u, w and z have PF2 densities, and that (q1; : : : ; qn) satis¯es (7). Then for any

² > 0, there exists ¹½ > 0 such that the following is true if ½ < ¹½: There exists ± < 1 such

that if ± > ±, then the T -segmented grim-trigger strategy pro¯le ¾¤ is a perfect public

equilibrium for some T and yields payo® vi(±) > g¤
i ¡ ² for every i 2 I .

Proof: See the Appendix.

Theorem 2 can be illustrated as follows: Suppose for simplicity that ½ = 0. In this

case, if ¯rm i chooses p¤
i and reports truthfully, then every ¯rm receives exactly the same

signal so that the probability ® of non-unanimous pro¯les on the path is zero. On the

13



other hand, suppose that ¯rm i secretly cuts its price to pi. If a unanimous report is to be

achieved, ¯rm i needs to estimate the value of qju + w conditional on the observation of

qiu+w. Since neither u nor w is directly observed, a range of possibilities must be allowed

as to the values of these random variables. This, however, results in the loss of accuracy.

To see this, suppose for simplicity that there are only two ¯rms i and j. The probability

of non-unanimous pro¯les is then given by

¯i = P (qiu + w ¸ mi; qju + w < m¤
j ) + P(qiu + w < mi; qju + w ¸ m¤

j ):

Figure 1 depicts the corresponding areas when mi=m¤
j 2 (1; qi=qj). Note by (7) that the

ratio of coe±cients of u in di and dj changes discontinuously in response to any price

deviation by i so that the two lines in the ¯gure have signi¯cantly di®erent slopes for any

pi 6= p¤
i . Consequently, ¯rm i cannot make the probability ¯i arbitrarily small by simply

adjusting the threshold mi.

It should be noted that the above discussion also suggests that the same conclusion

holds when the demand function is instead given by di = si(p)u + ti(p)w + ½zi for some

function ti : Rn
+ ! R+, as long as si and ti behave su±ciently di®erently from each other

(around p¤) for any price deviation by i.13

6. Discussions

Theorem 1 requires the correlation of private signals to be high on the equilibrium

path, and strictly lower o® the path. This condition should be contrasted with the infor-

mational assumptions used in the models of private monitoring without communication

(Sekiguchi [23], Bhasker and Van Damme [5], and Mailath and Morris [18]). In these mod-

els, monitoring is either nearly perfect in that a player's private signal accurately re°ects

other players' action choice, or nearly public in that it accurately re°ects their private

signals, both conditional on every action pro¯le. High correlation of private signals on the

path in the current model is close to the assumption of near public monitoring conditional

on the particular pro¯le p¤.14 Lower correlation o® the path, on the other hand, implies

13Speci¯cally, we need to have
si(pi;p

¤
¡i)

sj (pi;p¤
¡i)

tj(pi;p
¤
¡i)

ti(pi ;p¤
¡i)

bounded away from one for any pi 6= p¤
i .

14Note, however, that high correlation relative to thresholds m¤
1; : : : ; m

¤
n is much weaker

than near public monitoring.
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that a player's private signal is less accurate as an indicator of others' private signals con-

ditional on any pro¯le (pi; p¤
¡i) (pi 6= p¤

i ). It is this gap in the levels of accuracy that this

collusion scheme exploits.

The informational assumptions of this paper are also di®erent in nature from the

\distinguishability conditions" used by Kandori and Matsushima [14] and Compte [6]. The

distinguishability conditions require that given any action pro¯le and any pair of players i

and j , i's deviation be statistically distinguishable from j's deviation when private signals

of players other than i and j are jointly evaluated.15 Clearly, these conditions require the

existence of three or more players. They also require the ¯niteness of the action set. Their

generalization to games with in¯nite actions, such as the standard Bertrand game, is not

straightforward.

In some cases, it is not inconceivable that ¯rms spy on their competitors' prices in

an e®ort to facilitate collusion. The paper's conclusion, however, suggests that they may

instead agree to use a much simpler scheme which makes such monitoring activities re-

dundant. It remains open whether communication during the course of play is really

necessary to sustain collusion. It should be noted, however, that even in models with-

out explicit communication, some form of communication before the game is implicitly

assumed. Otherwise, the players have di±culty agreeing on a particular equilibrium. Al-

though attempts by competing ¯rms to exchange information through meetings such as

trade associations have been often found illegal under Sherman Act (Scherer [22, Section

19]), there appear to be many other less conspicuous ways of communicating one's private

signals to its competitors. Bidders' using the last few digits of bids as a communication

device in the Federal spectrum auctions is a well-known example. As another example, we

can ask the motive behind airline companies' large newspaper advertisements with detailed

fares which are not necessarily honored.16

With the correlation of private signals, it is possible to consider an alternative scheme

which requires each ¯rm i to report its raw demand signal di and suggests reversion to

15To be more precise, this must be true at every action pro¯le which corresponds to an
extreme point of the feasible payo® set. This description of the conditions is based on
Kandori and Matsushima [14]. Compte's [6] conditions are similar but slightly di®erent.
16This observation was made and suggested by Jack Ochs.
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punishment if and only if the discrepancy between the maximum and minimum of those

reported numbers exceeds some threshold. This approach, however, runs into some di±-

culty. In our formulation, the number of viable deviations can be e®ectively limited by the

consideration that for any deviation in reporting, there exists an alternative cuto® report-

ing rule that is at least as good (Lemma 1). In this alternative scheme, on the other hand,

it is di±cult to identify such a natural class of deviations. This makes the veri¯cation of

the incentive conditions much more di±cult.

Appendix

Proof of Lemma 1: Note that

P (s(r) = 0 j di; pi; bi; a
¤
¡i)

= P(min
j 6=i

(dj ¡ m¤
j ) ¸ 0 j pi; di; p

¤
¡i) bi(di)

+ P (max
j 6=i

(dj ¡ m¤
j ) < 0 j pi; di; p

¤
¡i) f1 ¡ bi(di)g

· P(min
j 6=i

(dj ¡ m¤
j ) ¸ 0 j pi; di; p

¤
¡i) b̂i(di)

+ P (max
j 6=i

(dj ¡ m¤
j ) < 0 j pi; di; p

¤
¡i) f1 ¡ b̂i(di)g

= P(s(r) = 0 j di; pi; b̂i; a
¤
¡i) a.s.,

where the inequality follows from the facts that b̂i(di) = 1 if and only if di ¸ mi(pi), and

that di ¸ mi(pi) implies

P (min
j 6=i

(dj ¡ m¤
j ) ¸ 0 j pi; di; p

¤
¡i) ¸ P (max

j 6=i
(dj ¡ m¤

j ) < 0 j pi; di; p
¤
¡i) a.s.,

while di < mi(pi) implies

P(min
j 6=i

(dj ¡ m¤
j ) ¸ 0 j pi; di; p

¤
¡i) · P(max

j 6=i
(dj ¡ m¤

j ) < 0 j pi; di; p
¤
¡i) a.s.

by Assumption 1. It follows that

P (s(r) = 0 j pi; bi; a
¤
¡i) =

Z

R2
+

P(s(r) = 0 j di; pi; bi; a
¤
¡i) dP (di j pi; p

¤
¡i);

·
Z

R2
+

P(s(r) = 0 j di; pi; b̂i; a
¤
¡i) dP (di j pi; p

¤
¡i);

= P (s(r) = 0 j pi; b̂i; a
¤
¡i):
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Therefore, replacing bi by b̂i increases the probability of a unanimous report pro¯le. //

Proof of Lemma 2: For any integer l ¸ 1, a non-negative function K : Rl ! R+ is

said to be multivariate totally positive of order 2 (MTP2, Karlin and Rinott [16]) if

K(x ^ y)K(x _ y) ¸ K(x)K(y) for every x, y 2 Rl.

Given any price pi, write qj = qj(pi; p¤
¡i) for j 2 I and yi = qiu + w and yj = qju + w

(j 6= i). Suppose ¯rst that pi 6= p¤
i so that qi 6= qj if j 6= i. By the standard argument, the

joint density of yi and yj can be calculated as

'(yi; yj ) = fu

³yi ¡ yj

qi ¡ qj

´
fw

³qiyj ¡ qjyi

qi ¡ qj

´ 1

jqi ¡ qjj
:

If we de¯ne Ku(yi; yj) = fu

¡yi¡yj

qi¡qj

¢
and Kw(yi; yj) = fw

¡ qiyj ¡qjyi

qi¡qj

¢
, then it can be veri¯ed

that both Ku and Kw are MTP2 since fu and fw are PF2. Since the product of MTP2

functions is again MTP2 (Karlin and Rinott [16, Proposition 3.2]), it follows that ' itself

is MTP2. Note now that the joint density of di = yi + ½zi and yj is given by

'̂(di; yj) =

Z 1

0
'(s; yj) fz

³di ¡ s

½

´
ds:

Note that Kyiyj(di; yi; yj) = '(yi; yj) is MTP2 by the above discussion. Since fz is PF2,

Kz(di; yi; yj) = fz

¡ di¡yi

½

¢
is MTP2 as well. Therefore, the integrand is also MTP2, and so

is '̂ (Karlin and Rinott [16, Propositions 3.3]).

Suppose next that pi = p¤
i so that qi = qj. The joint density of (di; yj) is given by

'̂(di; yj) =

Z 1

0
fu(s) fw(yj ¡ qis) fz

³di ¡ s

½

´ 1

½
ds:

Since Lu(di; yj; u) = fu(u), Lw(di; yj ; u) = fw(yj ¡ qiu) and Lz(di; yj ;u) = fz

¡
di¡u

½

¢
are

all MTP2, it follows that '̂ is MTP2 by the same logic as above.

We now show that under any price pro¯le (pi; p¤
¡i), P (mink 6=i dk ¸ m¤

i j di; pi; p¤
¡i) is

an increasing function of di. Note that

P(min
k 6=i

dk ¸ m¤
i j di; pi; p

¤
¡i) = P(yj + min

k 6=i
zk ¸ m¤

i j di; pi; p
¤
¡i)

=

Z

Rn¡1
+

P (yj ¸ m¤
i ¡ min

k 6=i
zk j di; pi; p

¤
¡i) fz¡i (z¡i) dz¡i:
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Since '̂(di; yj) is MTP2, the integrand is an increasing function of di (Karlin and Rinott

[16, Theorem 4.1]). Hence, the desired conclusion follows. A similar argument shows that

P (maxj 6=i dj < m¤
i j di; pi; p

¤
¡i) is a decreasing function of di. These imply Assumption 1.

//

Proof of Theorem 2: Let ® and ¯ (´ ¯1 = ¢ ¢ ¢ = ¯n) be indexed by ½ > 0. It is shown

below that (A) lim½!0 ®(½) = 0, and that (B) there exist ³ > 0 and ¹½ > 0 such that

¯(½) > ³ if ½ < ¹½. These imply that (4) holds for a su±ciently small ½ > 0, and hence

the desired conclusion follows. The analysis below concentrates on the case where pi < p¤
i .

The other case pi > p¤
i can be treated in the symmetric manner.

(A) lim½!0 ®(½) = 0.

Take any ² > 0. For any ¯xed u0 and z 0
1; : : : ; z

0
n, the Lebesgue measure of the interval

h
m¤

i ¡ q¤u0 ¡ ½max
j2I

z0
j ; m¤

i ¡ q¤u0 ¡ ½ min
j2I

z 0
j

´

is equal to ½(maxj2I z0
j ¡ minj2I z 0

j). Since w is absolutely continuous, there exists ´ > 0

such that for any u0, z 0
1 : : : ; z 0

n, if ½(maxj2I z0
j ¡ minj2I z0

j ) < ´, then

P (m¤
i ¡ q¤u0 ¡ ½ max

j2I
z0
j · w < m¤

i ¡ q¤u0 ¡ ½ min
j2I

z 0
j) < ².17

Therefore, in view of independence, we have

®(½) =

Z

R+£[0; ´
½ )n

P (m¤
i ¡ q¤u ¡ ½ max

j2I
zj · w < m¤

i ¡ q¤u ¡ ½min
j2I

zj ) dP (u; z j p¤)

+

Z

R+£(Rn
+n[0; ´

½)n)
P (m¤

i ¡ q¤u ¡ ½ max
j2I

zj · w < m¤
i ¡ q¤u ¡ ½min

j2I
zj ) dP (u; z j p¤)

· ²

Z

[0; ´
½ )n

dP(u; z j p¤) +

Z

Rn
+n[0; ´

½ )n

dP(u; z j p¤):

Since the last quantity can be made smaller than 2² when ½ is small enough, and since ²

is arbitrary, we conclude that ®(½) ! 0 as ½ ! 0.

(B) There exist ³ > 0 and ¹½ > 0 such that ¯(½) > ³ if ½ < ¹½.

17See Wheeden and Zygmund [25, Theorem 10.34].
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For each ½ > 0, de¯ne ¯½ : R2
+ ! R+ by

¯½(pi; mi) = P
¡
qiu + w + ½zi ¸ mi; min

j 6=i
(qju + w + ½zj) < m¤

j

¢

+ P
¡
qiu + w + ½zi < mi; max

j 6=i
(qju + w + ½zj) ¸ m¤

j

¢
;

where qj = qj (pi; p¤
¡i) for j 2 I. Likewise, de¯ne ¯0 : R2

+ ! R+ by

¯0(pi; mi) = P
¡
qiu + w ¸ mi; qju + w < m¤

j

¢
+ P

¡
qiu + w < mi; qju + w ¸ m¤

j

¢
:

By symmetry, qj = ql if j , l 6= i and m¤
1 = ¢ ¢ ¢ = m¤

n so that j in the de¯nition of ¯0 can

be replaced by any l 6= i without changing its value. It is clear from the de¯nition that

¯(½) = inf f¯½(pi; mi) : pi < p¤
i ; mi 2 R+g. In what follows, we show that this in¯mum

is strictly positive for ½ small enough in three steps.

i) inf f¯0(pi; mi) : pi < p¤
i ; mi 2 R+g > 0.

Writing q
j

= inf fqj(pi; p¤
¡i) : pi < p¤

i g and ¹qj = supfqj(pi; p¤
¡i) : pi < p¤

i g for j 2 I,

we have

¯0(pi; mi) ¸ Á(mi);

where Á = Á1 + Á2, and

Á1(mi) = P
¡
q

i
u + w ¸ mi; ¹qju + w < m¤

j

¢
; and

Á2(mi) = P
¡
¹qiu + w < mi; q

j
u + w ¸ m¤

j

¢
:

Let · be as de¯ned in (7). If mi · ·m¤
i , then

mi¡m¤
j

q
i
¡¹qj

<
m¤

j

¹qj
(> 0), and for any u between

these two values, we have mi¡q
i
u < m¤

j ¡¹qju (> 0). Since u and w both have full support,

it then follows that

Á1(mi) ¸ P
³mi ¡ m¤

j

q
i
¡ ¹qj

< u <
m¤

j

¹qj
; mi ¡ q

i
u · w < m¤

j ¡ ¹qju
´

> 0 for mi · ·m¤
i .

On the other hand, if mi ¸ ·m¤, then for any u <
mi¡m¤

j

¹qi¡q
j

(> 0), we have m¤
j ¡ q

j
u <

mi ¡ ¹qiu (> 0) so that

Á2(mi) ¸ P
³
u <

mi ¡ m¤
j

¹qi ¡ q
j

; m¤
j ¡ q

j
u · w < mi ¡ ¹qiu

´
> 0 for mi ¸ ·m¤

i .
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Note now that Á1 is a decreasing function of mi while Á2 is an increasing function of mi.

This, together with the above observation, implies that for mi · ·m¤
i ,

Á1(mi) + Á2(mi) ¸ Á1(·m¤
i ) + Á2(mi) ¸ Á1(·m¤

i );

and that for mi ¸ ·m¤
i ,

Á1(mi) + Á2(mi) ¸ Á1(mi) + Á2(·m¤
i ) ¸ Á2(·m¤

i ):

The conclusion now follows immediately since

inf
mi2R+

Á(mi) ¸ minfÁ1(·m¤
i ); Á2(·m¤

i )g > 0:

ii) ¯½ ! ¯0 uniformly over (pi; mi) 2 R2
+ as ½ ! 0.

It can be veri¯ed that

j¯½(pi; mi) ¡ ¯0(pi; mi)j · 2P(mi ¡ ½zi · qiu + w < mi)

+ P
¡
min
j 6=i

(qju + w + ½zj ) ¸ m¤
j ; qju + w < m¤

j

¢
(a1)

+ P
¡
max
j 6=i

(qju + w + ½zj ) ¸ m¤
j ; qju + w < m¤

j

¢
:

Take any ² > 0. For any u0 and z0
i, the Lebesgue measure of the interval [mi ¡ qiu0 ¡

½z0
i; mi ¡ qiu0) is ½z0

i. Since the distribution of w is absolutely continuous, there exists

´ > 0 such that for any u0 and z 0
i, if ½z0

i < ³, then

P (mi ¡ qiu
0 ¡ ½z0

i · w < mi ¡ qiu
0) < ²:

Therefore, as in (A) above, we have

P(mi ¡ ½zi · qiu + w < mi) =

Z

R2
+

P(mi ¡ qiu ¡ ½zi · w < mi ¡ qiu) dP(u;zi)

· ²

Z ´=½

0

dP (zi) +

Z 1

´=½

dP(zi):

Note that the last quantity is independent of (pi;mi), and can be made smaller than 2² if

½ is su±ciently small. It can be shown through an argument similar to that in (A) that
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the remaining two terms on the right-hand side of (a1) are bounded above by 2² each for

½ small enough. Since ² > 0 is arbitrary, we have the desired conclusion.

iii) There exist ¹½ > 0 and ³ > 0 such that inf f¯½(pi; mi) : pi < p¤
i ; mi 2 R+g > ³ for

½ < ¹½.

By (i), there exists ³ > 0 such that ¯0(pi; mi) > 2³ for any (pi; mi) with pi < p¤
i . By

(ii), there exists ¹½ > 0 such that ½ < ¹½ implies j¯½(pi; mi)¡¯0(pi; mi)j < ³ for any (pi; mi)

with pi < p¤
i . Therefore, for any ½ < ¹½, ¯½(pi; mi) = ¯0(pi; mi)+ ¯½(pi; mi)¡ ¯0(pi; mi) >

¯0(pi; mi) ¡ ³ > ³ for any (pi; mi) such that pi < p¤
i . This completes the proof of (B). //
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