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Abstract

This paper studies dynamic price competition between two firms selling differ-

entiated durable goods to two buyers whose valuations of the two goods depend on

their own private type as well as that of the other buyer. We derive a key intertem-

poral property of the equilibrium prices and construct an equilibrium based on this

property. We show that social learning reduces the equilibrium prices in the sense

that when the buyers are more interdependent and hence have a stronger incentive

to wait and see, the firms respond by lowering their period 1 prices. Interestingly,

we find that this response by the firms along with the intertemporal property of

the equilibrium prices implies that buyers delay their decisions less often when they

become more interdependent.
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1 Introduction

Consumer preferences are inherently interdependent in many durable goods markets.

Consider, for example, a potential consumer of a new model of an automobile. Purchase
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decisions of such a product are accompanied by careful examination of various infor-

mation collected from a catalog and magazine articles as well as their own experience

of products from the same manufacturer. Such information forms the basis of the con-

sumer’s intrinsic valuation of the product. In many cases, however, consumers don’t

act on their intrinsic valuations alone and are also concerned about how the product is

perceived by other consumers. Behind such a concern may be the presence of conspicu-

ous consumption: Consumers attach higher values to the products that are more highly

valued by other consumers.1 Another reason for the concern may be their awareness

that their individual piece of information is imperfect: If they can learn others’ informa-

tion about the product, it will help them form a more accurate estimate of its value to

them. In either case, in order to understand consumer behavior in the choice of durable

goods, it is important to consider their extrinsic valuations, which we define to be the

combination of the own intrinsic valuations and the valuations of other consumers.

When direct and truthful communication of private information is not feasible, each

consumer has an incentive to wait and see the decisions of other consumers to collect

more information. We are interested in the problem of intertemporal price competition

between two firms selling differentiated durable goods to such interdependent consumers.

In our model, two consumers each have private intrinsic valuations about the the two

goods, and buy a single unit of either good in one of the two periods in an irreversible

manner. Hence, a consumer in period 1 must decide between buying today from either

firm for the quoted price, and waiting until tomorrow. If he waits, he has better infor-

mation about his valuation, but the price offer by each firm in period 2 is also contingent

on the buyers’ decision and can be high or low depending on whether its product was

chosen in period 1. Each firm, on the other hand, needs to set its price taking into

account the consumers’ incentives to ‘wait and see’ as well as the pricing decision of the

other firm. For example, by offering a discount in period 1, a firm may preempt the

market by capturing one of the consumers and then be able to sell the good to the other

consumer at a higher price in period 2. On the other hand, offering a discount may

be detrimental to the profits if, for example, it leads to a more intense competition in

period 2. Further, each firm needs to take into account the information flow generated

by its pricing decision. This simple discussion already suggests the complexity of the

strategic interaction between the consumers, between the firms, and between the firms

and the consumers.

A more detailed description of our model is as follows: Two firms A and B sell

1Conspicuous consumption is an important topic in the marketing literature, and is empirically vali-

dated by Wilcox et al. (2009), Shukla (2010), and Bian and Forsythe (2012).
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differentiated durable goods A and B, respectively, over two periods. There are two

consumers i = 1, 2 each of whom has an intrinsic valuation for each one of the two

goods. We suppose that for each buyer, the relative superiority of good B over good

A in terms of his intrinsic valuations is randomly drawn and privately observed, but

there is no uncertainty about the average valuations of the two goods. The measure of

superiority of B over A is referred to as buyer i’s type and denoted si. We assume that

buyer i’s extrinsic valuation of each good is the weighted average of his own intrinsic

valuation and the other buyer’s (intrinsic or extrinsic) valuation of the same good.2 As

a consequence, we can express a buyer’s extrinsic valuation as the weighted average of

his and the other buyer’s types, with the weight placed on the own type larger than that

placed on the other buyer’s type. Each consumer demands at most one unit of either good

and purchases the product at most once in one of the two periods. In period 1, the firms

quote prices simultaneously, and the consumers make simultaneous decisions on whether

to buy either good or wait until period 2. The public history comprises the prices and

consumer decisions in period 1. Given the updated belief about the consumers’ types,

the firms in period 2 again quote prices simultaneously, and any remaining consumers

make purchase decisions simultaneously again based on the updated beliefs about each

other’s type. The firms and the buyers have a common discount factor, but are assumed

to be sufficiently patient for most of the analysis.

Our analysis begins with the observation that in equilibrium, the buyers’ period 1

behavior facing any price profile is sorted by their types. Specifically, under any price

profile, we show that the type space is divided into three intervals: the buyer types

in the lowest interval who have the most favorable intrinsic valuation about good A

choose A in period 1, those in the highest interval who have the most favorable intrinsic

valuation about good B choose B in period 1, and those in the middle interval who

have a moderate intrinsic valuation about both goods defer their decisions until period

2. These intervals are endogenously determined in equilibrium.

The firms’ pricing decision in period 2 naturally responds to the buyers’ purchasing

decisions in period 1. The analysis of an equilibrium requires the identification of the

exact relationship between them. Our key result does this by establishing the intertem-

poral behavior of the critical buyer types in period 1 as described above. Specifically, we

prove the indifference property, which shows that in equilibrium, the critical buyer type

2If the intrinsic valuation reflects noisy information about the value of the product, then the extrinsic

valuation would be the weighted average of the intrinsic valuations of the two consumers. In the case

of conspicuous consumption, on the other hand, the extrinsic valuation can be the weighted average of

the own intrinsic valuation and the extrinsic valuation of the other consumer. Both formulations are

consistent with our analysis.
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who is indifferent between “buying from firm A (resp. B) in period 1” and “waiting in

period 1 and then making a contingent choice in period 2” is also indifferent between

“buying from A (resp. B) in period 1” and “waiting in period 1 and then buying from A

(resp. B) in period 2 after any decision by the other buyer.” This property, which holds

for any period 1 price pair both on and off the path of play, is extensively used in the

derivation and characterization of an equilibrium. We first examine if the equilibrium

can be preemptive in the sense that any firm that successfully attracts one buyer in

period 1 also sells to any remaining buyer in period 2. As will be seen, when the prices

are fixed and equal to marginal cost in both periods, buyer behavior is characterized

by such preemption. Even when pricing is strategic, such preemption appears plausible:

The firm which wins a buyer in period 1 strengthens its position in the period 2 mar-

ket where the relative value of its own good compared with that of the other good is

increased. Despite this intuition, however, we show that no equilibrium entails preemp-

tion: Preemption implies fierce competition in the period 2 market over a small interval

of active buyer types, and hence low period 2 prices. This in turn implies low period 1

prices through the indifference property, which induce either firm to profitably deviate

by increasing its period 1 price.

This finding leads to the consideration of a strategy profile in which the losing firm (if

any) in period 1 makes a sale in period 2 with positive probability. The main theorem of

the paper uses the indifference property to construct an equilibrium with this property.

We observe that the period 1 price in equilibrium entails a discount compared with that

in the one-period model to reflect the increased bargaining power of the buyers in the

two-period model where they have a delay option. This discount is shown to be increasing

in the degree of interdependence of the preferences. We can interpret this as the firms’

response to the stronger incentive of the more interdependent consumers to delay their

decisions. In other words, social learning imposes a downward pressure on the period 1

prices. Interestingly, however, the lowered period 1 price coupled with the indifference

property implies that the probability of delay in equilibrium decreases as the buyers

become more interdependent. In contrast, we show that the more interdependent buyers

delay more often in the alternative model in which the firms engage in marginal cost

pricing in both periods. The buyers’ decisions are highly inefficient, and we identify two

potential sources of the inefficiency: (i) the distortion in the buyer behavior caused by the

change in the period 2 prices in response to their own decisions in period 1, and (ii) the

failure on the part of each buyer to internalize the informational externalities that their

learning behavior inflicts on the other buyer. Examination of some benchmarks reveals

that the first effect is dominant for smaller values of the interdependence parameter, but
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the second effect becomes more important for larger values.

The paper is organized as follows. After the discussion of the related literature in the

next section, we formulate our model in Section 3. Section 4 describes the buyer behavior

in period 1, and Section 5 analyzes the period 2 equilibrium. The indifference property is

proven in Section 6. We demonstrate the impossibility of the preemptive equilibrium in

Section 7, and construct a non-preemptive equilibrium in Section 8. Section 9 analyzes

delay in equilibrium and compares its property with that in the model with marginal cost

pricing. Comparative statics analysis of efficiency is given in Section 10. We conclude

with a discussion in Section 11.3

2 Related Literature

Our model extends the standard models of dynamic durable good markets in at least two

directions: First, we introduce interdependence in preferences between consumers which

we consider essential for many durable goods as discussed above. Second, we introduce

competition between the firms as a realistic feature of many durable goods markets.

The assumption on the interdependence of preferences in our model implies the

presence of social learning by the consumers. In the social learning literature that begins

with Banerjee (1992) and Bikhchandani et al. (1992), delay induced by learning is one

of the central topics. Among others, Chamley and Gale (1994) and Gul and Lundholm

(1995) present a model of strategic delay in the context of dynamic investment decisions.4

More recently, the literature on social learning looks at the sequential sales of a product

of uncertain quality by a monopolist, who optimally controls its price contingent on sales

history.5 The standard assumption there is that each consumer makes a single decision:

They either take a price offer, or else exit the market. Our model is new in that it

combines the multiple purchase decisions and the strategic pricing of a product. Natural

as it may appear, this combination has not been explored before to the best of our

knowledge perhaps because of the substantial complications it creates in the technical

analysis. In particular, there is fundamental difficulty in checking the firms’ deviation

incentives in period 1 when those deviations change the buyers’ delay incentives and also

the outlook of the period 2 market. We show that the problem is solvable with the use

of the indifference property mentioned in the Introduction.

The ability of consumers to wait and look for a better opportunity in later periods as

3The proofs are either in the Appendix at the end of the paper or in the online appendix.
4See also Sgroi (2002) and Gunay (2008a, b). A textbook treatment of social learning and delay can

be found in Chamley (2004).
5See, for example, Bose et al. (2006, 2008), Aoyagi (2010), and Bhalla (2013).
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examined here is the main theme of the literature on durable good monopoly that begins

with the Coase conjecture. The subject is also extensively studied in the marketing

literature on strategic consumers.6 The possibility that the buyers face uncertainty in

their valuations is considered, among others, by Yu et al. (2015), and Bhalla (2012).7

Yu et al. (2015) study a two-period model of monopolistic sales when consumers learn

about their valuations in the second period and the monopolist can control the number of

products sold in each period. Bhalla (2012) studies a two-period model of monopolistic

sales in which two consumers each observe a noisy signal about the binary product

quality. When only consumer 1 is active in period 1 and may delay his decision until

period 2, Bhalla (2012) shows that equilibrium pricing depends on the prior probability of

the high quality product. Unlike in these models, the timing and content of information

about the valuations in the present model is endogenously determined by the consumers’

equilibrium behavior.

Problems in which firms with differentiated products compete in price for consumers

who may delay their decisions are studied by Chen and Zhang (2009), Levin et al. (2009),

and Liu and Zhang (2013). In Chen and Zhang (2009), the market consists of two seg-

ments that are loyal to either firm, and one segment that is opportunistic. Levin et

al. (2009) also suppose that the market consists of multiple segments and that the val-

uation of each product is randomly determined every period. Liu and Zhang (2013)

formulate a model of vertical product differentiation when consumer valuations are ran-

dom but fixed over the periods.8

In summary, to the best of our knowledge, the literature on the price competition

by durable good sellers has studied problems in which consumers know their valuations

from the outset or learn about those over time through an exogenous channel. On the

other hand, the literature on social learning with strategic pricing has only looked at the

problems in which consumers make a single purshase decision.9 Our model hence marks

a departure from the literature with the combination of the following elements:

6Beginning with Besanko and Winston (1990), one central question in this literature is what happens

to the seller’s revenue when the consumers become non-myopic and can delay their decisions. See Gönsch

et al. (2012) for an extensive survey of the literature.
7Gunay (2014) considers a model in which the seller but not the buyers is privately informed of the

quality of its good.
8Mak et al. (2012) consider price competition when one buyer alternates between two sellers who

supply identical products. Anton et al. (2014) study dynamic price competition against a single strategic

buyer when the sellers’ capacity is their strategic variable.
9The unique exception is Jing (2011). In Jing (2011), however, social learning is not a Bayesian

process and the probability with which buyers learn their true valuations in period 2 is proportional to

the number of buyers who make a purchase in period 1.

6



• Possible delay in buyers’ purchase decisions.

• Social learning about valuations by buyers.

• Dynamic price competition by firms.

As mentioned in the Introduction, we find that the buyers’ social learning incentives

result in a discount in the firms’ period 1 prices compared with the one-shot equilibrium

level. A related observation based on a different logic is made by Caminal and Vives

(1996), who show in a two-period duopoly model that the firms’ period 1 prices are lower

than the one-shot equilibrium level when period 2 consumers have an incentive to learn

the quality of the goods from their market shares in period 1.10

3 Model

Two firms A and B sell durable goods A and B, respectively, over two periods t = 1, 2

to two buyers i = 1, 2. Each buyer demands at most one unit of either good, and buyer

i’s intrinsic valuations of good A and B are denoted by αi and βi, respectively. The

intrinsic valuations are determined by buyer i’s type si which is drawn from the uniform

distribution over the unit interval Si = [0, 1].11 Specifically, αi and βi are given by

αi = u+ 1− si and βi = u+ si, (1)

for some constant u > 0. In this formulation, hence, i’s type

si =
1

2
(βi − αi + 1)

represents the relative superiority of good B over good A in terms of i’s intrinsic valu-

ations. Furthermore, the average valuation of the two goods is constant: 1
2 (αi + βi) =

u+ 1
2 .

12 As mentioned in the Introduction, each buyer is concerned about the extrinsic
10In an extension, Caminal and Vives (1999) study price dynamics over a longer horizon.
11Note that si and sj have independent distributions. If consumers’ intrinsic valuations are noisy

signals about the same aspect of the product, then it will be more natural to suppose that they are

positively correlated with each other. On the other hand, if those signals are about different aspects of

the product (e.g., driving performance and fuel efficiency of an automobile), they can be independent

as formulated here. See Section 11 for more discussion on this assumption. The independent-signal

interdependent-value formulation is often used in the mechanism design literature. See for example

Jehiel and Moldovanu (2001). See also Aoyagi (2010).
12This is assumed in order to reduce the dimension of the private information. Alternative specifica-

tions are possible. For example, one can think of firm A as selling a benchmark good whose value is

known with certainty, and there is uncertainty only in the value of good B. The present specification

helps us keep symmetry between the two firms.
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rather than intrinsic valuation of the good he purchases. Suppose that a buyer’s extrin-

sic valuation of each good equals the weighted average of his intrinsic valuation and the

other buyer’s extrinsic valuation of the same good.13 In other words, if we let vi and wi

denote buyer i’s extrinsic valuations of goods A and B, respectively, then

vi = (1− λ)αi + λvj and wi = (1− λ)βi + λwj. (2)

where λ ∈ [0, 1) is a constant expressing the degree of dependence of i’s extrinsic valua-

tion on the other buyer’s valuation. Using (1) and (2) and the corresponding expressions

for j, we can express vi and wi as a function of si and sj:

vi = u+ (1− k)(1 − si) + k(1− sj),

and

wi = u+ (1− k)si + ksj,

where k = λ
1+λ ∈ [0, 12 ). Our analysis in what follows is built on these expressions of vi

and wi.
14 Assume that u satisfies u > 1

2 − k.15 When k > 0, the two buyers’ valuations

of the goods are interdependent, and the larger is k, the more dependent buyers are

on the other buyer’s type. Since k < 1/2, each buyer places more weight on his own

type than the other buyer’s type. On the other hand, when k = 0, the valuations are

independent.

The game proceeds as follows: In period 1, the two firms publicly and simultaneously

quote prices p1A and p1B of their own goods. The two buyers then make simultaneous

decisions on whether to buy either good or not buy and wait. If a buyer chooses to

buy either good, then the decision is irreversible and he makes no further decision. The

buyers’ decisions in period 1 are publicly observed. If there is at least one buyer who

chooses to wait in period 1, the two firms again publicly and simultaneously quote prices

p2A and p2B in period 2. Any buyer still in the market in period 2 then chooses to buy

either good or not buy. Let δ ∈ (0, 1) denote the common discount factor of the firms

and buyers. For the buyers, this means that when they buy either good in period 2, the

13This corresponds to the conspicuous consumption interpretation (Footnote 2). If the extrinsic val-

uation is instead the weighted average of the two instrinsic valuations, then k introduced below equals

λ.
14As a possible alternative, one may formulate the valuation functions so that the own type is not

multiplied by 1 − k. We have found that none of the qualitative conclusions in this paper are affected

under this alternative specification. The present formulation avoids confounding the effects of higher

interdependence and higher valuations associated with a higher value of k.
15This ensures that the buyers’ participation constraint does not bind in the period 2 price equilibrium.

Note also that the range of extrinsic valuations is constant regardless of the value of k.
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value of the good as well as its price is discounted by δ. For example, when buyer i buys

A in period 1 for price p1A, his payoff equals vi − p1A, but when he buys it in period 2 for

price p2A, his payoff equals δ(vi − p2A).
16

Each firm f chooses its price ptf in period t from the set R+ of non-negative real

numbers, whereas each buyer imakes his choice dti in period t from the setD = {A,B, ∅},
where dti = ∅ represents i’s decision to make no purchase in period t. Any buyer i who

chooses to buy neither good in period 1 makes another decision in period 2 so that d1i = ∅
can alternatively be interpreted as the decision to wait. A period 1 history h = (p1, d1)

then consists of a pair p1 = (p1A, p
1
B) ∈ R2

+ of the prices quoted by the two firms as well

as a pair d1 = (d11, d
1
2) of the decisions of the two buyers. Denote by H = R2

+ ×D2 the

set of all period 1 histories. For i = 1, 2, let

Hi =
{
h = (p1, d1) ∈ H : d1i = ∅}

be the set of period 1 histories along which buyer i waits, and

H12 = H1 ∪H2

be the set of histories along which at least one buyer waits. Firm f ’s strategy consists

of its price σ1
f in period 1 as well as the mapping σ2

f : H → R+ that determines its

period 2 price p2f = σ2
f (h) as a function of the period 1 history h ∈ H. On the other

hand, buyer i’s strategy is a mapping τ1i : Si × R2
+ → D that determines his period

1 choice as a function of his type si and the period 1 prices p1, along with a mapping

τ2i : Si ×R2
+ ×H → D that determines his period 2 choice as a function of his type si,

the period 1 history h as well as the period 2 price pair p2. Since buyer i has a decision

to make in period 2 only if he chooses to wait in period 1, we impose the restriction

that τ2i (si, p
2, h) = ∅ if h /∈ Hi. Each firm f has zero marginal cost of production and

its profit simply equals the sum of prices at which the buyers buy its product.17

We will consider a perfect Bayesian equilibrium (PBE) of this game with an addi-

tional requirement that beliefs be obtained through Bayes rule from the buyers’ strate-

gies even when the period 1 price pair is off the path of play.18 In other words,

given any period 1 history h = (p1, d1), where p1 is on the path or not, we require

that the conditional distribution P (· | h) be derived through Bayes rule whenever

P (τ1i (si, p
1) = d1i , τ

1
j (sj , p

1) = d1j) > 0. Given any such P , the triplet (σ, τ, P ) is an
16In other words, the usage value of good A is (1− δ)vi for period 1 and δvi for period 2 (and beyond).
17Having a positive marginal cost does not change the analysis.
18Note that in the standard PBE, the belief is obtained through Bayes rule only along the equilibrium

path. Our requirement would be implied by consistency in the definition of a sequential equilibrium

which is defined for finite games.
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equilibrium if the firms’ strategies σ and the buyers’ strategies τ are both sequentially

rational.19

4 Sorting of Buyer Types in Period 1

We begin with the analysis of the buyers’ equilibrium strategies in period 1. Intuitively,

the buyer types who do not have a strong signal about the relative valuation of the

two goods will attempt to wait and see the decision of the other buyer to gather more

information. We make this intuition precise by showing that the buyers’ equilibrium

strategies in period 1 satify the sorting condition: For any price pair p1, there exist

x(p1) and y(p1) with 0 ≤ x(p1) ≤ y(p1) ≤ 1 such that

τ1i (si, p
1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A if si < x(p1),

∅ if x(p1) < si < y(p1),

B if si > y(p1).

(3)

In other words, when faced with p1, buyer i chooses A if his type is at the lower-end of

the type space, B if it is at the higher-end, and ∅ if it is in the middle.20 For simplicity,

we often omit the dependence of the thresholds on p1 and simply write x and y.

Lemma 1. Suppose that (σ, τ, P ) is an equilibrium. For any buyer i and period 1 price

profile p1 = (p1A, p
1
B), τ1i satisfies the sorting condition (3) for some x = x(p1) and

y = y(p1) such that 0 ≤ x ≤ y ≤ 1. Furthermore, if 0 < x < y, then type x is indifferent

between choosing A and waiting in period 1, and if x < y < 1, then type y is indifferent

between choosing B and waiting in period 1.

The intuition behind Lemma 1 is as follows: Suppose that there is some type si for

whom choosing A in period 1 is optimal. Consider any type s′i < si. First, any such

s′i will strictly prefer A to B in period 1. Second, s′i also strictly prefers choosing A in

period 1 to waiting. To see this, suppose first that type si would optimally choose A in

period 2 regardless of history when forced to wait. Type s′i would also choose A when

forced to wait, but choosing A in period 1 is better than waiting by a larger margin

because waiting is more costly to s′i under positive discounting. If, on the other hand,

type si would optimally choose B in period 2 after some history when forced to wait,

then type s′i again strictly prefers choosing A in period 1 because his valuation of B is

lower than that of type si. It follows that type s′i strictly prefers choosing A to waiting

in period 1.
19See the appendix for the formal definitions.
20Note that one or more of the intervals may be empty.
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5 Equilibrium in Period 2

With the specification of the buyers’ behavior in period 1, we now describe an equilibrium

in period 2. Consider buyer i’s problem in period 2 following history h ∈ Hi along which

he chooses to wait d1i = ∅ in period 1. Facing the price pair p2 in period 2, buyer i of

type si chooses A, B or ∅ in period 2 depending on which one of

E [vi | si, h] − p2A, E [wi | si, h]− p2B , and 0

is the largest, where the conditional expectation E [· | h] is taken with respect to P (· | h).
Let ej(h) be the expected value of buyer j’s type sj implied by the period 1 history h:

ej(h) = E[sj | h] = E[sj | p1, d1j ]. (4)

Using ej(h), we can write

E [vi | si, h] = u+ 1− (1− k)si − kej(h), and E [wi | si, h] = u+ (1− k)si + kej(h).

It follows that buyer i’s equilibrium strategy τ2i in period 2 must satisfy

τ2i (si, p
2, h) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A if si < min

{
1−2kej(h)−p2A+p2B

2(1−k) ,
u+1−kej(h)−p2A

1−k

}
,

B if si > max
{

1−2kej(h)−p2A+p2B
2(1−k) ,

−u−kej(h)+p2B
1−k

}
,

∅ if
u+1−kej(h)−p2A

1−k < si <
−u−kej(h)+p2B

1−k .

(5)

Consider next the firms’ game in period 2 following h ∈ Hi along which buyer i chooses

to wait in period 1. It follows from (5) that the firms’ period 2 payoffs from buyer i

along h ∈ Hi are given by

π2
A,i(p

2 | τ2i , h) = p2AP
(
τ2i (si, p

2, h) = A | h) ,
π2
B,i(p

2 | τ2, h) = p2BP
(
τ2i (si, p

2, h) = B | h) .
When buyer j’s decision is described by (3), then ej(h) defined in (4) equals:

ej(h) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x
2 if d1j = A,

x+y
2 if d1j = ∅,

1+y
2 if d1j = B.

(6)

The following lemma describes the equilibrium of the period 2 game when both buyers

use the same period 1 strategy (3) with x < y, and when one or two buyers choose to

delay. Note that the conditional probability P (· | h) of si given h ∈ Hi is the uniform

distribution over the interval (x, y).
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Lemma 2. Let p1 be any period 1 price profile and x = x(p1) and y(p1) = y be the

corresponding critical types as specified in (3). If x < y, then the equilibrium price

profile
(
σ2
A(h), σ

2
B(h)

)
in period 2 following history h = (p1, d1) ∈ H12 is unique and

given as follows:

a) (interior equilibrium) If 1− 2kej(h) ∈ [2(1− k)(2x − y), 2(1 − k)(2y − x)],21 then(
σ2
A(h), σ

2
B(h)

)
=

(
1− 2kej(h) + 2(1− k)(y − 2x)

3
,
−1 + 2kej(h) + 2(1 − k)(2y − x)

3

)
,

(7)

and the two firms segment the market with firm A capturing
(
x,

1−2kej(h)
6(1−k) + x+y

3

)
and firm B capturing

(
1−2kej(h)
6(1−k) + x+y

3 , y
)
. Their equilibrium payoffs (per buyer)

are given by22

π2∗
A (h) =

1

y − x

{1− 2kej(h) + 2(1− k)(y − 2x)}2
18(1 − k)

,

π2∗
B (h) =

1

y − x

{−1 + 2kej(h) + 2(1 − k)(2y − x)}2
18(1 − k)

.

b) (A-monopolization equilibrium) If 1− 2kej(h) > 2(1 − k)(2y − x), then(
σ2
A(h), σ

2
B(h)

)
= (1− 2kej(h) − 2(1 − k)y, 0) , (8)

and firm A monopolizes the market by capturing (x, y).

c) (B-monopolization equilibrium) If 1− 2kej(h) < 2(1− k)(2x − y), then(
σ2
A(h), σ

2
B(h)

)
= (0, −1 + 2kej(h) + 2(1− k)x) , (9)

and firm B monopolizes the market by capturing (x, y).

As seen, which one of the three types of the equilibria takes place in period 2 depends

on the lower and upper bounds of the active buyer types (x and y) in that period as well

as the expected type ej of the other buyer.23 In either monopolization equilibrium, the

21Since y ≥ x, 2(1− k)(2x− y) ≤ 2(1− k)(2y − x).
22π2∗

f (h) = π2
f (σ

2(h) | τ 2, h) is firm f ’s (per buyer) payoff in period 2 along the history h = (p1, d1)

when the equilibrium strategies σ2 and τ 2 are played in period 2. Given the symmetry between the

buyers, firm f ’s (per buyer) payoff from both buyers equals that from a single buyer i.
23Figures 6 and 7 in the online Appendix illustrate the best-response correspondences and the equi-

librium price profile.
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monopolizing firm drives the price of the other firm down to zero, and the extreme type

who prefers the other good the most in the market (i.e., type x in the B-monopolization

equilibrium and type y in the A-monopolization equilibrium) is made indifferent between

the two goods. For example, in the B-monopolization equilibrium,

type x’s payoff from choosing A

= u+ 1− (1− k)x− kej(h)− 0

= u+ (1− k)x+ kej(h) − (−1 + 2kej(h) + 2(1− k)x)

= type x’s payoff from choosing B.

(10)

The same holds for type y in the A-monopolization equilibrium. This observation turns

out critical for the equilibrium price dynamics as seen in the next section.

6 Equilibrium Price Dynamics

In this section, we make a critical observation on the relationship between the period 1

price and the period 2 prices in equilibrium. Fix any price pair p1 = (p1A, p
1
B) on or off

the equilibrium path in period 1, and let x = x(p1) and y = y(p1) be the two critical

buyer types as described in Lemma 1. While the firms price offers in period 2 vary

with the buyers’ decisions in period 1, we show that as long as 0 < x < y, the ex ante

expected payoff of the type x buyer is the same whether he chooses A in period 1 or

when he waits and chooses A in period 2 after any decision by the other buyer. Likewise,

when x < y < 1, the ex ante expected payoff of the type y buyer is the same whether

he chooses B in period 1 or when he waits and chooses B in period 2 after any decision

by the other buyer. Analysis of the equilibrium in the subsequent sections fully exploits

this indifference property of the critical types.

Lemma 3. (Indifference property) Suppose that (σ, τ, P ) is an equilibrium. Let p1 =

(p1A, p
1
B) be any period 1 price pair, and x = x(p1) and y = y(p1) be the corresponding

critical types. If 0 < x < y, then buyer i of type x is indifferent between choosing A in

period 1 and waiting and then choosing A after any decision d1j by buyer j in period 1.

Likewise, if x < y < 1, then buyer i of type y is indifferent between choosing B in period

1 and waiting and then choosing B in period 2 after any decision d1j of buyer j in period

1. That is, for any h = (p1, d1) ∈ Hi,

0 < x < y ⇒ E
[
vi − p1A | si = x

]
= δE

[
vi − σ2

A(h) | si = x
]
,

x < y < 1 ⇒ E
[
wi − p1B | si = y

]
= δE

[
wi − σ2

B(h) | si = y
]
.
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The intuition behind Lemma 3 is as follows:24 Consider buyer i of the critical type x.

Suppose for example that when buyer i waits, we have in period 2 an A-monopolization

equilibrium if buyer j chooses A in period 1, an interior equilibrium if j chooses to wait,

and a B-monopolization equilibrium if j chooses B. Since type x is at the lower end of

the interval in the period 2 market, he will choose A in the interior equilibria as well

as in the A-monopolization equilibrium. Suppose then that j chooses B so that the

B-monopolization equilibrium is played in period 2. As seen in (10), type x (who prefers

A the most in the market) is just indifferent between A and B in this equilibrium, and

hence A is also an optimal choice for (only) type x in this equilibrium. It follows that

regardless of the other buyer’s move in period 1, the unconditional choice of A in period

2 is optimal for type x. Since type x is indifferent between ”choosing A in period 1” and

“waiting and making an optimal contingent choice in period 2,” he is also indifferent

between ”choosing A in period 1” and “waiting and making a non-contingent choice of

A in period 2”. This argument does not depend on which equilibrium is played in period

2, and whether the period 1 price pair is on the equilibrium path or not. Furthermore,

Lemma 3 does not depend on our assumption that the type distribution is uniform.

As an immediate consequence of the indifference property, we have the super-martingale

property of the price dynamics as follows.

Corollary 4. (Super-martingale property) Under the conditions of Lemma 3, the price

path is a super-martingale in the sense that the expected price in period 2 is lower than

the period 1 price both on and off the equilibrium path. That is, for any period 1 price

pair p1 = (p1A, p
1
B) and h = (p1, d1) ∈ H12, we have

p1A > E[σ2
A(h)] and p1B > E[σ2

B(h)].

Equilibrium price dynamics is one central topic in the literature on dynamic sales.

Bose et al. (2008) and Bhalla (2013) both show in their respective sequential sales models

that the price path is a super-martingale in the sense that the ex ante expected prices go

down with the progress of sales. On the other hand, in a two-period model in which only

one consumer arrives in period 1 and may delay, Bhalla (2012) shows that the prices can

either increase or decrease over periods depending on the prior belief about the quality

24The indifference conditions can also be written as: p1A − δE
[
σ2
A(h)

]
= (1 − δ)E [vi | si = x] and

p1B − δE
[
σ2
B(h)

]
= (1 − δ)E [wi | si = y]. In other words, Lemma 3 states that the difference between

the period 1 price and the discounted expected period 2 price equals the depreciation in the expected

value (or the period 1 usage value) of the good for the critical type.
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of the good. In a model of online sales with random arrival of consumers, Gallien (2006)

shows that the price path is a sub-martingale.

Although our main analysis concerns the case of positive discounting, the indifference

property established above is continuous at the limit δ → 1. In fact, as δ → 1, the

indifference of types x and y reduces to

p1A = E
[
σ2
A(h)

]
and p1B = E

[
σ2
B(h)

]
. (11)

In other words, the expected price in period 2 equals the period 1 price, and hence the

price is a martingale in this limiting case.25

7 Impossibility of a Preemptive Equilibrium

We now proceed to the analysis of the equilibrium. In this section, we examine whether

or not the equilibrium can be preemptive in the sense that the firm which successfully

attracts one buyer in period 1 also attracts any remaining buyer in period 2. In other

words, along the equilibrium path, the choice of A by a single buyer in period 1 is followed

by the A-monopolization equilibrium in period 2, and the choice of B is followed by the

B-monopolization equilibrium in period 2.26

Suppose that (σ, τ, P ) is a symmetric preemptive equilibrium. Let x = x(σ1) and

y = y(σ1) be the critical types in (3) under the equilibrium price profile σ1 in period 1.

By symmetry, we have y = 1− x.

First, by Lemma 2, the A-monopolization equilibrium is played after h = (σ1, d1)

with d1 = (∅, A) if and only if

1− 2kej(h) ≥ 2(1 − k)(2y − x) ⇔ 1− 2k · x
2
≥ 2(1− k) {2(1− x)− x} .

This along with y = 1− x ≥ x implies that the relevant range of x is given by

x ∈
[
3− 4k

6− 7k
,
1

2

]
. (12)

By symmetry, this condition is also necessary and sufficient for the B-monopolization

equilibrium to be played after the choice of B in period 1 by the other buyer. Further-

more, the interior equilibrium with ej(h) =
1
2 follows d1 = (∅, ∅).

25Weber (1981) shows that the price path is a martingale in a model of sequential auctions.
26As will be seen in Proposition 9, such a property characterizes buyer behavior when the firms engage

in marginal cost pricing in both periods.
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Next, by the indifference property (Lemma 3), type x is indifferent between choosing

A in period 1 and waiting and then choosing A in period 2 after every history. Substi-

tuting the equilibrium prices in period 2 from Lemma 2, we can express this condition

as

σ1
A = (1− δ)

{
u+ 1− k

2
− (1− k)x

}
+ δE[σ2

A(h)]

= (1− δ)

{
u+ 1− k

2
− (1− k)x

}
+ δ

{
(6− 7k)x2 − (5− 6k)x+ 1− k

}
.

(13)

When x satisfies (12), we can verify that

k(1− k)

6− 7k
≤ (6− 7k)x2 − (5− 6k)x+ 1− k ≤ k

4
. (14)

(13) and (14) together imply that when δ is close to one, the period 1 price σ1
A in a

preemptive equilibrium, if any, must be fairly low.27 The following proposition shows

that this generates an incentive for the firms to deviate and increase its price. In fact,

setting a sufficiently high price in period 1 is a profitable deviation from σ1
f although it

implies giving up the market share entirely in period 1: The deviating firm can in some

cases monopolize the period 2 market.

Proposition 5. (Impossibility of a Preemptive Equilibrium) For δ sufficiently close to

one, there exists no symmetric equilibrium (σ, τ, P ) in which the buyer types who wait in

period 1 always choose the same firm as the other buyer who makes a purchase in period

1.

This impossibility result may as well depend on the uniform distribution assumption.

However, what is behind this result is the general observation that the buyer decisions are

influenced by their expectation of the change in the firms’ pricing behavior in period 2 in

response to period 1 histories. More specifically, under the assumption of preemption, the

corner equilibrium that follows a single purchase in period 1 implies fierce competition

in period 2 over the small set of active buyer types who are concentrated around 1/2.

The low expected price in period 2 then leads to the low period 1 price through the

indifference property. This induces the firms to deviate and increase their price in period

1.

8 Existence of a Non-Preemptive Equilibrium

Having seen in the previous section that the equilibrium cannot be preemptive, we turn

to the alternative possibility where the period 2 equilibrium is always in the interior.
27For example, it is significantly lower than 1− k, the equilibrium price in the one-period model.
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In other words, even if only one firm wins a buyer in period 1, some buyer types still

choose the other firm in period 2. In this section, we present the main theorem of the

paper that proves the existence of such an equilibrium.

We begin our analysis with the consideration of the one-period model in which the

firms quote prices once and the buyers make a single purchase decision. Since such a

game is equivalent to the period 2 game with x = 0, y = 1 and ej(h) = 1/2, we can use

Lemma 2 to characterize its equilibrium as follows.

Proposition 6. In the one-period game, the equilibrium price profile is unique and given

by (pA, pB) = (1 − k, 1 − k), and the firms segment the market with firm A capturing

[0, 1/2) and firm B capturing (1/2, 1].

Proposition 6 demonstrates the immediate consequence of higher interdependence

between the buyers. The higher is the parameter k, the more similar are the buyers’

preferences and the more intense is the competition between the firms.28 Now define the

period 1 prices adjusted by the interdependence parameter:

qA =
p1A

1− k
, and qB =

p1B
1− k

. (15)

It then follows from Proposition 6 that regardless of k, the adjusted prices are unity in

the equilibrium of the one-period game:

(qA, qB) = (1, 1).

As will be seen, this observation is useful for the interpretation of the equilibrium of the

original model.

Recall now that Hi is the set of histories along which buyer i waits in period 1. For

any h ∈ Hi, indifference of type x between “choosing A in period 1” and “waiting and

then choosing A” (Lemma 3) can be explicitly written as:

u+ 1− (1− k)x− k

2
− p1A = δE

[
u+ 1− (1− k)x− kej(h)− σ2

A(h)
]
. (16)

Likewise, indifference of type y can be explicitly written as:

u+ (1− k)y +
k

2
− p1B = δE

[
u+ (1− k)y + kej(h) − σ2

B(h)
]
. (17)

Suppose now that in the neighborhood of some period 1 price pair p1, every history

h is followed by an interior equilibrium in period 2. This would be true if the critical
28If we adopted an alternative specification of the valuation function as described in footnote 14,

then the equilibrium price of the one-shot model would be 1. In this case, the intensity of competition

associated with a higher k is offset by the increase in the valuations.
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types x and y in (3) for any price pair in the neighborhood of p1 satisfy the conditions of

Lemma 2(a). For x and y satisfying these conditions, the expected period 2 price of each

good (i.e., E[σ2
A(p

1, d1i = ∅, d1j )] and E[σ2
B(p

1, d1i = ∅, d1j )]) can be computed again using

Lemma 2(a) and expressed as a function of x and y. Substituting these expected prices

into the indifference conditions (16) and (17), we can express the period 1 adjusted prices

qA and qB in terms of x and y. These equations are then solved to express x and y in

terms of qA and qB . Under the symmetric equilibrium price profile (qA, qB) = (q∗, q∗),
these expressions reduce to:

x = 1− y =
δ

3− δ
+ μ− q∗

1 + δ
. (18)

We use the expression of x and y in terms of (qA, qB) to write firm A’s overall profit ΠA as

a function of the adjusted prices: Π̂A(qA, qB). The first-order condition for the symmetric

equilibrium price q = q∗ is given by ∂Π̂A
∂qA

(q, q) = 0, and as seen in the Appendix, a non-

negative solution to this equation is given by:

q∗ =

⎧⎨⎩−C+
√
C2+3δk2D
3δk2

if k > 0,

D
2C if k = 0,

(19)

where

C = (1 + δ)

[
18(1 − k)2 − δk2

3− δ

{
−6ν + 3(1− δ)μ +

δ(3 − 5δ)

3− δ

}]
,

D = 18(1 − k)2(1 + δ)3
[
μ+

δ

3− δ
+

4δ

3(1 + δ)(3 − δ)

{
2λ+

3(1− δ)

3− δ

}]
+ δk2(1 + δ)2

[
1 + μ− ν

3− δ

{
(3 + δ)ν − 2δ(1 − μ) +

3δ(1 + δ)

3− δ

}

−
(
ν +

δ

3− δ

)(
1− μ− δ

3− δ

)]
,

and

μ =
1− δ

(1 + δ)(3 − δ)(1 − k)

{
(3 + δ)

(
u+ 1− k

2

)
− 2δ

(
u+

k

2

)}
,

ν =
1− δ

(1 + δ)(3 − δ)(1 − k)

{
2δ

(
u+ 1− k

2

)
− (3 + δ)

(
u+

k

2

)}
,

λ = ν − 2μ.

(20)

Theorem 7. (Non-preemptive equilibrium) Let q∗ be given by (19). If δ is sufficiently

close to one, there exists a symmetric equilibrium (σ, τ, P ) in which the firms quote

σ1
A = σ1

B = (1 − k)q∗ in period 1 and the critical buyer types x and y in period 1 are

given by (18).
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The proof in the Appendix constructs the equilibrium by specifying the buyer re-

sponse to every off-equilibrium price pair in period 1.29 For a period 1 price pair that

corresponds to a unilateral deviation, this construction determines the profitability of

the deviation. For illustration, suppose that firm A unilaterally deviates and slightly

cuts its price in period 1. This deviation is followed by higher values of the thresholds x

and y: More buyer types immediately choose A, and less buyer types immediately choose

B. These thresholds then determine the active buyer types in the period 2 market and

the payoff of the deviating firm there. Hence, the profitability of the price cut in period

1 depends on the change in immediate sales in period 1 as well as on the change in the

payoff in period 2, both of which are caused by the change in the thresholds x and y.

Evaluation of the profitability of a deviation hence requires the exact identification of

the thresholds based on the indifference property.

Figure 1: q∗ as a function of k.

Given that the equilibrium price in the one period model equals 1 − k as seen in

Proposition 6, we can interpret q∗ as a discount in response to the increased bargaining

power of the buyers with an option to wait until period 2. As can be readily verified

from (19) and as illustrated in Figure 1, the adjusted price

σ1
f

1− k
= q∗

29We can verify that Theorem 7 holds for δ ≥ 0.95.

19



is decreasing in the interdependence parameter k for δ close to one.30 We can interpret

this as the firms’ response to the stronger incentive of the more interdependent con-

sumers to delay their decisions. A closer inspection reveals the source of this negative

relationship between q∗ and k: The firms’ pricing game in (qA, qB) is shown to have

strategic complementarities, and hence the equilibrium price q∗ decreases with k if the

marginal payoff of each firm is decreasing in k.31 We can verify that k does not affect

the marginal payoff in period 1 or that in period 2 corresponding to the buyers’ intrinsic

valuations. On the other hand, in the neighborhood of the equilibrium, an increase in k

negatively impacts the marginal payoff in period 2 corresponding to the interdependent

component of the buyers’ valuations.

On the other hand, Figure 2 shows that q∗ is an increasing function of δ, implying

that period 1 pricing responds more strongly to the patience of the firms than that of

the buyers.

Figure 2: q∗ as a function of δ.

30It is straightforward to verify that ∂q∗
∂k

< 0 when δ = 1. The corresponding inequality for δ close to

one then follows from the continuity of the derivative with respect to k.
31See Topkis (1998). To be precise, the argument below is pertinent to Π̂A

1−k
for δ = 1. It however

implies ∂
∂k

( ∂Π̂A
∂qA

) < 0 for δ sufficiently large.

20



9 Delay

According to Theorem 7 and (18), the probability of types who wait in period 1 is given

by

y − x = 1− 2x = −(1− δ)(2u + 1)

(1 + δ)(1 − k)
+

2q∗

1 + δ
.

We can see from this that there is substantial delay when the buyers are completely

independent (k = 0). In fact, when k = 0, y − x → 1 in the limit as δ → 1 so that

the equilibrium involves full delay.32 More generally, for δ sufficiently close to one, q∗ is

decreasing in k, and so is y−x. In other words, there will be less delay when the buyers

are more interdependent as summarized in the following corollary.

Corollary 8. (Delay as a function of k) For δ sufficiently close to one, the probability

of delay by either buyer in the equilibrium of Theorem 7 decreases as they become more

interdependent.

Corollary 8 appears counter-intuitive since in general, a more interdependent buyer

is likely to have a stronger incentive to learn from the behavior of the other buyer. At

first sight, it may seem that less delay follows directly from the lower period 1 price for

a larger k. This intuition, however, is misleading. Consider for example the limiting

case as δ → 1. In this case, as seen in Section 6, any reduction in the period 1 price is

accompanied by the reduction in the expected period 2 price by the same margin.

In order to understand the nature of the relationship between the degree of interde-

pendence and the probability of delay, it is useful to consider an alternative model in

which the firms’ prices are fixed and set equal to the marginal cost in both periods. If

we define

x0 =
δ(2 − 3k)− (1− k) +

√
{δ(2 − 3k)− (1− k)}2 + 4δ(2 − 3k)Δ

2δ(2 − 3k)
, (21)

32When k = 0, there exists another equilibrium with no delay as follows: The firms quote σ1 = (1, 1)

in period 1, and all buyer types move in period 1: Type si chooses A if si < 1
2
and B if si > 1

2
. The

conditional distribution P (· | h) when either buyer waits (i.e., after any h ∈ H12) is the same as the

prior (i.e., the uniform distribution over [0, 1]). Since the period 2 equilibrium price pair along any such

history is again (1, 1), and since the buyers have no incentive to learn from the behavior of the other,

their decision in period 1 not to wait is optimal. When k > 0, however, there is no equilibrium of this

type. If every buyer type moves in period 1 and if the price in period 2 is the same as that in period 1,

then there exists a buyer type who has an incentive to wait and see provided that they are sufficiently

patient. In other words, only the first equilibrium for k = 0 is robust to a small perturbation in the

value of k.
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where

Δ = (1− δ)

(
u+ 1− k

2

)
> 0, (22)

then the buyer behavior is described as follows.

Proposition 9. (Buyer behavior under marginal cost pricing) Suppose that the prices

are fixed at marginal cost in both periods: p1A = p1B = 0 and p2A = p2B = 0. For δ

sufficiently close to one, the period 1 thresholds x and y are given by x = 1 − y = x0

in (21). Furthermore, if only one buyer j makes a purchase in period 1, then the other

buyer i always chooses the same good as j in period 2. Furthermore, the probability of

delay 1− 2x is increasing in k.

Unlike in Corollary 8, the more interdependent buyers delay more often in this alter-

native environment. The buyers’ incentives are clear in this model: Since the prices are

fixed, delay is caused purely by informational concerns. As a result, if a buyer places

more weight on the other buyer’s type, he has a stronger incentive to wait and see. In

contrast, when the prices are endogenously determined, the buyer decision in period

1 is determined by the exact tradeoff between the informational advantage of waiting,

and the increase in the period 2 prices caused by the waiting decision of more buyer

types. The indifference property summarizes this tradeoff. Specifically, when the period

2 equilibria are all interior, the indifference property requires x and q∗ to be inversely

related by (18). Hence, if q∗ decreases as a result of the increase in k as seen in Section

8, it leads to an increase in x, or equivalently, smaller delay. Table 1 summarizes some

key observation about the delay probabilities.33

Model k = 0, δ → 1 as k ↑ k = 1
2 , δ → 1

Equilibrium 1 ↓ 0.9499

MC pricing 0 ↑ 1

Optimal learning 1
3 ↑ 1

2

Table 1: Delay probabilities (y − x = 1− 2x)

10 Social Efficiency

We next turn to the social efficiency of the buyer decisions in the equilibrium identified

in Theorem 7. As mentioned in the Introduction, it is possible to consider two sources

33See Section 10 for the optimal learning benchmark.
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of the inefficiency of the equilibrium decisions. First, a buyer’s decision in period 1 may

be distorted by their expectation of the firms’ response in period 2 to their decisions.

Second, a self-interested buyer fails to internalize the informational externalities that his

own decision may inflict on the other buyer. We attempt to quantify these two different

effects using some hypothetical benchmarks. For simplicity, our analysis in this section

focuses on the limiting case as δ → 1.

First, consider the full-information benchmark in which the two buyers truthfully

share private information about their types. In this case,

buyer i should choose

⎧⎨⎩A if vi > wi ⇔ (1− k)si + ksj <
1
2 ,

B if vi < wi ⇔ (1− k)si + ksj >
1
2 .

It follows that the expected value of the ex post optimal decision is given by34

E [max {vi, wi} − u] = E [max {1− (1− k)si − ksj , (1− k)si + ksj}] = 3

4
. (23)

If, on the other hand, each buyer is informationally isolated, then the efficiency level

equals
3− k

4
.

Note that this no-information benchmark corresponds to the buyer decisions when there

is either full or no delay since no informational interaction exists between the buyers in

these cases.

The third benchmark is the marginal cost pricing model studied in Section 9. In

this model, the price effect discussed above is absent, but the externality effect is still

present since learning is self-interested. By letting δ → 1 in (21), we can see that the

critical types in the limit are given by

x0 = 1− y0 =
1− 2k

2− 3k
. (24)

Furthermore, as seen in Proposition 9, if only one buyer moves in period 1, then the

other buyer always chooses the same firm in period 2. The expected efficiency of the

buyer decisions under marginal cost pricing can hence be computed as:

3− k

4
+

k2(1− 2k)(1 − k)

2(2− 3k)3
. (25)

Our fourth and final benchmark is the optimal learning model that has marginal cost

pricing and the buyer behavior that internalizes the informational externalities of their

34Throughout this section, efficiency is computed net of the constant term u.
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decisions. Specifically, we suppose that each buyer chooses the period 1 thresholds x

and y so as to maximize the sum of their payoffs. By the symmetry of the prices, we

can again set y = 1 − x. Furthermore, if we let ξ = 1−kx
2(1−k) , then buyer i should choose

A in period 2 if (i) d1j = A and si ∈ (x,min {ξ, 1 − x}), (ii) d1j = ∅ and si ∈ (x, 12), or

(iii) d1j = B and si ∈ (x,max {1 − ξ, x}).35 Since ξ < 1− x if and only if x < 1−2k
2−3k , the

expected efficiency level can be computed as⎧⎨⎩2
[
ξx+ 1

2 (1− k)(1 − 2ξ2)x+ k
2 (1− 2ξ)x2

]
+ 3−k

4 (1− 2x) if x ≤ 1−2k
2−3k ,

3−k
4 − 1−3k

2 x+ (2− 5k)x2 − 2(1 − 2k)x3 if x > 1−2k
2−3k .

It follows that the optimal threshold x = x∗ is given by

x∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
3 if k ≤ 1

3 ,

2−5k+
√
1−5k+7k2

6(1−2k) if k ∈ (13 ,
1
2 ),

1
4 if k = 1

2 .
36

(26)

We are now ready to compare these benchmarks with the equilibrium buyer decisions

identified in Theorem 7. In the limit as δ → 1, x in (18) approaches 1−q∗
2 . Furthermore,

the critical buyer type that is indifferent between the two goods in period 2 equals

c = 2−k(1−q∗)
12(1−k) + 1

3 when the other buyer chooses A in period 1. By symmetry, the critical

buyer type equals 1− c when the other buyer chooses B in period 1, and equals 1
2 when

the other buyer also waits. The expected efficiency of the buyer decisions in equilibrium

can be computed as

2

[
cx+

1

2
(1− k)(1 − 2c2)x+

k

2
(1− 2c)x2

]
+

3− k

4
(1− 2x). (27)

Figure 3 illustrates buyer i’s choice of the good as a function of the type profile in

equilibrium and under full information: The equilibrium choice of A is indicated by the

shaded area, whereas the efficient choice is A to the left of the straight line (1−k)si+ksj =
1
2 and B to the right of it. Figure 4 illustrates the efficiency of the buyer decisions in

equilibrium as well as in the benchmark models. As seen, the decision becomes less

efficient as the interdependence parameter k increases. This is expected from Corollary

8 since more interdependent buyers tend to move in period 1 more often. It can be seen

35si = ξ is the critical buyer type that is indifferent between the two goods in period 2 when the other

buyer chooses A in period 1. If ξ ≥ 1− x, then it implies that every active buyer type in period 2 will

choose A.
36Compared with the critical type x0 in the marginal cost pricing model in (24), x∗ in (26) is larger

or smaller depending on the value of k: x∗ ≶ x0 ⇔ k ≶ 1
3
.
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x 1− x

1− x
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1− c
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A

(1− k)si + ksj =
1
2

Figure 3: Efficient and equilibrium decisions by buyer i

that for small values of k, the inefficiency of equilibrium is caused almost exclusively by

the price effect since marginal cost benchmark with self-interested learning yields almost

the same level of efficiency as the optimal learning benchmark. On the other hand, as k

grows closer to 1
2 , self-interest in learning appears to become a more important source

of inefficiency since the marginal cost benchmark approaches the equilibrium level.37

11 Discussions

The assumption of the uniform distribution of the types is standard in the models of

product differentiation and perhaps is the only one that admits analytical derivation of

the equilibrium in our framework. While we admit that the assumption is restrictive in

some ways, we also note that the specification of the distribution becomes less important

when the degree of differentiation becomes small compared with the absolute values of

the products as represented by the constant u in the valuation function. Furthermore, our

result suggests that problems with alternative distributions can be numerically analyzed

with the help of the indifference property.

Unlike in the majority of the social learning literature that assumes that a consumer’s

type si is a noisy signal of the underlying state ω, we have adopted an alternative

framework in which there is no ω and the consumer types s1 and s2 are independent. In

37It is also interesting to note that the marginal cost benchmark is less efficienct than the equibrium

near k = 1
2
. This is because at k = 1

2
, there is full delay (i.e., x0 = 0 in (24)) and hence no learning

under marginal cost pricing. To the contrary, even with substantial delay, equilibrium learning is still

positive at k = 1
2
.
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Figure 4: Efficiency as a function of k.

defense of our assumption, we should note that it eliminates a few technical problems that

would arise under the alternative assumption of correlated signals about the underlying

state. First, we would need to specify a family of conditional distributions of the signal

for each state ω. Specification of such conditional distributions is nontrivial and any

specification would involve far more complicated analysis if possible at all.38

Second, if the firms do not know the realization of ω, then we should consider the

firms’ incentive to learn ω through their pricing strategy. If they know ω, on the other

hand, we should think about their signaling incentives. Our assumption helps us abstract

from these considerations, which could significantly complicate the problem.

For analytical tractability, we have confined ourselves to a model with two buyers.

In a market with a large number of consumers, on the other hand, a waiting consumer

can observe the behavior of many other consumers, and hence may be able to form a

more correct estimate about the value of the products than from observing the behavior

of a single other buyer. In the correlated private signal models with the true underlying

state ω as described above, a large market is often depicted as a continuous population

of consumers. With the application of the law of large numbers, those models often

suppose that the underlying state is perfectly revealed after the first period. The same

38One possibility is the binary specification of the signal. However, we have the problem of having no

pure equilibrium in a stage game in this case.
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cannot be said in our model, and the implications of having a continuous population in

our framework are yet to be studied.

In one interesting extension, we can consider a model in which the consumers are

different in their interdependence levels. Targeting a particular class of consumers is

shown to be a useful sales strategy in different contexts, and it would be interesting to

examine if this is also the case in the present setting.39

A Appendix

A.1 Payoff Functions

This section presents a formal definition of the payoff functions. For any pair p = (pA, pB)

of prices and pair s = (s1, s2) of types, let πi(s, p, di) denote buyer i’s ex post payoff from

decision di ∈ D:

πi(s, p, di) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vi − pA if di = A,

wi − pB if di = B,

0 if di = ∅.
When the strategies of the firms and the buyers in period 2 are given, buyer i’s ex post

payoff over two periods as a function of his type as well as history h = (p1, d1) is then

written as:

Πi(s, p
1, d1 | σ2, τ2) =

⎧⎨⎩πi(s, p
1, d1i ) if d1i = A or B,

πi
(
s, σ2(h), τ2i (si, σ

2(h), h)
)

if d1i = ∅,

where h = (p1, d1). Now for any history h ∈ H, let

P (· | h)

denote the conditional distribution of buyer i’s type si given h. Each firm f ’s period 2

payoff from buyer i is expressed as a function of the period 2 price pair p2 as well as

history h and buyer i’s period 2 strategies τ2i :

π2
f,i(p

2 | τ2i , h) = p2fP
(
τ2i (si, p

2, h) = f | h)
Furthermore, when the two buyers’ strategies τ = (τ1, τ2) in both periods as well as the

firms’ strategies σ2 = (σ2
A, σ

2
B) in period 2 are given, let Πf,i(p

1 | τ, σ2) denote firm f ’s
39In a model where the dependence levels of consumers are observable to a monopolist seller, Aoyagi

(2010) shows that it is optimal for the seller to target the least dependent consumers first and then move

in the increasing order of the dependence levels.
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payoff over two periods from buyer i as a function of the period 1 price pair:

Πf,i(p
1 | τ, σ2) = p1fP

(
τ1i (si, p

1) = f
)
+ E

[
π2
f,i(σ

2(h) | τ2i , h)
]
,

where h = (p1, τ11 (s1, p
1), τ12 (s2, p

1)). Firm f ’s per buyer payoffs from both buyers in

period 2 and over two periods are then given by

π2
f (p

2 | τ2, h) = 1

2

2∑
i=1

π2
f,i(p

2 | τ2i , h), and Πf (p
1 | τ, σ2) =

1

2

2∑
i=1

Πf,i(p
1 | τ, σ2),

respectively.

In period 2, for any type si, history h ∈ Hi, and period 2 price pair p2, buyer i’s

decision τ2i (si, p
2, h) ∈ D in period 2 maximizes his expected utility, and for any h ∈ H12

along which at least one buyer chooses to wait in period 1, the firms’ price pair σ2(h)

in period 2 is a NE of the firms’ game in period 2 given the belief P (· | h) about each

buyer i’s type conditional on h. Formally, for each i = 1, 2, h ∈ Hi and p2 ∈ R2
+, τ

2
i is

sequentially rational and satisfies

τ2i (si, p
2, h) ∈ argmax

d2i

E
[
πi(s, p

2, d2i ) | si, h
]
,

and for each h ∈ H12 and τ2 that is sequentially rational, σ2(h) is sequentially rational

and satisfies for f = A, B, and � = f ,

σ2
f (h) ∈ argmax

p2f

π2
f (p

2
f , σ

2
� (h) | τ2, h).

Furthermore, facing any price pair p1, buyer i’s period 1 strategy τ1i is sequentially

rational given the sequentially rational period 2 strategies τ2 and σ2: For every type si,

τ1i (si, p
1) ∈ argmax

d1i

E
[
Πi(si, p

1, d1i | τ2, σ2)
]
,

and the price pair σ1 = (σ1
1 , σ

1
2) is optimal against each other given the buyers’ strategies

and the firms’ period 2 strategies both of which are sequentially rational: For f = A, B,

and � = f ,

σ1
f ∈ argmax

p1f

Πf (p
1
f , σ

1
� | τ, σ2).

Finally, the conditional distribution P (· | h) is such that for any p1 on or off the path

of play and any d1 = (d1i , d
1
j ), if a strictly positive measure of types of buyer i choose d1i

when faced with p1 (i.e., P
(
τ1i (si, p

1) = d1i
)
> 0), then P (si | h) about buyer i’s type

si given h = (p1, d1) ∈ H is derived through Bayes rule. P (si | h) is arbitrary for any

h = (p1, d1) if buyer i’s types that choose d1i after p1 have measure zero.
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A.2 Proofs

The proofs of Lemma 2, Corollary 4, and Proposition 9 can be found in the online

Appendix.

Proof of Lemma 1. We will show that if τ1i (si, p
1) = A for some si and s′i < si, then

τi(s
′
i, p

1) = A. By setting x(p1) = sup
{
si : τ

1
i (si, p

1) = A
}
, it would then follow that

τ1i (si, p
1) = A if si < x.

Suppose that τ1i (si, p
1) = A and that s′i < si. Since type si prefers choosing A to

choosing B in period 1, we have

E[vi | si]− p1A ≥ E[wi | si]− p1B. (28)

Likewise, since type si prefers choosing A in period 1 to waiting and then choosing either

A, ∅, or B in period 2, we also have

E[vi | si]− p1A ≥ δ
∑

h∈Hi(p1)

P (h) max
{
E[vi | si, h]− σ2

A(h), 0, E[wi | si, h]− σ2
B(h)

}
,

(29)

where Hi(p
1) =

{
h = (p1, d1) : d1i = ∅} is the set of period 1 histories along which the

firms quote p1 and buyer i chooses to wait. Note now that

E[vi | s′i] = (1− k)(si − s′i) + E[vi | si] > E[vi | si], and

E[wi | s′i] = −(1− k)(si − s′i) + E[wi | si] < E[wi | si].

It then immediately follows that (28) holds for type s′i with strict inequality so that it

strictly prefers choosing A to choosing B in period 1. To see that s′i also prefers choosing

A to waiting, add (1− k)(si − s′i) > 0 to both sides of (29). We then have

E[vi | s′i]− p1A

≥ (1− δ)(1 − k)(si − s′i)

+ δ
∑

h∈Hi(p1)

P (h) max
{
E[vi | s′i, h]− σ2

A(h), (1− k)(si − s′i),

(1− k)(si − s′i) + E[wi | si, h]− σ2
B(h)

}
> δ

∑
h∈Hi(p1)

P (h) max
{
E[vi | s′i, h]− σ2

A(h), 0, E[wi | s′i, h]− σ2
B(h)

}
,

which shows that (29) holds for type s′i with strict inequality, and hence it strictly

prefers choosing A to waiting. It can be shown similarly that if we define y = inf {si :
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τ1i (si, p
1) = B}, then τ1i (si, p

1) = B for si > y. If si ∈ (x, y), then we cannot have

τ1i (si, p
1) = A since that would imply τ1i (s

′
i, p

1) = A for some s′i > x, a contradiction.

Since we cannot have τ1i (si, p
1) = B either, we must have τ1i (si, p

1) = ∅.
Suppose that 0 < x < y. To see that type x is indifferent between choosing A and

waiting in period 1, suppose that he strictly prefers choosing A so that (29) holds with

strict inequality for si = x. Since both sides of (29) are continuous in si, we would

then have strict inequality hold for si < y sufficiently close to x, a contradiction to the

definition of x. A similar contradiction would follow if type x strictly prefers waiting

to choosing A in period 1. The symmetric argument shows that type y is indifferent

between choosing B and waiting in period 1 when x < y < 1. �

Proof of Lemma 3. We first show that if σ2(h) is as given by Lemma 2, then after

any d1j , type x’s payoff from unconditionally choosing A in period 2 equals that from

following the sequentially rational strategy τ2i : E
[
π2
i (x, sj, σ

2(h), τ2i (x, h, σ
2(h)) | si, h

]
,

where h = (p1, ∅, d1j ). For this, note that type x is the lowest type in the period 2

market. Hence, after any decision d1j of buyer j, if d1 = (∅, d1j ) is followed by an interior

equilibrium or an A-monopolization equilibrium (Lemma 2), then type x will optimally

choose A in period 2 after d1. On the other hand, if d1 is followed by a B-monopolization

equilibrium, then type x is just indifferent between A and B after h = (p1, d1) as seen

in (10). It follows that in period 2, choosing A unconditionally is optimal for type x

regardless of buyer j’s decision d1j or the type of equilibrium that follows d1. This in

turn implies that type x’s payoff from waiting in period 1 equals that from waiting and

then unconditionally choosing A in period 2. Now in period 1, if x > 0 and waiting is

strictly better than choosing A, then for ε > 0 small, type si = x − ε > 0 also finds it

strictly better off waiting, which is a contradiction to the sequential rationality of τ1i .

On the other hand, if x < 1 and choosing A in period 1 is strictly better than waiting,

then for ε > 0 small, type si = x+ ε < 1 finds it strictly better off choosing A in period

1, which is again a contradiction to the sequential rationality of τ1i . Hence, type si = x is

indifferent between choosing A and waiting in period 1. Combining the two observations

together, we have

E [vi | si = x]− p1A = δE
[
E [vi | si = x, h]− σ2

A(h)
∣∣∣ si = x

]
,

where the left-hand side is buyer i’s payoff from buying A in period 1, and the right-

hand side is his payoff from waiting and then unconditionally choosing A in period 2.

Application of the law of iterated expectations

E [vi | si = x] = E
[
E [vi | si = x, h]

∣∣∣ si = x
]
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then yields the desired conclusion. The symmetric discussion proves the statement for

the price of B. �

Proof of Proposition 5. Firm A’s payoff over two periods under σ1 can be written

in terms of x as

Π1
A(σ)

= xσ1
A + δ(1 − 2x)

[
xπ2∗

A (σ1, ∅, A) + (1− 2x)π2∗
A (σ1, ∅, ∅)

]
= x(1− δ)

{
u+ 1− k

2
− (1− k)x

}
+ xδ

{
(6− 7k)x2 − (5− 6k)x+ 1− k

}
+ δ(1 − 2x)x {1− kx− 2(1 − k)(1 − x)}

+ δ(1 − 2x)
{1− k + 2(1− k)(1 − 2x)}2

18(1 − k)

= x(1− δ)

{
u+ 1− k

2
− (1− k)x

}
+ δϕ(x),

where

ϕ(x) = (−2 + 3k)x3 + (5− 7k)x2 + (−3 + 4k)x+
1− k

2
.

Since ϕ is convex over
[
0, 5−7k

3(2−3k)

]
, and since 0 < 2

5 < 3−4k
6−7k < 1

2 < 5−7k
3(2−3k) , for x

satisfying (12), we have

ϕ(x) ≤ max

{
ϕ

(
1

2

)
, ϕ

(
2

5

)}
= max

{
k

8
,
−7 + 43k

250

}
=

k

8
<

1

16
. (30)

Suppose now that firm A deviates to a price p1A so high that x(p1A, σ
1
B) = 0. Define

y = y(p1A, σ
1
B). There are the following three possibilities regarding the type of the

period 2 equilibrium σ2(h) that follows h = (p1A, σ
1
B , d

1
i = ∅, d1j ).

1) σ2(h) is an A-monopolization equilibrium for d1j = ∅ and d1j = B. ⇔ y < 1−k
4−3k .

Firm A’s payoff over the two periods under (qA, q) is given by

Π1
A(p

1
A, σ

1
B) = δy {1− ky − 2(1− k)y}+ δ(1 − y) {1− k(1 + y)− 2(1− k)y}

= δ(1 − k)(1− 2y).

Since y < 1−k
4−3k , Π̂

1
A(qA, q) > δ (1−k)(2−k)

4−3k ≥ δ
5 .

2) σ2(h) is an A-monopolization equilibrium for d1j = ∅, and an interior equilibrium for

d1j = B. ⇔ 1−k
4−3k ≤ y < 1

4−3k .
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Firm A’s payoff over the two periods under (qA, q) satisfies

Π1
A(p

1
A, σ

1
B) ≥ δy {1− ky − 2(1 − k)y} = δy {1− (2− k)y} .

We can readily verify that when 1−k
4−3k ≤ y < 1

4−3k , the right-hand side above is

≥ δ (1−k)(2−k2)
(4−3k)2

= δ 1−k
4−3k × 2−k2

4−3k ≥ δ × 1
5 × 1

2 = δ
10 .

3) σ2(h) is an interior equilibrium for d1j = ∅ and d1j = B. ⇔ y ≥ 1
4−3k .

Firm A’s payoff over the two periods under (qA, q) is given by

Π1
A(p

1
A, σ

1
B) = δy

{1− ky + 2(1− k)y}2
18(1 − k)

+ δ(1− y)
{1− k(1 + y) + 2(1− k)y}2

18(1 − k)

=
δ

18(1 − k)

[{
4(1− k)2 − k2

}
y2 +

{
4(1 − k)2 + k2

}
y + (1− k)2

]
.

Since y ≥ 1
4−3k > 1

4 , we can verify that

Π1
A(p

1
A, σ

1
B) >

δ

18(1− k)

[
9

4
(1− k)2 +

3

16
k2
]
≥ δ

8
.

By (30), for δ sufficiently close to one, we have

Π1
A(σ

1) <
δ

10
≤ Π1

A(p
1
A, σ

1
B),

which implies that such a p1A is a profitable deviation from σ1
A. �

Proof of Theorem 7. Consider the following pair of a strategy profile (σ, τ) and

conditional beliefs P (· | h).

− Period 1 strategies:

For q∗ given in (19), the firms quote

σ1
f = (1− k)q∗, (31)

and for any (qA, qB) =
(

p1A
1−k ,

p1B
1−k

)
, buyer i’s decision is given by (3) for x and y defined

as follows:

Let q, q̄ and q0 be defined by

q = 1− δ(ν − 2μ) + 3ν

3
− δ(3 − 4k)

6(1 − k)
,

q̄ =
1 + δ

3− δ
{3− 2δ − ν(3− δ)} ,

q0 =
1− δ

1− k

(
u+ 1− k

2

)
+

kδ − 3(1 − k)(1− δ)

4− 3k
.

(32)
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These values are as indicated in Figure 5.40

1. If (qA, qB) ∈ R1, i.e.,

max {qA, qB} > q,

and

(3 + δ)qA − 2δqB ≤ (1 + δ) {δ + (3− δ)μ} , (33)

2δqA − (3 + δ)qB ≥ (1 + δ) {−3 + 2δ + ν(3− δ)} , (34)

then x and y are given by

x =
δ

3− δ
+ μ− (3 + δ) qA − 2δqB

(1 + δ)(3 − δ)
,

y =
δ

3− δ
+ ν +

(3 + δ) qB − 2δqA
(1 + δ)(3 − δ)

.

(35)

This is an expression of the indifference conditions of the critical types x and y

under the assumption that every d1j is followed by an interior equilibrium in period

2. More specifically, the derivation of (35) is as follows: Suppose that for any price

pair in the neighborhood of p1, we have an interior equilibrium in period 2 after

any history h ∈ Hi. By Lemma 2(a), this holds if the critical types x and y in (3)

satisfy

2(1− k)(2x − y) ≤ 1− k(1 + y) and 1− kx ≤ 2(1− k)(2y − x).

Rearranging, we see that they are equivalent to

4(1− k)x− (2− 3k)y ≤ 1− k and (2− 3k)x− 4(1− k)y ≤ −1. (36)

In this case, the expected period 2 price of each firm is given by

E
[
σ2
A(p

1, d1i = ∅, d1j )
]
=

1− 2kE[ej(h)] + 2(1− k)(y − 2x)

3

=
1− k + 2(1 − k)(y − 2x)

3
, and

E
[
σ2
B(p

1, d1i = ∅, d1j )
]
=

−1 + 2kE[ej(h)] + 2(1 − k)(2y − x)

3

=
−1 + k + 2(1 − k)(2y − x)

3
.

(37)

40q̄ is the value of qA = qB that solves (33) and (34) with equalities. q is the value of qB that solves

(34) and (45) with equalities. q0 is the critical value of qA such that the period 2 equilibrium following

d1j = ∅ is a B-monopolization equilibrium if qA < q0, and an interior equilibrium if qA > q0.
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Substituting (37) into (16) and (17), we obtain

p1A = (1− δ)

(
u+ 1− k

2

)
+

δ

3
(1− k)− (1− k)

{(
1 +

δ

3

)
x− 2δ

3
y

}
,

p1B = (1− δ)

(
u+

k

2

)
− δ

3
(1− k) + (1− k)

{(
1 +

δ

3

)
y − 2δ

3
x

}
.

(38)

Solving (38) yields (35).

2. If (qA, qB) ∈ R2, i.e.,

q0 ≤ qA ≤ q̄, qB ≥ q,

and

2δqA − (3 + δ)qB ≤ (1 + δ) {−3 + 2δ + ν(3− δ)} ,
then

x =
δ − qA + 1−δ

1−k (u+ 1− k
2 )

1 + δ
3

and y = 1. (39)

x is determined by the indifference condition of type x under the assumption that

both d1j = A and d1j = ∅ are followed by an interior equilibrium in period 2.

3. If (qA, qB) ∈ R3, i.e.,

0 ≤ qA < q0, qB ≥ q,

then

x =
(3− 2k)δ − 3(1− δ)(1 − k) +

√
ϕ(qA)

2(4 − 3k)δ
and y = 1, (40)

where

ϕ(qA) =
{
3(1− δ)(1 − k)− (3− 2k)δ

}2

− 12(4 − 3k)δ

{
(1− k)qA − (1− δ)(u + 1− k

2
)

}
.

(41)

x is determined by the indifference condition of type x under the assumption that

d1j = A is followed by an interior equilibrium whereas d1j = ∅ is followed by a

B-monopolization equilibrium in period 2.

4. If (qA, qB) ∈ R4, i.e.,

q0 ≤ qB ≤ q̄, qA ≥ q,

and

(3 + δ)qA − 2δqB ≥ (1 + δ) {δ + (3− δ)μ} ,
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then

x = 0 and y = 1− δ − qB + 1−δ
1−k (u+ 1− k

2 )

1 + δ
3

. (42)

y is determined by the indifference condition of type y under the assumption that

both d1j = B and d1j = ∅ are followed by an interior equilibrium in period 2.

5. If (qA, qB) ∈ R5, i.e.,

0 ≤ qB ≤ q0, qA ≥ q,

then

x = 0, and y = 1− (3− 2k)δ − 3(1− δ)(1 − k) +
√

ϕ(qB)

2(4− 3k)δ
,

where ϕ is defined in (41). y is determined by the indifference condition of type

y under the assumption that d1j = B is followed by an interior equilibrium while

d1j = ∅ is followed by an A-monopolization equilibrium in period 2.

6. If (qA, qB) ∈ R6, i.e.,

min {qA, qB} > q̄,

then

x = 0 and y = 1. (43)

7. If (qA, qB) ∈ R7, i.e.,

max {qA, qB} < q,

then

x = y =
1− qA + qB

2
. (44)

− Beliefs:

The conditional distribution P (· | h) about buyer i’s type si given history h = (p1, d1)

is derived through Bayes’ rule if buyer i chooses d1i with positive probability when faced

with p1: P
(
τ1i (si, p

1) = d1i
)
> 0. Otherwise, P (· | h) equals the prior and is given by

the uniform distribution over [0, 1].

− Period 2 strategies:

Let ej(h) = E[sj | h] denote the expected value of sj according to the conditional

distribution P (· | h) specified above. Then the firms’ strategy profile σ2 in period 2 is

given as in Lemma 2, and each buyer’s strategy is given by (5).
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Figure 5: Classification of the period 1 price pair (qA, qB).

Figure 5 illustrates the classification of the period 1 price pair (qA, qB) =
(

p1A
1−k ,

p1B
1−k

)
in Theorem 7. For δ close to one, the equilibrium price pair (q∗, q∗) in period 1 belongs

to the interior of R1.

It is clear from the discussion in the preceding section that the period 2 strategies

of the firms and buyers are optimal. In what follows, we first show that the period 1

strategies of the buyers are optimal, and then show that the firms’ period 1 price quote

(31) is also optimal given the buyers’ strategies. In what follows, given any price pair

p1 and decision pair d1 in period 1, let p2∗f (d1) = σ2
f (p

1, d1) denote the price quoted by

firm f after history h = (p1, d1).

Step 1. We examine the optimality of the buyers’ period 1 strategies for each period

1 price profile as classified in Figure 5. We below present a proof when the price pair

(qA, qB) belongs to region R1 of Figure 5. The proof for the price pair (qA, qB) in regions

R2-R7 can be found in the online Appendix.

1. (qA, qB) ∈ R1:

The critical types x and y are given by (35). Substituting these into the conditions

(36) ensuring the interior equilibrium in period 2 after every d1 (i.e., d1 = (∅, A),

36



(∅, ∅), and (∅, B)), we obtain

12(1 − k) + 2δk

(1 + δ)(3 − δ)
qA +

6(1− δ) − k(9− 5δ)

(1 + δ)(3 − δ)
qB

≥ δ(2 − k)

3− δ
+ (1− k)(4μ − 1)− (2− 3k)ν,

(45)

and

6(1 − δ)− k(9− 5δ)

(1 + δ)(3 − δ)
qA +

12(1 − k) + 2δk

(1 + δ)(3 − δ)
qB

≥ δ(2 − k)

3− δ
+ (1− k)(4μ − 1)− (2− 3k)ν,

(46)

As is clear from Figure 5, (qA, qB) under consideration satisfies these conditions

when δ is close to one. The period 2 equilibrium prices are then given by (8) for

each d1, and the expected period 2 price is given by (37).

We will now examine buyer i’s incentive depending on his type si. Note first that

the following inequalities hold under (36):

0 < x ≤ 1− k(1 + y)

6(1− k)
+

x+ y

3
<

1− k(x+ y)

6(1 − k)
+

x+ y

3

<
1− kx

6(1 − k)
+

x+ y

3
≤ y < 1.

(47)

In the above, si < x implies that si chooses A in period 1, and si > y implies

that si chooses B in period 1. On the other hand, Lemma 2 implies that the three

quantities in the middle are the critical types si of buyer i who are indifferent

between A and B in period 2 after buyer j’s choice of d1j = B, ∅ and A in period 1,

respectively. It follows that there are the following six cases to consider depending

on buyer i’s decision over two periods.

• Type si ≤ x chooses A in period 1.

Since x > 0, the period 1 price is chosen so that type si = x is just indifferent

between choosing A in period 1 and choosing A in period 2 after any d1j . It

follows that any type si < x strictly prefers the former. Any type si ≤ x also

prefers the choice of A to any other choice in period 2 after any d1j . It follows

that si ≤ x optimally chooses A in period 1.

• Type si ≥ y chooses B in period 1.

The same logic as above shows that si ≥ y optimally chooses B in period 1.

• Type si ∈
(
x, 1−k(1+y)

6(1−k) + x+y
3

)
waits in period 1 and then unconditionally

chooses A in period 2.
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• Type si ∈
(
1−k(1+y)
6(1−k) + x+y

3 , 1−k(x+y)
6(1−k) + x+y

3

)
waits in period 1 and then

chooses A if d1j = A or ∅, and B if d1j = B (∅AAB).

• Type si ∈
(
1−k(x+y)
6(1−k) + x+y

3 , 1−kx
6(1−k) +

x+y
3

)
waits in period 1 and then chooses

A if d1j = A and B if ∅ or d1j = B.

• Type si ∈
(

1−kx
6(1−k) +

x+y
3 , y

)
waits in period 1 and then chooses B after any

d1j .

Any type si with x < si < y strictly prefers the choice of A in period 2 after

any d1j to the choice of A in period 1, and the choice of B in period 2 after

any d1j to the choice of B in period 1. It follows that the contingent choice in

period 2 as described above is optimal by the definitions of the critical types.

Step 2. We now examine the optimality of the price q∗ in (31). Specifically, we show

that when δ is sufficiently close to one, qA = q∗ is the unique maximizer of

f(qA) ≡ Π̂A(qA, q
∗).

Let

z1 =
1− δ

1− k

(
u+ 1− k

2

)
+

kδ − 3(1− k)(1 − δ)

4− 3k
,

z2 =
(1 + δ) {−3 + 2δ + ν(3− δ)} + (3 + δ)q∗

2δ
,

z3 =
(1 + δ) {δ + (3− δ)μ} + 2δq∗

(3 + δ)
.

Depending on the value of qA, the price pair (qA, q
∗) belongs to different sets as follows:

(qA, q
∗) ∈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R3 if qA ∈ [0, z1),

R2 if qA ∈ [z1, z2),

R1 if qA ∈ [z2, z3),

R4 if qA ∈ [z3,∞).

(48)

As mentioned earlier, the price pair (q∗, q∗) belongs to the interior of region R1 for δ

close to one, and hence we have

z2 < q∗ < z3.
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The functional form of Π̂A also depends on the classification of qA in (48). We denote

f(qA) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f1(qA) if qA ∈ [0, z1),

f2(qA) if qA ∈ [z1, z2),

f3(qA) if qA ∈ [z2, z3),

f4(qA) if qA ∈ [z3,∞).

Explicitly specification of each function is given below.

1. qA ∈ [0, z1): x and y are as specified in (40). Since it is an expression of the

indifference condition of type x when d1j = A is followed by an interior equilibrium

and d1j = ∅ is followed by a B-monopolization equilibrium, it is equivalent to

(1− k)qA = (1− δ)

{
u+ (1− k)(1− x) +

k

2

}
+

δx

3
{1− kx+ 2(1 − k)(1− 2x)} .

(49)

Firm A’s payoff against qB = q∗ is given by

f1(qA) = Π̂A,1(qA, q
∗),

where

Π̂A,1(qA, qB) = (1− k)qAx+ (1− x)xπ2∗
A (∅, A)

= (1− k)qAx+
δx

18(1 − k)
{1− kx+ 2(1− k)(1− 2x)}2 .

Using (49), we can rewrite f1 as a function of x as:

f̂1(x) = (1− δ)x

{
u+ 1− (1− k)x− k

2

}
+

δx2

3
{1− kx+ 2(1− k)(1 − 2x)}

+
δx

18(1 − k)
{1− kx+ 2(1− k)(1 − 2x)}2 .

(50)

When qA ∈ [0, z1], the corresponding range of x under (40) is given by

x ∈
[
3(1− k)

4− 3k
,
(6− 5k)δ − 3(1 − k) +

√
ϕ(0)

2(4 − 3k)δ

]
, (51)
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where ϕ is as defined in (41). The first derivative of f̂1 is given by

f̂ ′
1(x) = (1− δ)

{
u+ 1− k

2
− 2(1− k)x

}
+

δx

3
{2(3 − 2k) + 3(3k − 4)x}

+
δ

18(1 − k)
{3− 2k + (3k − 4)x}{3 − 2k + 3(3k − 4)x}

The second derivative of f̂1 is given by

f̂ ′′
1 (x) = −2(1− δ)(1 − k) +

δ

9(1− k)
{−2(3− 2k) + 3(3k − 4)(2 − 3k)x} ,

which is < 0 for any x ≥ 0. We can also verify that

f̂ ′
1

(
3(1− k)

4− 3k

)
= (1− δ)

{
u+ 1− k

2
− 6(1− k)2

4− 3k

}
+

δ(1 − k)(5k − 3)

4− 3k
+

δk(7k − 6)

18(1 − k)
,

which is < 0 for δ close to 1. It then follows that for δ close to 1, f̂ ′
1(x) < 0 for any

x ≥ 3(1−k)
4−3k , and hence that for any such δ, f̂1 is maximized at the lower bound of

(51). Since qA and x are inversely related through (40), f1 over [0, z1] is maximized

at qA = z1.

2. qA ∈ [z1, z2): x and y are as specified in (39). Since it is an expression of the

indifference condition of type x when d1j = A and d1j = ∅ are both followed by an

interior equilibrium in period 2, it is equivalent to

(1− k)qA = (1− δ)

{
u+ (1− k)(1 − x) +

k

2

}
+ (1− k)

δ

3
(3− 4x). (52)

Firm A’s payoff is given by

f2(qA) = Π̂A,2(qA, q
∗),

where

Π̂A,2(qA, qB)

= (1− k)qAx+ δ(1 − x)
{
xπ2∗

A (∅, A) + (1− x)π2∗
A (∅, ∅)}

= (1− k)qAx

+
δ

18(1 − k)

[
x {1− kx+ 2 (1− k) (1− 2x)}2

+ (1− x) {1− k(x+ 1) + 2(1− k)(1 − 2x)}2
]
.
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Using (52), we can rewrite f2 as a function of x as:

f̂2(x) = x

[
(1− δ)

{
u+ (1− k)(1− x) +

k

2

}
+ (1− k)

δ

3
(3− 4x)

]
+

δ

18(1 − k)

[
x {1− kx+ 2 (1− k) (1− 2x)}2

+ (1− x) {1− k(x+ 1) + 2(1− k)(1 − 2x)}2
]
.

When qA ∈ [z1, z2], the corresponding range of x under (39) is given by

x ∈
[
3

2δ

{
1− δ

1− k

(
u+

k

2

)
+ 1− q∗

}
,
3(1 − k)

4− 3k

]
. (53)

The first derivative of f̂2 is given by

f̂ ′
2(x) = (1− δ)

{
u+ 1− k

2
− 2(1 − k)x

}
− δ

9(1− k)

{
(3k2 − 7k + 3) + 2(5k2 − 8k + 4)x

}
,

which is < 0 for any x ≥ 0 for δ close to 1. Hence, for any such δ, f̂2 over [z1, z2]

is maximized at the lower bound of (53). Since x and qA are inversely related

through (39), f2 over [z1, z2] is maximized at qA = z2.

3. qA ∈ [z2, z3]: Since (qA, q
∗) ∈ R1, substituting x and y from (35) into firm A’s

payoff function, we obtain

f3(qA) = Π̂A,3(qA, q
∗),

where Π̂A,3(qA, qB) = Π̂A(qA, qB) is given by

Π̂A(qA, qB) = (1− k)qA

{
μ+

δ

3− δ
− (3 + δ)qA − 2δqB

(1 + δ)(3 − δ)

}
+

δ(1 − k)

18

[
2λ+

3(1 − δ)

3− δ
+

6 {2qA + (1− δ)qB}
(1 + δ)(3 − δ)

]2
+

δk2

18(1 − k)

{
ν +

δ

3− δ
+

(3 + δ)qB − 2δqA
(1 + δ)(3 − δ)

}
×

{
1− μ− δ

3− δ
+

(3 + δ)qA − 2δqB
(1 + δ)(3 − δ)

}
×

{
1 + μ− ν − qA + qB

1 + δ

}
.

(54)

41



The first-order derivative of Π̂A,3 with respect to qA is given by

∂Π̂A,3

∂qA
(qA, qB)

= (1− k)

{
μ+

δ

3− δ
− (3 + δ)qA − 2δqB

(1 + δ)(3 − δ)

}
+ (1− k)qA

{
− 3 + δ

(1 + δ)(3 − δ)

}
+

2δ(1 − k)

18

{
2λ+

3(1 − δ)

3− δ
+

6{2qA + (1− δ)qB}
(1 + δ)(3 − δ)

}
12

(1 + δ)(3 − δ)

+
δk2

18(1 − k)

[{ −2δ

(1 + δ)(3 − δ)

}{
1− μ− δ

3− δ
+

(3 + δ)qA − 2δqB
(1 + δ)(3 − δ)

}(
1 + μ− ν − qA + qB

1 + δ

)
+

3 + δ

(1 + δ)(3 − δ)

{
ν +

δ

3− δ
+

(3 + δ)qB − 2δqA
(1 + δ)(3 − δ)

}(
1 + μ− ν − qA + qB

1 + δ

)
+

( −1

1 + δ

){
ν +

δ

3− δ
+

(3 + δ)qB − 2δqA
(1 + δ)(3 − δ)

}{
1− μ− δ

3− δ
+

(3 + δ)qA − 2δqB
(1 + δ)(3 − δ)

}]
.

The second-order derivative is given by

∂2Π̂A,3

∂q2A
(qA, qB)

= −2(1 − k)
(1− δ)(1 + δ)2 + 8

(1 + δ)2(3− δ)2

+
δk2

9(1 − k)(1 + δ)3(3− δ)2

[
−(1 + δ) {δ(7δ + 3) + 12δμ + 3(1− δ)(3 + δ)ν}

+ 6δ(3 + δ)qA − 3(3 + δ2)qB

]
Since (3 + δ)qA − 2δqB ≤ (1 + δ) {δ + (3− δ)μ} holds in R1 by (33), we have

∂2Π̂A,3

∂q2A
(qA, qB)

≤ δk2

9(1 − k)(1 + δ)3(3− δ)2

×
(
−9(1− δ2)qB + (1 + δ)

[
−δ(3 + δ) + 3(1− δ) {2δμ − (3 + δ)ν}

])
.

Since μ, ν → 0 as δ → 1, we conclude that for δ sufficiently close to one,

∂2Π̂A,3

∂q2A
(qA, qB) < 0 for any (qA, qB) ∈ R1.

It follows that f3 over [z2, z3] is maximized at qA = q∗ defined in (19).
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4. qA ∈ [z∗3 ,∞). By (42), x = 0 and y is independent of qA. It follows that f4(qA) is

a constant function, and f4(qA) = f4(z
∗
3) for any qA ∈ [z∗3 ,∞).

To summarize, f1 on [0, z1] is maximized at z1, f2 on [z1, z2] is maximized at z2,

f3 on [z2, z3] is uniquely maximized at q∗, and f4 on [z3,∞) is maximized at z3. To

see that q∗ is the unique maximizer of f on R+, we note that f is continuous so that

f1(z1) = f2(z1), f2(z2) = f3(z2) and f3(z3) = f4(z3).
41 This completes the proof. �
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B Online Appendix

Proof of Lemma 2. Since the conditional probability P (· | h) of si given h ∈ Hi is

the uniform distribution over the interval (x, y), firm A’s payoff from buyer i in period

2 is explicitly given by:

π2
A,i(p

2 | τ2i , h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p2A
y−x

(
1−2kej(h)−p2A+p2B

2(1−k) − x
)

if
u+1−kej(h)−p2A

1−k ≥ 1−2kej(h)−p2A+p2B
2(1−k) ∈ (x, y),

p2A
y−x

(
u+1−kej(h)−p2A

1−k − x
)

if
1−2kej(h)−p2A+p2B

2(1−k) ≥ u+1−kej(h)−p2A
1−k ∈ (x, y),

p2A if min
{

1−2kej(h)−p2A+p2B
2(1−k) ,

u+1−kej(h)−p2A
1−k

}
≥ y,

0 if min
{

1−2kej(h)−p2A+p2B
2(1−k) ,

u+1−kej(h)−p2A
1−k

}
≤ x,

and firm B’s payoff from buyer i is given by:

π2
B,i(p

2 | τ2, h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p2B
y−x

(
y − 1−2kej(h)−p2A+p2B

2(1−k)

)
if

−u−kej(h)+p2B
1−k ≤ 1−2kej(h)−p2A+p2B

2(1−k) ∈ (x, y),
p2B
y−x

(
y − −u−kej(h)+p2B

1−k

)
if

1−2kej(h)−p2A+p2B
2(1−k) ≤ −u−kej(h)+p2B

1−k ∈ (x, y),

0 if max
{

1−2kej(h)−p2A+p2B
2(1−k) ,

−u−kej(h)+p2B
1−k

}
≥ y,

p2B if max
{

1−2kej(h)−p2A+p2B
2(1−k) ,

−u−kej(h)+p2B
1−k

}
≤ x.

We assume in the rest of the proof that u > 2(1 − k) to avoid tedious case separation

in the description of the best response that is immaterial to the description of the

equilibrium.42

42This condition ensures that the intersection between p2A − p2B = 1− 2kej(h) − 2(1− k)x and p2B =
−1+2kej (h)+2(1−k)y+p2A

2
given by

(p2A, p
2
B) = (1− 2kej(h) + 2(1− k)(y − 2x), 2(1− k)(y − x)) ,

and the intersection between p2A−p2B = 1−2kej(h)−2(1−k)y and p2A =
1−2kej (h)−2(1−k)x+p2B

2
given by

(p2A, p
2
B) = (2(1− k)(y − x), −1 + 2kej(h) + 2(1− k)(2y − x)) ,

are both below the participation constraint line p2A + p2B = 2u + 1 so that the diagram is as depicted

in Figure 6. The condition u > 1 − k implied by this ensures that the maximum of π2
A(p

2 | τ 2
i , h)

over R2 is achieved at the left-end of the region at p2A = u + 1 − kej(h) − (1 − k)y, and also that the

maximum of π2
A(p

2 | τ 2
i , h) over the corresponding set is achieved at the lower-end of the region at

p2B = u+ kej(h) + (1− k)x so that the best response functions are as described in Figure 6.
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p2A

p2B

R1

R2

R3

R4

p2B = BRB(p
2
A)

p2A = BRA(p
2
B)

p2A − p2B = 1− 2kej(h)− 2(1− k)y

p2A − p2B = 1− 2kej(h)− 2(1− k)x

p2A + p2B = 2u+ 1

Figure 6: Best-response diagram in period 2: interior equilibrium

Let R1, . . . , R4 be the sets of price profiles (p2A, p
2
B) as illustrated in Figure 6. Ex-

plicitly, they are the set of (p2A, p
2
B) satisfying p2A, p

2
B ≥ 0, and

R1 : 1− 2kej(h) − 2(1− k)y ≤ p2A − p2B ≤ 1− 2kej(h)− 2(1 − k)x,

p2A + p2B ≤ 2u+ 1;

R2 : u+ 1− kej(h)− (1− k)y ≤ p2A ≤ u+ 1− kej(h)− (1− k)x,

p2A + p2B ≥ 2u+ 1;

R3 : p2A < u+ 1− kej(h)− (1− k)y,

p2A − p2B < 1− 2kej(h)− 2(1 − k)y;

R4 : p2A > min
{
p2B + 1− 2kej(h)− 2(1− k)x, u+ 1− kej(h)− (1− k)x

}
.

We can express π2
A,i(p

2 | τ2i , h) in terms of these sets as

π2
A,i(p

2 | τ2i , h) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

p2A
y−x

(
1−2kej(h)−p2A+p2B

2(1−k) − x
)

if (p2A, p
2
B) ∈ R1,

p2A
y−x

(
u+1−kej(h)−p2A

1−k − x
)

if (p2A, p
2
B) ∈ R2,

p2A if (p2A, p
2
B) ∈ R3,

0 if (p2A, p
2
B) ∈ R4.
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It follows that firm A’s period 2 best response correspondence is given by

BRA(p
2
B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R+ if 0 ≤ p2B < max {0, −1 + 2kej(h) + 2(1− k)x},{
1−2kej(h)−2(1−k)x+p2B

2

}
if p2B ≥ max {0, −1 + 2kej(h) + 2(1 − k)x}, and
p2B < max {0, −1 + 2kej(h) + 2(1− k)(2y − x)},{

1− 2kej(h)− 2(1 − k)y + p2B

}
if p2B ≥ max {0, −1 + 2kej(h) + 2(1 − k)(2y − x)}, and
p2B ≤ u+ kej(h) + (1− k)y,{

u+ 1− kej(h)− (1− k)y
}

if p2B > u+ kej(h) + (1− k)y.

Likewise, firm B’s period 2 best response correspondence is given by

BRB(p
2
A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R+ if 0 ≤ p2A < max {1− 2kej(h)− 2(1− k)y, 0},{−1+2kej(h)+2(1−k)y+p2A
2

}
if p2A ≥ max {1− 2kej(h)− 2(1 − k)y, 0}, and
p2A < max {0, 1− 2kej(h)− 2(1− k)(2x − y)},{

−1 + 2kej(h) + 2(1 − k)x+ p2A

}
if p2A ≥ max {0, 1− 2kej(h)− 2(1 − k)(2x− y)}, and
p2A < u+ 1− kej(h)− (1− k)x,{

u+ kej(h) + (1− k)x
}

if p2B ≥ u+ 1− kej(h)− (1− k)x.

Figure 6 depicts these best response correspondences for the case 2(1 − k)x < 1 −
2kej(h) < 2(1 − k)y. Note also that when p2A − p2B ≤ 1 − 2kej(h) − 2(1 − k)y, firm A

monopolizes the market under (p2A, p
2
B), and that when p2A − p2B ≥ 1 − 2kej(h) − 2(1 −

k)x, firm B monopolizes the market under (p2A, p
2
B). Note also that the participation

constraint does not bind for the critical type that is indifferent between firms A and B

if p2A + p2B < 2u+ 1.

a) 1− 2kej(h) ∈ [2(1− k)(2x − y), 2(1 − k)(2y − x)].

The best response correspondences p2A = BRA(p
2
B) and p2B = BRB(p

2
A) have a unique

intersection(
1− 2kej(h) + 2(1 − k)(y − 2x)

3
,
−1 + 2kej(h) + 2(1− k)(2y − x)

3

)
,
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which satisfies 1− 2kej(h)− 2(1− k)x < p2A − p2B < 1− 2kej(h)− 2(1− k)y and also

p2A + p2B < 2u+1 when u > 1
2 − k. Hence, the two firms segment the market and the

critical type is given by si =
1−2kej(h)
6(1−k) + x+y

3 .

b) 1− 2kej(h) > 2(1− k)(2y − x).

p2A

p2B

p2B = BRB(p
2
A)p2A = BRA(p

2
B)

p2A − p2B = 1− 2kej(h) − 2(1− k)y

p2A − p2B = 1− 2kej(h) − 2(1− k)x

p2A + p2B = 2u+ 1

Figure 7: Best-response diagram: A-monopolization equilibrium

As seen in Figure 7, the unique fixed point of the joint best-response correspondence

(p2A, p
2
B) �

(
BRA(p

2
B), BRB(p

2
A)

)
is given by

(1− 2kej(h)− 2(1− k)y, 0) .

Since p2A − p2B = 1− 2kej(h) − 2(1 − k)y, firm A monopolizes the market.

c) 1− 2kej(h) < 2(1− k)(2x − y).

As in the previous case, the unique fixed point of the joint best-response correspon-

dence (p2A, p
2
B) �

(
BRA(p

2
B), BRB(p

2
A)

)
is given by

(0, −1 + 2kej(h) + 2(1 − k)x) .

Since p2A − p2B ≥ 1− 2kej(h) − 2(1 − k)x, firm B monopolizes the market.

This completes the proof. �

Proof of Corollary 4. Fix p1 and let h = (p1, d1) ∈ Hi. Suppose to the contrary

that p1A ≤ E[σ2
A(h)] = E[σ2

A(h) | si = x]. It will then follow from the first equation in

Lemma 3 that

E
[
vi − σ2

A(h) | si = x
] ≤ δ E

[
vi − σ2

A(h) | si = x
]
.
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Since δ < 1, this implies that

E
[
vi − σ2

A(h) | si = x
] ≤ 0.

In other words, the expected payoff of type x is non-positive when he always chooses A

in period 2. We will derive a contradiction by showing that type x’s payoff in any period

2 equilibrium is strictly positive when x < y.

Suppose first that an interior equilibrium is played in period 2 following history h.

In this case, type x must obtain a strictly positive payoff by choosing A since any type

si > x who chooses A also obtains a non-positive payoff. Formally,

type x’s payoff from choosing A

= u+ 1− (1− k)x− kej − 1

3
{1− 2kej(h) + 2(1− k)(y − 2x)}

= u+
2

3
− k

3
ej(h)− 1

3
(1− k)(2y − x)

≥ u+
2

3
− k

3
− 2

3
(1− k)

= u+
k

3
> 0.

Suppose next that we have the A-monopolization equilibrium in period 2. In this case,

type x’s payoff from choosing A

= u+ 1− (1− k)x− kej(h)− {1− 2kej(h)− 2(1− k)y}
= u+ (1− k)(2y − x) + kej(h) > 0.

Suppose finally that we have the B-monopolization equilibrium in period 2. In this case,

type x’s payoff from choosing A

= u+ 1− (1− k)x− kej(h)− 0 > 0.

This completes the proof. �

Proof of Theorem 7. (continued) As part of the proof of Theorem 7, we show that

the buyers’ period 1 strategies are sequentailly rational following (off-equilibrium) price

pairs that belong to regions R2-R7 in Figure 5.

2. (qA, qB) ∈ R2.

Since y = 1, d1j = B occurs with probability zero. For x and y given in (39),

d1 = (∅, A) and (∅, ∅) are both followed by an interior equilibrium in period 2.

Hence,

0 < x ≤ 1− k(x+ 1)

6(1 − k)
+

x+ 1

3
<

1− kx

6(1 − k)
+

x+ 1

3
≤ y = 1.
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The two values in the middle are the critical types of buyer i who are indifferent

between A and B in period 2 after d1j = ∅ and d1j = A, respectively. Since x > 0,

any type si < x strictly prefers the choice of A in period 1 to the unconditional

choice of A in period 2, and the reverse is true for any type si > x. The optimality

of the contingent choice of the goods in period 2 then would follow if any type

si ≤ 1 prefers the unconditional choice of B in period 2 to the choice of B in

period 1. Suppose that si = 1. Then the choice of B in period 1 yields

u+ (1− k) · 1 + k

2
− (1− k)qB ,

whereas the unconditional choice of B in period 2 yields

δ

{
u+ (1− k) · 1 + k

2
− (1− k)

3− 2x

3

}
,

where (1−k)3−2x
3 is the expected price of B in period 2. Hence, type si = 1 prefers

the choice of B in period 2 if

(1− k)

{
qB − δ

3− 2x

3

}
≥ (1− δ)

(
u+ 1− k

2

)
.

Substituting for x from (39) and for ν from (20), we see that this is equivalent to

(3 + δ)qB − 2δqA ≥ δ(3 − δ) +
(1− δ)(3 − δ)

1− k

(
u+ 1− k

2

)
,

which holds by definition for any (qA, qB) ∈ R2. Hence, type si = 1 prefers the

choice of B in period 2, and so does any type si < 1.

3. (qA, qB) ∈ R3.

Since y = 1, d1j = B occurs with probability zero. For x and y given in (40),

(d1i , d
1
j ) = (∅, ∅) is followed by a B-monopolization equilibrium and (d1i , d

1
j ) = (∅, A)

is followed by an interior equilibrium in period 2.

We first show that for δ close to one, any type si prefers the unconditional choice

of B in period 2 to the choice of B in period 1. To see this, note that the expected
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price of B in period 2 equals

E
[
p2∗B (d1)

]
= xp2∗B (∅, A) + (1− x)p2∗B (∅, ∅)

= x
−1 + kx+ 2(1 − k)(2− x)

3
+ (1− x) {−1 + k(1 + x) + 2(1 − k)x}

=
−3(1− k) + 2x(6 − 5k)− 2x2(4− 3k)

3

= −2

3
(4− 3k)

{
x− 6− 5k

2(4 − 3k)

}2

+
(6− 5k)2

6(4 − 3k)
− (1− k)

≤ (6− 5k)2

6(4− 3k)
− (1− k).

On the other hand, since p1B = (1− k)qB ≥ (1− k)q and q → 3−2k
6(1−k) as δ → 1, the

expected price of B in period 2 is lower than p1B for δ close to one if

(6− 5k)2

6(4 − 3k)
− (1− k) <

3− 2k

6
,

which holds since k < 1
2 . It follows that for δ close to one, any type si prefers the

choice of B in period 2 to the choice of B in period 1. Since x > 0, type si < x

prefers the choice of A in period 1 to the unconditional choice of A in period 2,

and the reverse is true for any type si > x. Furthermore, since x < 3−2k
4−3k ,

1− k(x+ 1)

6(1− k)
+

x+ 1

3
< x <

1− kx

6(1 − k)
+

x+ 1

3
≤ y = 1.

The optimality of the contingent choice of the good in period 2 then follows from

the definitions of the critical types.

4. (qA, qB) ∈ R4: This case is similar to when (qA, qB) ∈ R2.

5. (qA, qB) ∈ R5: This case is similar to when (qA, qB) ∈ R3.

6. (qA, qB) ∈ R6.

Every type waits under the given specifications of x and y (x = 0 and y = 1). The

equilibrium price pair in period 2 following di = (∅, ∅) then equals (1 − k, 1 − k).

The conclusion would follow if we show that any type prefers waiting to moving in

period 1 when qA and qB are both at the lowest level consistent with (qA, qB) ∈ R6:

qA = qB =
1 + δ

3− δ
{3− 2δ − ν(3− δ)}.
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Take any type si <
1
2 who prefers A to B in period 1. If he chooses A in period

1, then E [vi | si] − (1 − k)qA. If he waits, it yields δE [vi | si] − (1 − k). Hence,

waiting is optimal if

qA =
1 + δ

3− δ
{3− 2δ − ν(3− δ)} >

1− δ

1− k
(u+

1

3
) + δ.

Substituting the definition of ν from (20) and simplifying, we see that this is

equivalent to δ < 3, which holds.

7. (qA, qB) ∈ R7.

No type waits under the given specification of x and y (x = y = 1−qA+qB
2 .) By

construction, the conditional belief P (· | h) of si given h ∈ Hi is the uniform

distribution over [0, 1]. Hence, any buyer who waits will face the price pair (1 −
k, 1 − k) in period 2. Consider any type si < x. He prefers A to B in period 1.

For δ close to one, he also prefers the choice of A in period 1 to the unconditional

choice of A in period 2 since the price of A in period 2 is higher: qA ≤ q and as

δ → 1,

(1− k)q → 3− 2k

6
< 1− k.

If he waits and then chooses A after d1j = A and B after d1j = B, then his payoff

is given by

δ
{
xE

[
vi | si, p1, d1j = A

]
+ (1− x)E

[
wi | si, p1, d1j = B

]− (1− k)
}

= δ

[
x
{
u+ 1− (1− k)si − k

x

2

}
+ (1− x)

{
u+ (1− k)si + k

1 + x

2

}
− (1− k)

]
= δ

{
u+ x− (1− k) + (1− k)si(1− 2x) +

k

2
(1− 2x2)

}
.

On the other hand, choosing A in period 1 yields

E [vi | si]− (1− k)qA ≥ u+ 1− (1− k)si − k

2
− (1− k)q.

Choosing A in period 1 is hence optimal for type si ≤ x if

δ

{
u+ x− (1− k) + (1− k)si(1− 2x) +

k

2
(1− 2x2)

}
≤ u+ 1− (1− k)si − k

2
− (1− k)q.
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Since q → 3−2k
6(1−k) as δ → 1, this inequality holds for δ close to one if

u+ x− (1− k) + (1− k)si(1− 2x) +
k

2
(1− 2x2)

≤ u+ 1− (1− k)si − k

2
− 3− 2k

6
.

We also see that if this inequality holds for si = x, then it holds for any si ≤ x.

Substituting si = x and simplifying, we rewrite this inequality as

(2− k)

{
x− 3− 2k

2(2 − k)

}2

− (3− 2k)2

4(2− k)
+

3

2
− 5k

3
> 0.

This holds true for any x if

3

2
− 5k

3
>

(3− 2k)2

4(2− k)
⇔ (1− 2k)(9 − 4k) > 0.

Hence, type x prefers the choice of A in period 1 to waiting. The symmetric

argument proves that choosing B in period 1 is optimal when si > y. �

Proof of Proposition 9. In the proof, we consider a slightly more general setup where

the prices are fixed but are not necessarily equal to the marginal cost or the same across

the two periods. Specifically, consider the symmetric price profile such that p1A = p1B in

period 1 and p2A = p2B in period 2. If we write x = x(p1) and y = y(p1) in (3), then

by symmetry, y = 1 − x. Let Δ be the difference between the period 1 price and the

discounted period 2 price:

Δ = p1A − δp2A = p1B − δp2B .

Let Δ as defined in (22) and

Δ = Δ− (1− δ)
(1− k)(1− 2k)

2− 3k
, and

Δ̃ = Δ+
δ(2− 3k)

4
− 1− k

2
.

Define also

x̂ =
Δ−Δ

(1− δ)(1 − k)
, (55)

and

x̄ =
δ(2− 3k) − (1 − k) +

√
{δ(2 − 3k)− (1− k)}2 + 4δ(2 − 3k)(Δ −Δ)

2δ(2 − 3k)
. (56)

The buyer behavior along a fixed price path can then be described as follows.
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Proposition 10. (Buyer behavior along a fixed price path) Suppose that the price profile

(p1, p2) is symmetric and fixed. Let Δ = p1A − δp2A. Then for x̂ and x̄ defined in (55)

and (56), we have

x = 1− y =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if Δ > Δ,

x̂ if Δ ∈ (Δ,Δ],

x̄ if Δ ∈ (Δ̃,Δ],

1
2 if Δ ≤ Δ̃.

In every case, any si ∈ (x, 12) chooses A in period 2 if d1j = A or ∅. When d1j = B,

then the period 2 choice of any si ∈ (x, 12) is: (i) A in the first case (Δ > Δ), (ii) A if

si ∈
(
x̂, 1−k(2−x̂)

2(1−k)

)
and B if si ∈

(
1−k(2−x̂)
2(1−k) , 12

)
in the second case (Δ ∈ (Δ,Δ]), (iii) B

in the third case (Δ ∈ (Δ̃,Δ]).

Since Δ̃ < 0 for δ close to one, when both firms engage in marginal cost pricing

p1A = p1B = 0 and p2A = p2B = 0, we have Δ = 0 ∈ (Δ̃,Δ), and x̄ = x0 defined in (21).

Proposition 10 hence implies Proposition 9.

Proof of Proposition 10. It can be readily verified that max {0, Δ̃} < Δ < Δ. By

symmetry, any type si < 1
2 prefers the choice of A in period 1 to the choice of B in

period 1. Furthermore, since x = 1− y, any such type si prefers A to B in period 2 also

if the other buyer chooses A or waits in period 1. Hence, any buyer type si <
1
2 may

optimally adopt one of the following three courses of action: (i) 1A: “choose A in period

1”, (ii) 2A: “wait and choose A after any d1j”, or (iii) 2B: “wait and choose B if and only

if d1j = B.” First, note that 1A and 2A yield

u+ 1− k

2
− (1− k)si − p1A and δ

[
u+ 1− k

2
− (1− k)si − p2A

]
,

respectively. Then x = x̂ in (55) is the type that is indifferent between 1A and 2A. In

particular, if Δ > Δ, then every type si <
1
2 prefers 2A to 1A and hence x = 0. On the

other hand, 2B yields

δ

[
x
{
u+ 1− (1− k)si − k

x

2
− p2A

}
+ (1− 2x)

{
u+ 1− (1− k)si − k

1

2
− p2A

}
+ x

{
u+ (1− k)si + k

(
1− x

2

)
− p2B

}]
,

(57)
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where the three terms correspond to i’s choice of A, A, and B in period 2 when j’s

decision in period 1 is A, ∅, and B, respectively. Let x̄ be the type that is indifferent

between 1A and 2B. We see that x̄ satisfies

δ(2 − 3k)x̄2 − {δ(2 − 3k)− (1− k)} x̄−Δ+Δ = 0. (58)

A solution to (58) exists in
[
0, 12

]
if and only if

Δ̃ ≤ Δ ≤ Δ. (59)

In this case, x̄ is given by in (56).

Type si prefers strategy 2B to 2A if

si >
1− k(2− x)

2(1 − k)
.

Hence, if

x >
1− k(2− x)

2(1− k)
⇔ x >

1− 2k

2− 3k
,

then every type si > x prefers 2B to 2A. Conversely, if x < 1−2k
2−3k , then type si ∈(

x, 1−k(2−x)
2(1−k)

)
prefers 2A to 2B and type si ∈

(
1−k(2−x)
2(1−k) , 12

)
prefers 2B to 2A.

Suppose first that Δ > Δ. We can verify that

Δ > Δ ⇔ x̂ <
1− 2k

2− 3k

⇔ δ(2 − 3k)x̂2 − {δ(2− 3k)− (1− k)} x̂−Δ+Δ < 0

⇔ x̂ < x̄.

Hence, type si < x̂ prefers 1A to 2A to 2B, type si ∈
(
x̂, 1−k(2−x̂)

2(1−k)

)
prefers 2A to 1A

and 2A to 2B, and type si ∈
(
1−k(2−x̂)
2(1−k) , 12

)
prefers 2B to 2A to 1A. It follows that when

Δ > Δ, the optimal course of action is given by 1A if si < x̂, 2A if si ∈
(
x̂, 1−k(2−x̂)

2(1−k)

)
,

and 2B if
(
1−k(2−x̂)
2(1−k) , 12

)
.

Suppose next that Δ < Δ. We can verify that

Δ < Δ ⇔ δ(2 − 3k)

(
1− 2k

2− 3k

)2

− {δ(2 − 3k)− (1− k)}
(
1− 2k

2− 3k

)
−Δ+Δ < 0

⇔ x̄ >
1− 2k

2− 3k
,

and also that

Δ < Δ ⇔ δ(2 − 3k)x̂2 − {δ(2 − 3k) − (1− k)} x̂−Δ+Δ > 0 ⇔ x̂ > x̄.
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Hence, type si < x̄ prefers 1A to 2A to 2B, type si ∈ (x̄, x̂) prefers 2B to 1A to 2A, and

type si ∈
(
x̂, 12

)
prefers 2B to 2A to 1A. It follows that when Δ < Δ, the optimal course

of action is given by 1A if si < x̄ and by 2B if si > x̄. �
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