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Abstract

This paper studies the problem of a monopolistic platform which offers

agents connection with one another. Agents have heterogeneous characteristics

that are valued by some other agents and observed privately by the principal.

The agents are privately informed about their heterogeneous preferences over

the characteristics of the other agents. The platform solicits information from

the agents about their preferences and then offers an allocation that consists

of groups of connected agents and subscription fees. We study mechanisms

which induce truthful reporting and acceptance of the proposed allocation as a

unique equilibrium outcome. We identify asymptotically optimal mechanisms

which fully extract the agents’ informational rents in the limit as the market

becomes large.
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1 Introduction

Platforms as intermediaries of economic activities are gaining importance in the

modern economy. Credit cards facilitate trade between businesses and consumers,

internet auction houses bring out demand and supply and realize gains from trade,

and SNS connects people and disseminates information that helps decision making.

Economic theory has by now devoted much attention to the functioning of platforms,
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and offers a variety of theories. This paper presents yet another theory of platforms

focusing on their role in connecting heterogeneous market participants. Specifically,

we focus on the monopoly power exercised by a platform based on its proprietary

access to information about market participants, and study its consequence on the

design of a mechanism that offers connections among them. Specifically, we consider

a market in which a platform has information about some qualitative characteristics

of agents referred to here as their salience types.1 An agent’s characteristic for ex-

ample is the type of good a seller supplies to the market, the type of skill a worker

can provide to a prospective employer, or the type of project that an entrepreneur

requires funding for. In short, a salience type of an agent is his value to various other

market participants. The assumption on proprietary access to such information by

a platform models the ability of large online platforms to privately collect big data

on the subscribers’ activities and use them to project their characteristics.2

We assume that the agents are heterogeneous in the sense that no two agents

share the same characteristics. Although the platform has access to information

about the agents’ salience types, we assume that it does not directly observe their

preferences over those types, and must collect information about them. We represent

these preferences of each agent by their preference types, and assume for simplicity

that each preference type regards each salience type as either preferable or not.

The agents are heterogeneous also in their preferences so that no salience type is

ex ante more popular than any other salience type. Agents value connection to any

agent with their preferred salience type, but must use the service of a monopolistic

platform to achieve it. The platform offers them connections by forming groups

whose members are connected with each other. The value of a group to each member

i equals v > 0 if i finds preferable the salience type of another member, and zero

otherwise. An allocation is a pair of such a group assignment and a subscription fee

profile. The platform’s objective is to maximize the subscription revenue by creating

an optimal group assignment. In contrast to the literature on platform design that

assumes that agents are vertically differentiated by their quality types and that

every agent uniformly prefers to be matched with agents of higher quality, we study

the problem under the assumption of horizontal differentiation across agents.3

Formally, a mechanism used by the platform forms an allocation based on re-

ported preference types. We require such a mechanism to be strategy-proof in the

sense that truth-telling is weakly dominant for every agent when reporting their

1We use the term “salience type” following Gomes & Pavan (2016).
2A similar motivation is discussed in Fainmesser & Galeotti (2016). See Section 2.
3While we assume that the platform observes the agents’ salience types but not their preference

types, our argument would be essentially unchanged if it observes the preference types and not the

salience types.
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preference types. By definition, implementation of a strategy-proof mechanism does

not require knowledge about the probability distribution of the agents’ types. Un-

less the platform can force an allocation on the agents, however, strategy-proofness

does not itself solve the multiplicity of equilibria under adoption externalities. That

is, if the agents may choose whether or not to accept the platform’s offer of an allo-

cation, their optimal decision depends on the acceptance decisions of other agents:

The agent may be willing to accept if and only if the other agents also accept. The

multiplicity of equilibria in such an adoption game is a central concern in the anal-

ysis of network externalities, and our analysis is no exception.4 In order to address

this concern, we build on the idea of a revelation-suggestion mechanism proposed by

Myerson (1982), and consider a mechanism consisting of two stages: The platform

creates an allocation based on solicited preference types in the first stage, and lets

the agents play an adoption game in the second stage. The mechanism is designed

so that acceptance is a uniquely optimal action for each agent. As far as we are

aware, this is the first attempt to introduce such a requirement in the formulation

of a mechanism.

In our model, whether agent i finds the salience type of agent j preferable or

not is independent of whether j finds i’s salience type preferable, or whether i

finds the salience type of yet another agent k ̸= j preferable. We denote by p

the probability with which each agent finds the salience type of any other agent

preferable. When the total number of agents equals n, the value (n− 1)p is the key

quantity that represents the expected number of agents whose salience types each

agent finds preferable, and hence can be interpreted as the density of the preference

relationship among them.

Our objective is to characterize a mechanism that fully extracts the agents’

informational rents and achieves the first-best allocation for the platform. First,

we observe that in any market of fixed size n and for any probability p ∈ (0, 1),

no mechanism extracts full surplus if it is required to induce truth-telling in the

first stage, and acceptance as a uniquely optimal action in the second stage. This

observation prompts us to examine what happens when the market size n grows

large and the probability p may change with n. In particular, we consider the limit

as n grows large while focusing on the behavior of (n− 1)p as a function of n.

Our analysis identifies asymptotically optimal mechanisms in the following two

cases. We call a market dense if (n − 1)p increases (slowly) as n grows large. The

case where p is a constant is a special case of a dense market. On the other hand,

we call a market sparse if (n − 1)p vanishes as n grows large. In a dense market,

4See Dybvig & Spatt (1983). The multiplicity problem is also known as “chicken and egg” in

the two-sided market literature. See for example Caillaud & Jullien (2003).
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we consider a single group mechanism that creates a single group consisting of a

prefixed agent i1 and all those agents who find the salience type of i1 preferable

either directly or indirectly in any number of steps: These are set J1 of agents who

find i1 preferable, set J2 of agents who find agents in J1 preferable, set J3 of agents

who find agents in J2 preferable, and so on. Agent i1 is offered a small subsidy

for inclusion into the group, but all other agents who are included in the group are

charged a subscription fee close to their valuation of the group. The single group

mechanism induces truth-telling and also induces acceptance as a uniquely optimal

action through the iterative elimination of strictly dominated actions. When the

condition for a dense market holds, this mechanism is asymptotically optimal in the

sense that as n grows large, the associated revenue approaches the maximal level

achievable under complete information about the agents’ preferences. In a sparse

market, on the other hand, we propose a multiple group mechanism which constructs

multiple groups which again include two sets of agents. The first set consists of

agents who themselves find (the salience type of) no other agent preferable but have

salience types which are found preferable by others, or the set of agents in which

every agent finds the salience type of another agent preferable either directly or

indirectly. The second set consists of agents who find the salience type of some of

the first set of agents preferable either directly or indirectly. Again, the first set of

agents are offered a small subsidy for subscription into their group, but the second

set of agents are charged a subscription fee close to their valuation of their group.

The multiple group mechanism induces truth-telling, and also induces acceptance

as a uniquely optimal action. Under the conditions for a sparse market, we show

that this mechanism is asymptotically optimal in the limit as n grows large.

The paper is organized as follows. We discuss the related literature in Section

2 and formulate a model in Section 3. Section 4 provides the description of the

mechanism and the properties required of it. The benchmark case of complete

information is analyzed in Section 5. Section 6 presents the analysis of the models

with incomplete information: Subsection 6.1 analyzes the single group mechanism

for a dense market, and Subsection 6.2 analyzes the multiple group mechanism for

a sparse market. We conclude with a discussion in Section 7.

2 Related Literature

The present paper belongs to the literature that studies the problem of a monop-

olistic platform which offers privately informed agents connection to each other.

Damiano & Li (2007) study a two-sided market where each side of the market con-

sists of agents with heterogeneous quality, and the value of a match between two
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agents is a supermodular function of the two individual qualities. When a monopo-

list divides the market into groups within which matches can be formed, Damiano &

Li (2007) derive the conditions under which the profit-maximizing fee schedules for

the groups are efficient. Adopting the framework of Damiano & Li (2007), Hoppe

et al. (2011) analyze the performance of the coarse matching scheme in which the

market is divided into only two groups. Gomes & Pavan (2016) study efficient

and profit-maximizing platforms for many-to-many matching in a two-sided market

where agents have private types. Gomes & Pavan (2016) discuss the distinction

between the salience and preference types of an agent, and assume in their main

analysis that those two types are functions of a single private type of an agent. In

Board (2009), a monopolist in a one-sided market creates and assigns groups to the

population of agents with heterogeneous quality. Under various specifications of the

functional relationship between the quality of a group and the qualities of its mem-

bers, Board (2009) shows that the profit maximizing group structure is inefficient

from a welfare point of view and attributes the inefficiencies to the creation of too

many groups. On the other hand, Veiga (2013) shows that when the value of a

larger group is always higher than that of a smaller group, the profit maximizing

group structure always entails a single group.

There are some important differences between the present paper and the papers

in the literature mentioned above: First, the ubiquitous assumption in the literature

is that agents are vertically differentiated, and every agent prefers to be matched

with agents of a higher type. In contrast, we suppose that agents are horizontally

differentiated and their preferences over other agents are heterogeneous. In particu-

lar, an agent does not necessarily prefer to be matched with an agent who happens

to be popular among other agents. Second, we assume that each agent’s type is

two-dimensional and one of the dimensions is privately observed by the platform.

This assumption corresponds to the reality of online platforms that have propri-

etary access to data on their subscribers. Third, the literature assumes a screening

mechanism in which an agent’s allocation is determined by his type only and not by

the entire type profile. In contrast, we consider a full mechanism where allocation

is determined by the type profile of all agents.

A platform is a good with network externalities in the sense that its value to

each agent depends positively on the adoption decisions of other agents. We may

view the platform in our model trying to sell connection to agents. Monopoly sale

of a network good under incomplete information is studied by Aoyagi (2013), where

the value of the good to each agent is a function of the agent’s private type and

the number of subscriptions. Some models of network goods monopoly express local

network externalities by agents located at the nodes of a network as in the present
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paper. Among them, Fainmesser & Galeotti (2016) explore the possibilities that

a platform has varying degrees of knowledge about the externalities relationship

among consumers. Specifically, they study scenarios where the platform has access

to information on how susceptible or influential each consumer is to the decisions of

others. Although we also suppose that a platform has access to information about

market participants, our formulation is different in that the realization of the exter-

nalities relationship is random and that the platform needs to collect information

about it.5

Extensive literature on matching theory is on the design of a mechanism that

matches agents with heterogeneous preferences as in the present model. Most closely

related among them are the papers on coalition formation, which consider the prob-

lem of partitioning the set of agents into groups when the value of a group to any

member is a function of the types of other members. For example, Cechlárová &

Romero-Medina (2001) assume that the value of a group to any of its member is

equal to the value of either his most-preferred member, or his least-preferred mem-

ber, Alcalde & Revilla (2004) introduce a preference which evaluates groups based

on the best subset of them, Dimitrov et al. (2006) suppose that each agent regards

other agents as either friends or enemies and compares the numbers of friends and

enemies when evaluating the quality of a group, and Rodŕıguez-Álvarez (2009) con-

siders the preference domain that includes the friend-enemy preferences studied by

Dimitrov et al. (2006). However, the primary focus of the literature on coalition for-

mation is on the stability of matching, whereas our focus is on profit maximization

through the extraction of informational rents. The agents’ preferences over other

agents assumed in this paper are binary so that each agent finds the salience type of

another agent either preferable or not. This substantial simplification of the general

preference specifications used in the matching literature enables us to character-

ize mechanisms that achieve asymptotic optimality under the unique enforceability

requirement.

3 Model

The market consists of the set I of n agents. Each agent i has a salience type βi
and a preference type θi. Agents are heterogeneous in the sense that βi ̸= βj for

5Ohter models of monopoly under local network externalities include Candogan et al. (2012),

who characterize the relationship between the location of a buyer in the network and the price he

faces under imperfect and perfect price discrimination, and Bloch & Quérou (2013), who examine

the optimality of price discrimination when each buyer is privately informed about the stand-alone

valuation of the monopolist’s good. Models of price competition between sellers of goods with local

network externalities include Aoyagi (2018), Chen et al. (2018), and Chen et al. (2020).
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any pair of agents i and j. Specifically, when B denotes the set of salience types in

the population, there is a one-to-one correspondence ϕ : I → B such that ϕ(i) ∈ B

is the salience type of agent i. Let Φ be the set of all such correspondences. We

assume that the platform privately observes the random realization of ϕ, but the

agents don’t. Our interpretation of this assumption is that it is prohibitively costly

for participants in a large and physically spread market to find out if any other

agent has the characteristics by randomly approaching them.

Agent i’s preference type θi describes their preferences over the salience types

of other agents. These preferences classify each salience type as either preferable or

not. Formally, given ϕ, agent i’s preference type θi is a subset of the set B \ {ϕ(i)}
of salience types of other agents, and ϕ(j) ∈ θi implies that i finds salience type ϕ(j)

of agent j preferable. Let θ = (θi)i∈I denote a preference type profile, and Θϕ be the

set of preference type profiles under ϕ. A visual representation of (θ, ϕ) is a directed

graph in which the agents are nodes and the type profile θ represents directed links

among them: If i finds j’s salience type ϕ(j) preferable (i.e., ϕ(j) ∈ θi), then it is

identified with a directed link from i to j and denoted i → j. We call this directed

graph a preference network and denote it by D(θ, ϕ). In D(θ, ϕ), agent i indirectly

prefers agent j, denoted i ; j, if there exists a sequence of agents i0, . . . , iK (K ≥ 1)

in I such that i0 = i, iK = j, and for every ik and ik+1 (k = 0, . . . ,K − 1), ik finds

ϕ(ik+1) preferable (i.e., ϕ(ik+1) ∈ θik). In terms of the preference network D(θ, ϕ),

i indirectly prefers j if there is a directed path from i to j: a directed link ik → ik+1

exists for every such k. For each θ and i ∈ I, define

C;i(θ) = {j ̸= i : j ; i}

to be the set of agents who indirectly prefer ϕ(i).6 A subset H ⊂ I of two or more

agents is strongly preference-connected if i ; j for every i, j ∈ H. H ⊂ I is a strong

component if it is strongly preference-connected and there exists no H ′ ̸⊃ H that

is strongly preference-connected. A component of the preference network D(θ, ϕ) is

the set of agents who are connected by the preference links when their direction is

ignored.

A group is a set of two or more salience types, and an assignment is a collection

g of disjoint (non-overlapping) groups. The interpretation is that agents i and j are

connected to each other if and only if their salience types belong to the same group.

Let G be the set of all possible assignments. Denoting by S ≡ S(g) the set of indices

of groups in assignment g ∈ G, we express g ∈ G as g = (Gs)s∈S , where each Gs is a

group in g. Given g = (Gs)s∈S , let G = ∪s∈S Gs be the set of salience types included

6For simplicity, ϕ is omitted in the description of a preference network when it is understood.

We also often say that agent i prefers agent j when i finds j’s salience type ϕ(j) preferable.

7



in some group in g. For example, if B = {1, . . . , 8}, then g = ({1, 3}, {5, 7, 8}) ∈ G is

an assignment that consists of two groups (S = {1, 2}) and excludes salience types

2, 4 and 6. Agent i’s valuation ui(g, ϕ, θi) of assignment g = (Gs)s∈S is determined

by his preference type θi as follows: For a constant v > 0,

ui(g, ϕ, θi) =

{
v if ϕ(i) ∈ Gs and θi ∩Gs ̸= ∅ for some s ∈ S,

0 otherwise.
(1)

In other words, the value of an assignment to any agent i equals v if there is another

member of the same group who has his preferred salience type, and zero if there is

no such member, or if i does not belong to any group.

Upon observing the agents’ salience types, a platform collects information about

their preference types and determines an allocation, which consists of an assignment

and transfers. Formally, an allocation rule is a pair (g, x), where g : Θ×Φ → G and

x = (xi)i∈I : Θ×Φ → RI . In other words, g(θ, ϕ) and x(θ, ϕ) = (xi(θ, ϕ))i∈I are the

assignment and subscription fee profile, respectively, under the reported preference

type profile θ and the salience type profile ϕ. We also denote by S(θ, ϕ) the set of

indices of groups in g(θ, ϕ), and by Gs(θ, ϕ) the group s ∈ S(θ, ϕ).

Each correspondence ϕ ∈ Φ that determines the agents’ salience types is equally

likely. Conditional on ϕ, the probability distribution of the type θi is independent

and identical across agents. We also suppose that for any agent i, his preferences

over other agents j and k are independent (i.e., for j ̸= k, two events j ∈ θi and

k ∈ θi are independent), and that the probability that i finds any agent j ̸= i

preferable equals p. Let Pp denote the joint probability distribution of type profile θ

given p, and Ep the corresponding expectation. For any i, the marginal distribution

of θi is given by

Pr(θi | ϕ) ≡ Pp(θi) = p|θi|(1− p)n−1−|θi|,

where |θi| denotes the number of elements in θi. We will allow the probability p to

depend on the number n of agents in the market.

The platform’s cost of including any single agent into an assignment equals c,

which is assumed to satisfy

0 < c <
v

2
. (2)

It follows that social surplus generated when a group of two agents is formed is

negative (= −2c) when neither agent finds the other agent preferable, but is positive

(≥ v − 2c) when at least one agent finds the other agent preferable. Denote by

R(θ | g, x) the platform’s payoff from (g, x) when the type profile is θ:

R(θ | g, x) =
∑
i∈I

xi(θ)− |G(θ)|c.
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The platform’s expected payoff R(g, x) under (g, x) is defined accordingly:

R(g, x) = Ep

[
R(θ | g, x)

]
.

4 An Enforceable Mechanism

As mentioned in the Introduction, we address the multiplicity of equilibria in the

adoption decisions by considering a version of a revelation-suggestion mechanism

proposed by Myerson (1982). Specifically, we suppose that the platform offers the

agents an allocation while giving them an option to reject it. The proposed mecha-

nism works over two stages 1 and 2 as follows. In stage 1, the platform determines

an allocation (g(θ̂, ϕ), x(θ̂, ϕ)) as a function of the reported preference type profile

θ̂ and the observed salience type profile ϕ. In stage 2, the platform publicly an-

nounces the allocation (g(θ̂, ϕ), x(θ̂, ϕ)) as well as (θ̂, ϕ) and then lets the agents

simultaneously choose whether or not to accept the allocation.

Formally, the mechanism Γ consists of the allocation rule (g, x), an action set

Ai = {0, 1} for every agent (A =
∏

i∈I Ai), and a collection of outcome functions

(fg)g∈G . Ai is the set of actions available to agent i ∈ I in the subscription game

played in stage 2: ai = 0 and ai = 1 represent rejection and acceptance, respectively,

of the proposed allocation. When allocation (g, x) with g = (Gs)s∈S is offered and

the agents choose action profile a ∈ A in the subscription game, fg : A → G modifies

g by excluding those agents i ∈ G who have chosen rejection.7 Accordingly, if θi is

agent i’s true type, his payoff under the action profile a in the subscription game

following (g, x) is written in terms of the payoff function defined in (1) by

Ui(a, θi | g, x, ϕ) =


ui(f

g(a), ϕ, θi)− xi if ai = 1 and ϕ(i) ∈ G,

−xi if ai = 1 and ϕ(i) /∈ G,

0 if ai = 0.

(3)

The first line corresponds to an accepting agent (whose salience type is) included in

the assignment, the second line to an accepting agent not included in the assignment,

and the third line to a rejecting agent (who makes no transfer payment and gains

no connection to other agents).8 Importantly, the adoption game does not result in

the inclusion of an excluded agent to the assignment, or reassignment of any agent

to a different group.

7It is not crucial whether accepting agents are included or not. For example, the assignment

fg(a) may include all accepting agents, or may exclude all agents (so that no group will be formed).
8Any agent excluded from the assignment chooses acceptance if and only if his transfer payment

is non-positive.

9



Upon the public announcement of the report profile θ̂ = (θ̂i)i∈I by the platform

in stage 2, the agents form beliefs about the other agents’ preference types. Let

µi : Θ → ∆(Θ−i) denote agent i’s belief given the public announcement: µi(θ̂)(θ−i)

is i’s belief that the other agents’ true preferences equal θ−i when the report profile

equals θ̂.9 Define µ∗ = (µ∗
i )i∈I to be the belief corresponding to truthful reporting:

µ∗
i (θ̂)(θ̂−i) = 1 for every θ̂ ∈ Θ and i ∈ I.

Given that every agent is ex ante symmetric in terms of their salience types, we will

in what follows focus on anonymous mechanisms that respect the agents’ salience

types but ignore their identities. Specifically, we focus on (g, x) such that for every

ϕ, ϕ̂ ∈ Φ and every θ ∈ Θ,

g(θ, ϕ) = g(θ, ϕ̂) and xi(θ, ϕ) = xi(θ, ϕ̂) for every i.

That is, as long as the preference type profile θ is the same, the mechanism specifies

the same assignment of salience types and transfers regardless of who has which

salience type. We will then denote (g, x) as a function of θ only, and our analysis

in the subsequent sections identifies the agents’ salience types with their names:

ϕ(i) = i for every i.

In stage 1, we suppose that Γ induces truthful reporting as a weakly dominant

action conditional on the acceptance of the platform’s offer (g(θ), x(θ)) by every

agent for every θ in stage 2. Specifically, Γ is strategy-proof if

ui(g(θi, θ−i), ϕ, θi)− xi(θi, θ−i) ≥ ui(g(θ
′
i, θ−i), ϕ, θi)− xi(θ

′
i, θ−i)

for every θi, θ
′
i, θ−i, and i ∈ I, and individually rational if (g, x) satisfies

ui(g(θi, θ−i), ϕ, θi)− xi(θi, θ−i) ≥ 0

for every θi, θ−i, and i ∈ I.

In stage 2, a mechanism Γ is uniquely acceptable if for any type profile θ ∈ Θ,

a∗ = (1, . . . , 1) is the unique Bayes Nash equilibrium of the subscription game when

the agents’ belief about the distribution of θ is given by µ∗, and agent i’s payoff

function is given by Ui in (3). In other words, acceptance of the suggested allocation

is the uniquely optimal action for every agent i conditional on truthful reporting by

every agent in stage 1. A mechanism is uniquely enforceable if it is strategy-proof,

individually rational, and uniquely acceptable.10

9Since reporting is done privately and the types are independent, we ignore the dependence of

µi on his own type.
10Note that unique enforceability does not imply the uniqueness of a PBE in the two-stage game.
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By strategy-proofness, no unilateral deviation that involves misreporting in stage

1 and acceptance in stage 2 is profitable. No unilateral deviation that involves

rejection in stage 2 is profitable either since any such deviation yields zero, whereas

truthful reporting and acceptance yield at least zero by individual rationality. We

hence have the following result.

Proposition 1. If Γ is uniquely enforceable, then it implements (g, x) in PBE of

the two-stage game.

5 Complete Information

We begin our analysis with the benchmark case where the platform has complete

information about the agents’ preference type profile θ, or equivalently, the under-

lying preference network D(θ). In this case, we only require the mechanism Γ to

be IR and uniquely acceptable. Define R∗(θ) to be the supremum of the platform’s

payoff from such mechanisms:

R∗(θ) = sup {R(θ | g, x) : Γ is IR and uniquely acceptable},

and R∗ = Ep[R
∗(θ)].

Consider the components of the preference network D(θ) consisting of two or

more agents, and index them by s. Let S(θ) be the set of such indices. For each

component Cs(θ) ⊂ I of D(θ), take any subset F of Cs(θ) and let

C;F (θ) = ∪i∈F C;i(θ)

be the set of agents who are strongly preference-connected to some i ∈ F . Define

(Fs(θ), Ys(θ)) to be a solution to the maximization problem:

max
(F,Y )

|Y |(v − c)− |F |c subject to

{
F , Y ⊂ Cs(θ),

Y = C;F (θ) \ F.
(4)

(4) has a solution since Cs(θ) is finite, and gives the maximal payoff that the plat-

form can generate from this component. The intuition is as follows: The objective

function corresponds to the platform’s payoff when it forms a group F ∪ Y by of-

fering free subscription to agents in F , but charging v to agents in Y . Since Y is

chosen so that its members are strongly preference-connected to some agent in F ,

agents in Y are indeed willing to pay up to v for subscription into an assignment

if it also includes F . The platform then maximizes its payoff by taking Y as large

as possible (since v − c > 0), while taking F as small as possible (since c > 0).

Note that the maximized payoff is strictly positive for every component of two or
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more agents since 2c < v. When the component C is as described in Figure 1, for

example, (4) has the solution F = {3, 6} and Y = {1, 2, 4, 7, 8, 9, 10}, and its value

equals 7(v − c)− 2c = 7v − 9c.11

F

1

2

3

4

5

6

7

8

9

10

Y

Figure 1: Optimal Mechanism under Complete Information

We next show that for any ε > 0, there exists a mechanism Γ such that R(θ |
g, x) =

∑
s∈S(θ) {|Ys(θ)|(v − c) − |Fs(θ)|c} − ε for the solution (Fs(θ), Ys(θ)) to (4)

(s ∈ S(θ)). First, for each θ, let group Gs(θ) be defined by Gs(θ) = Fs(θ) ∪ Ys(θ),

and assignment g(θ) by g(θ) = (Gs(θ))s∈S(θ). In line with the intuition provided

above, the transfer is specified so that agents in Fs(θ) are offered a small subsidy

whereas agents in Ys(θ) are charged a fee close to their full valuation v. Formally,

let

F (θ) = ∪s∈S(θ) Fs(θ), and Y (θ) = ∪s∈S(θ) Ys(θ),

and for ε ∈ (0, v), define

xi(θ) =

{
− ε

n if i /∈ Y (θ),12

v − ε
n if i ∈ Y (θ).

(5)

11Recall that an agent’s salience type is identified with his index. Note that this is not the

unique solution to the maximization problem. The same value can be achieved when, for example,

F = {3, 8} and Y = {1, 2, 4, 7, 8, 9, 10}.
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Proposition 2. Suppose that the platform has complete information about θ. Then

R∗(θ) =
∑

s∈S(θ)

{|Ys(θ)|(v − c)− |Fs(θ)|c}.

Furthermore, Γ with (g, x) defined in (5) is IR and uniquely acceptable, and satisfies

R(θ | g, x) = R∗(θ)− ε for every θ.

In the subscription stage, acceptance is a strictly dominant action for every agent

in F , and is an iteratively strictly dominant action for agents in Y . The number

of iteration required for each agent in Y to find out that acceptance is an optimal

action equals the length of the shortest directed path that connects him with agents

in F .

6 Incomplete Information

We now return to the incomplete information environment in which the platform

cannot directly observe the realization of θ. With incomplete information, the first-

best payoff R∗ is not achievable as shown in the following proposition.

Proposition 3. For any market size n and probability p, there exists κ ≡ κ(n, p) > 0

such that if Γ is a uniquely enforceable mechanism, then the platform’s expected

payoff under (g, x) is bounded away from the optimal level by κ: R(g, x) ≤ R∗ − κ.

The proposition is based on the observation that a mechanism is uniquely ac-

ceptable only if it offers a negative subscription fee to at least one agent. We should

emphasize that κ, which is interpreted as a lower bound for the agents’ informational

rents, depends on both p and n. For a fixed market size n, the extreme values of the

probability p eliminate those information rents: On the one hand, as p approaches

zero, all agents become isolated with probability close to one, and hence the plat-

form’s payoff from any IR mechanism approaches zero. On the other hand, as p

approaches one, the underlying preference network becomes complete (i.e., there is

a two-way link between every pair of agents) with probability close to one, and the

mechanism described in the following subsection that forms a single group will be-

come optimal. Our primary interest hence is on what happens for the less extreme

values of p as the market size n grows large. As seen below, different mechanisms

entail different allocations of the informational rents among the agents.

12In this specification, note that agents not included in the assignment are also offered a small

subsidy.
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6.1 Single Group Mechanism

We first consider the case where the expected number of agents (n − 1)p in any

agent’s preference set θi (slowly) increases with the market size n. The expected

total number of links n(n−1)p in the underlying network D(θ) hence grows (a little)

faster than linearly with n.

A single group mechanism forms at most one group regardless of the underly-

ing preference network. Specifically, for some predetermined agent i1, the single

platform is formed if the set of agents who are strongly preference-connected to

i1 is non-empty, and the group includes i1 and all those agents who are strongly

preference-connected to him. No group is formed if no agent is strongly preference-

connected to i1. Define Y (θ) ≡ C;i1(θ) to be the set of agents strongly preference-

connected to i1. Formally, Γ is a single group mechanism based on i1 if there exists

ε ∈ (0, v) such that for every θ: S(θ) is a singleton, and

1) if Y (θ) = ∅, then G(θ) = ∅ and xi(θ) = − ε
n for every i;

2) if Y (θ) ̸= ∅, then G(θ) = {i1} ∪ Y (θ), and

xi(θ) =

{
v − ε

n if i ∈ Y (θ),

− ε
n if i /∈ Y (θ).

Figure 2 illustrates the construction of a single group mechanism based on i1 = 6.

It is important that the specification of i1 cannot be contingent on the realization

of θ. Note also that only agent i1 may possibly enjoy informational rents close to v

under this mechanism.

Proposition 4. A single group mechanism Γ is uniquely enforceable.

For a fixed market size n, the single group mechanism is inefficient unless p

is very large since with non-negligible probability, only a few agents are strongly

preference-connected to i1, and hence the platform formed is small compared with

the total market size. In Figure 2, for example, a single group mechanism based on

i1 = 1 or 2 will create no group. As seen below, however, this problem becomes less

serious as the market size grows as far as the probability p does not vanish “very

fast” with n. Formally, let Γ be the single group mechanism specified above, and

denote by Θε(n) the set of type profiles θ at which the expected revenue under the

single group mechanism Γ described above is within ε of the optimal level:

Θε(n) = {θ : R(θ | g, x) > R∗(θ)− ε}.
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Figure 2: Construction of a Single Network Mechanism when i1 = 6

Proposition 5. Let γ > 0 and suppose that p(n) ≥ (1+γ) log n
n for every large n.

Then the single group mechanism Γ is asymptotically optimal in the sense that for

every ε > 0,

lim
n→∞

Pp(θ ∈ Θε(n)) = 1.

The proposition builds on a theory of random graphs. A directed graph D is

Hamiltonian if there exists a directed closed trail that goes through every node of

D exactly once as in Figure 3. If D(θ) is Hamiltonian, then every agent is strongly

preference-connected to every other agent, and hence to i1. It follows that if i1
subscribes, then all other agents are willing to pay up to v for subscription. It is

known that when the probability p(n) satisfies the condition stated in Proposition

5, the probability that D(θ) is Hamiltonian approaches one as the market becomes

large.

Proposition 5 includes as a special case where the probability p of each link is

independent of the market size.

Corollary 1. Suppose p > 0 is a constant. Then the single group mechanism Γ is

asymptotically optimal as n → ∞.
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Figure 3: Hamiltonian graph

The directed path indicated by the solid line visits every agent just once and

returns to the original agent.

6.2 Multiple Group Mechanism

We next consider the case where the expected number of agents (n − 1)p in any

agent’s preference set θi vanishes as the market size n → ∞. However, n(n − 1)p,

which is the expected total number of links in the underlying network D(θ), may

still increase with n.

Given i ∈ I and Y ⊂ I, we say that j is strongly preference-connected to i within

Y , and denote j ;Y i, if there is a directed path j → i1 → · · · → ik → i from j to i

such that all intermediate agents i1, . . . , ik on the path belong to Y . Given any F ,

Y ⊂ I with F ∩ Y = ∅, define also

C;F (Y, θ) = {j /∈ F : j ;Y i for some i ∈ F}

to be the set of agents outside F who are strongly preference-connected to some i

in F within Y in the network D(θ). If Y satisfies Y ⊂ C;F (Y, θ), then conditional

on subscription by agents in F , every agent i ∈ Y has acceptance as an iteratively

dominant action when a subscription fee is less than v.

For any θ, consider a collection F(θ) of subsets F of I such that either

1) F = {i} for some i such that θi = ∅ and C;i(θ) ̸= ∅, or

2) |F | ≥ 2 and F is a strong component.
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F is a set of candidates who are offered free subscription. The only complication is

that there may be an overlap of agents who find preferable two different free agents i

and j. In such a case, agent j is redundant in attracting those agents in the overlap.

In this sense, the optimal assignment must partition the set of agents who find free

agents preferable, and eliminate any redundant free agents. Formally, let S̄(θ) be

set of indices of elements of F(θ), and denote its generic element by Fs. Let

Y =
(
∪s∈S̄(θ)C;Fs(θ)

)
\
(
∪s∈S̄(θ) Fs

)
.

Y is the set of agents who are outside ∪s∈S̄(θ) Fs but are strongly preference-

connected to some Fs. If Y ̸= ∅, partition Y into disjoint subsets (Ys)s (allowing

Ys = ∅ for some s) such that

Ys ⊂ C;Fs(Ys, θ).

That is, each j ∈ Ys is strongly preference-connected within Ys to Fs so that they

are willing to pay up to v if agents in Fs also subscribe. If there are multiple

such partitions, take the one that minimizes the number of free agents included, or

equivalently, the number of elements in the set

{s : Fs = {i} and Ys ̸= ∅}.

Let now S(θ) ⊂ S̄(θ) be the subset of indices such that

S(θ) = {s ∈ S̄(θ) : Fs = {i} and Ys ̸= ∅} ∪ {s ∈ S̄(θ) : |Fs| ≥ 2}.

Let Gs(θ) = Fs(θ) ∪ Ys(θ) for each s ∈ S(θ), and

F (θ) = ∪s∈S(θ) Fs(θ), and Y (θ) = ∪s∈S(θ) Ys(θ).

Consider a mechanism such that for each θ, its groups are given by Gs(θ) for

s ∈ S(θ), and agents in Y (θ) are charged subscription fees close to v, while other

agents are offered small subsidies. Formally, for ε ∈ (0, v), define a multiple group

mechanism Γ by

g(θ) = (Gs(θ))s∈S(θ), and xi(θ) =

{
v − ε

n if i ∈ Y (θ),

− ε
n otherwise.

Figure 4 illustrates the construction of a multiple group mechanism, where F =

F1 ∪ F2.
13

13Note that agents 3 and 4 are not included in the assignment since they are redundant in terms

of the agents they attract.
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Figure 4: Construction of a Multiple Group Mechanism

Proposition 6. A multiple group mechanism Γ is uniquely enforceable.

As seen, the multiple group mechanism leaves the informational rents to a strong

component of agents, and hence can be inefficient when the probability p is high.

On the other hand, it is almost efficient when there is no strong component as seen

in the following lemma.

Lemma 1. Let Γ be a multiple group mechanism. If D(θ) contains no strong com-

ponent, then R(θ | g, x) = R∗(θ)− ε.

When the expected cardinality (n− 1)p of the type set θi of each agent becomes

small as n grows large, the probability that there exists a strong component becomes

small. It then follows from Lemma 1 that in such a market, the multiple group

mechanism becomes almost efficient. As before, let Θε(n) be the set of type profiles

θ at which the expected revenue under the multiple group mechanism Γ described

above is within ε of the optimal level:

Θε(n) = {θ : R(θ | g, x) > R∗(θ)− ε}.

Proposition 7. Suppose that p(n) = τ(n)
n for every n for some function τ : N →

R++ satisfying limn→∞ τ(n) = 0. Then the multiple group mechanism is asymptot-

ically optimal in the sense that for every ε > 0,

lim
n→∞

Pp(θ ∈ Θε(n)) = 1.
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The key insight behind this result also comes from a result on random graphs.

Let U(θ) be the undirected graph obtained from D(θ) by ignoring the direction

of its links. When the probability p(n) satisfies the condition of Proposition 7, it

can be shown that the probability that there is a cycle of three or more agents in

U(θ) approaches zero as n → ∞. If there is no such cycle in U(θ), then there is

no directed cycle of three or more agents in D(θ). Furthermore, it can be readily

shown that the probability that D(θ) contains directed cycles of just two agents also

approaches zero as n → ∞. It follows that the probability that there is a strong

component in D(θ) approaches zero as n → ∞, and hence a small subsidy needs to

be offered only to those agents with θi = ∅. These agents, however, must also be

offered small subsidies under complete information, and hence there is no loss in the

platform’s payoff compared with the complete information benchmark.

7 Conclusion

We study platform design when a platform offers connections to agents when it

exercises a monopoly power based on its proprietary access to information about the

agents’ heterogeneous salience types. The platform collects information about the

agents’ preferences and proposes an allocation that consists of groups of connected

agents and transfer payments. Our focus is on uniquely enforceable mechanisms that

work over two stages and make truthful reporting of private preference types weakly

dominant in the first stage, and acceptance of the proposed allocation a uniquely

optimal action for every agent in the second stage. The latter requirement addresses

the multiplicity of equilibria in the adoption decisions in the presence of network

externalities. We show that in the limit as the number of market participants grows

large, there exist uniquely enforceable mechanisms that extract full informational

surplus from the agents. These mechanisms are classified by the number of groups

of connected agents they create. Specifically, the classification is based on how the

expected number (n − 1)p of salience types that each agent finds preferable varies

with the market size n. In markets where each agent finds a relatively large number

of salience types preferable, an optimal mechanism forms one group of connected

agents and offers a small subsidy just to one agent. In contrast, in markets where

each agent finds a relatively small number of salience types preferable, an optimal

mechanism forms many small groups of connected agents.

The following are some open questions. First, one important case not covered by

our analysis is when the expected size of the preference set θi of each agent remains

constant regardless of n, i.e., p(n) = k
n so that (n−1)p → k for some constant k. This

case, however, corresponds to the threshold in the existence of cycles in the large
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random graphs, and the asymptotic behavior of the preference network is difficult to

analyze. Second, our market is one-sided in the sense that every agent is potentially

interested in a match with any other agent. On the other hand, platform design is

often studied in a two-sided market, where agents in one side are only interested to

be matched with some of the agents on the other side as in the case of sellers and

buyers of some good. While the present framework readily extends to accommodate

models of two-sided markets, extending the analysis requires a different technique.

Third, we have assumed for simplicity that the value of a platform can take only

two values 0 and v > 0 for each agent. As mentioned earlier, models in the matching

literature assume more general value specifications, and it would be interesting to

study their implications in our context. For example, one natural specification is

one where the value of a group increases monotonically with the number of agents

in it with preferable salience types.

Appendix

Proof of Proposition 2. We first show that

R∗(θ) ≤
∑

s∈S(θ)

{|Ys(θ)|(v − c)− |Fs(θ)|c}.

Take any component Cs(θ) (s ∈ S(θ)). Suppose to the contrary that there exists

an IR and uniquely acceptable mechanism with the allocation rule (ĝ, x̂) that yields

the payoff Rs(θ | ĝ, x̂) > |Ys(θ)|(v − c) − |Fs(θ)|c. Let Ŷ = {i ∈ Cs(θ) : x̂i(θ) > 0}
be the set of agents in Cs(θ) who are charged strictly positive subscription fees, and

F̂ = {i ∈ Cs(θ) : x̂i(θ) ≤ 0} be the set of agents in Cs(θ) who are offered subsidies

for subscription. By assumption, there exists i1 ∈ Ŷ who is not strongly preference-

connected to F̂ . Let J1 = {i1}, and let J2 ⊂ Ŷ be the set of agents to whom i1 is

strongly preference-connected: J2 = {j ∈ Ŷ : i1 ; j}. Since i1 is charged a positive

subscription fee, IR implies that J2 ̸= ∅, and furthermore, since i1 is not strongly

preference-connected to F̂ , no j ∈ J2 is strongly preference-connected to F̂ . Let

then J3 ⊂ Ŷ be the set of agents j to whom agents in J2 are strongly preference-

connected. In the same way, we can iteratively construct a sequence J4, J5, . . . of

subsets of Ŷ so that no agent in those subsets is strongly preference-connected to

F̂ . Since Ŷ is finite, however, we will have Jk+1 ⊂ ∪k
ℓ=1 Jℓ for some k. We then have

a contradiction to uniquely acceptable since then for agents i in the set ∪k
ℓ=1 Jℓ, no

subscription ai = 0 is a Nash equilibrium action since they are all charged positive

subscription fees.

The mechanism with allocation rule (g, x) defined in (5) is clearly IR and also

uniquely acceptable: For i ∈ F (θ), xi(θ) < 0 so that subscription ai = 1 is a
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dominant action. For j ∈ Ys(θ), aj = 1 is an iteratively dominant action since

Ys(θ) consists of all agents who are strongly preference-connected to some i ∈ Fs(θ):

For any j ∈ Ys(θ), either i ∈ θj for some i ∈ Fs(θ) or there exists k ∈ Ys(θ) with

k ∈ C;F (θ). Rejection is dominated in the second round of the iterative elimination

procedure in the first case, whereas it is iteratively dominated for j in one round

after it is dominated for k in the second case. Finally, the platform’s payoff from

Cs(θ) under (g, x) equals

R(θ | g, x) =
∑

s∈S(θ)

{|Ys(θ)|(v − c)− |Fs(θ)|c} − ε.

Since ε is arbitrary, R∗(θ) ≥
∑

s∈S(θ) {|Ys(θ)|(v − c) − |Fs(θ)|c}. We hence obtain

the stated conclusion.

Proof of Proposition 3. Let δ =
(
min {p, 1− p}

)(n2) > 0 so that P (θ) ≥ δ for every

θ. Consider the set Θsc of type profiles θ such that D(θ) is strongly preference-

connected. Define

κ = δ |Θsc| (n− 1)(v − c) > 0.

Fix any uniquely enforceable mechanism with allocation rule (g, x), and writeR(θ) =

R(θ | g, x) for simplicity. For any θ ∈ Θsc, it is optimal to include every agent in

the assignment. Furthermore, one agent must be offered free subscription since

otherwise, there would be a NE of the adoption game in which no agent accepts.

Hence, the optimal revenue under complete information is given by

R∗(θ) = (n− 1)v − nc.

On the other hand, for any θ, let J(θ) = {j ∈ I : xj(θ) > 0} be the set of agents who

are charged positive subscription fees under (g, x). Since Γ is IR, J(θ) ⊂ G(θ), the set

of agents included in the assignment. Since Γ is IR and uniquely acceptable, we must

again have one agent included in the assignment with a non-positive subscription

fee so that the platform’s revenue under θ satisfies

R(θ) ≤ |J(θ)|v − (|J(θ)|+ 1)c.

It follows that for any θ ∈ Θsc,

R∗(θ)−R(θ) ≥ (n− |J(θ)| − 1)(v − c). (6)

Take any θ ∈ Θsc and j ∈ J(θ), and consider now a profile (∅, θ−j) where agent j’s

type is replaced by θ′j = ∅. Clearly, (∅, θ−j) /∈ Θsc and R∗(∅, θ−j) = (n − 1)v − nc.

We must have either j /∈ G(∅, θ−j) or θj ∩ G(∅, θ−j) = ∅ since otherwise, agent j
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would report θ′j = ∅ when his true type is θj , and since xj(∅, θ−j) ≤ 0 by IR, his

utility from misreporting would be v−xj(∅, θ−j) ≥ v > v−xj(θ), which is his payoff

when he reports his type truthfully. It follows that G(∅, θ−j) consists of at most

n− 1 agents, and hence the fact that Γ is IR and uniquely acceptable implies that

R(∅, θ−j) ≤ (n− 2)v − (n− 1)c.

This further implies that

R∗(∅, θ−j)−R(∅, θ−j) ≥ v − c. (7)

We then have from (6) and (7),

R∗ −R =
∑
θ

P (θ) {R∗(θ)−R(θ)}

≥
∑
θ∈Θsc

[
P (θ) (n− |J(θ)| − 1)(v − c) +

∑
j∈J(θ)

P (∅, θ−j) (v − c)
]

= δ
∑
θ∈Θsc

[
(n− |J(θ)| − 1)(v − c) + |J(θ)| (v − c)

]
= δ |Θsc| (n− 1)(v − c).

Proof of Proposition 4. Γ is clearly individually rational. To see that it is strategy-

proof, note first that agent i1 has no incentive to misreport his type since the group

formed or his transfer is independent of his report. Take any i ̸= i1.

1) If i is strongly preference-connected to i1 and hence belongs to the group

(i ∈ Y (θ)) under θ, then his payoff is given by

ui(g(θ), θi)− xi(θ) = v − (v − ε

n
) =

ε

n
.

If i reports θ′i such that i still belongs to the group under (θ′i, θ−i), then his

payoff is unchanged. If i reports θ′i such that i is not strongly preference-

connected to i1, then he is not offered an assignment and his payoff equals
ε
n which is the transfer made to him. It follows that i has no incentive to

misreport his type.

2) If i is not strongly preference-connected to i1 and hence does not belong to

the group under θ, then his payoff equals the transfer made to him: ε
n . If he

reports θ′i that makes him still not strongly preference-connected to i1 under

(θ′i, θ−i), then his payoff is unchanged. On the other hand, if he reports θ′i
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which makes him strongly preference-connected to i1, then his payoff equals

v− (v− ε
n) =

ε
n if the assignment g(θ′i, θ−i) also includes some agent in θi, and

−(v − ε
n) otherwise. In every case, i has no incentive to misreport his type.

We have hence shown that Γ is strategy-proof. To see that Γ also is uniquely

acceptable, note that ai = 1 is a strictly dominant action for i = i1, and ai = 1 is

iteratively strictly dominant for any i ∈ Y (θ).

Proof of Proposition 5. Let ΘH(n) be the set of type profiles θ = (θ1, . . . , θn) such

that the directed graph D(θ) has a Hamiltonian cycle: There exists a directed closed

path that goes through every agent. For any θ ∈ ΘH(n), hence, every agent j ̸= i is

strongly preference-connected to i, and hence the group formed by the single group

mechanism covers all the agents. This further implies that ΘH(n) ⊂ Θε(n). On the

other hand, when the probability p(n) satisfies the stated condition, the probability

of ΘH(n) approaches 1 as n → ∞ (McDiarmid 1981, Theorem 4.7).14 It follows that

lim
n→∞

Pp(θ ∈ Θε(n)) ≥ lim
n→∞

Pp(θ ∈ ΘH(n)) = 1.

Proof of Proposition 6. 1) Suppose first that agent i ∈ Fs(θ) for some s ∈ S(θ).

If θi ̸= ∅, then Fs(θ) is a strong component of D(θ) by definition, and hence

ui(g(θ), θi) = v. If θi = ∅, then ui(g(θ), θi) = 0. Since xi(θ) = − ε
n in both

cases, i’s payoff under θ equals

ui(g(θ), θi)− xi(θ) =

{
ε
n if θi = ∅,
v + ε

n otherwise.

If i reports θ′i such that i ∈ Fs′(θ
′
i, θ−i) for some s′ ∈ S(θ′i, θ−i), then his payoff

equals

ui(g(θ
′
i, θ−i), θi)− xi(θ

′
i, θ−i) =

{
ε
n if θi ∩Gs′(θ

′
i, θ−i) = ∅,

v + ε
n otherwise.

Since θi = ∅ implies θi ∩ Gs′(θ
′
i, θ−i) = ∅, it follows that reporting θ′i is not

a profitable deviation whether θi = ∅ or not. If i reports θ′i such that i ∈
Ys′(θ

′
i, θ−i) for some s′ ∈ S(θ′i, θ−i), then i’s payoff equals

ui(g(θ
′
i, θ−i), θi)− xi(θ

′
i, θ−i) =

{
0− (v − ε

n) if θi ∩Gs′(θ
′
i, θ−i) = ∅,

v − (v − ε
n) otherwise.

(8)

14See also Bollobás (2001, p217).
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If i reports θ′i such that i /∈ G(θ′i, θ−i), then his payoff equals ε
n . It follows that

reporting θ′i is not a profitable deviation in either case.

2) Suppose that agent i ∈ Ys(θ) for some s ∈ S(θ). Since then xi(θ) = v− ε
n and

ui(g(θi, θ−i), θi) = v, i’s payoff under θ equals

ui(g(θ), θi)− xi(θ) = v − (v − ε

n
) =

ε

n
.

Furthermore, no j ∈ θi is strongly preference-connected to i under θ−i since

otherwise, i and j would be part of a strong component and hence i ∈ Fs(θ)

would hold. If i reports θ′i such that i ∈ Fs′(θ
′
i, θ−i) for some s′ ∈ S(θ′i, θ−i),

then θi ∩ Gs′(θ
′
i, θ−i) = ∅ since by definition, Gs′(θ

′
i, θ−i) contains only those

agents who are strongly preference-connected to i under θ−i, but as noted

above, no agent j ∈ θi is strongly preference-connected to i under θ−i. Hence,

ui(g(θ
′
i, θ−i), θi) = 0. It follows that his payoff equals

ui(g(θ
′
i, θ−i), θi)− xi(θ

′
i, θ−i) =

ε

n
.

If i reports θ′i such that i ∈ Ys′(θ
′
i, θ−i) for some s′ ∈ S(θ′i, θ−i), then i’s payoff

is given by (8), and hence ≤ ε
n . If i reports θ′i such that i /∈ G(θ′i, θ−i), then

his payoff equals ε
n . It follows that misreporting is not a profitable deviation

in any of these cases.

3) Suppose that agent i /∈ G(θ). In this case, θi = ∅ and xi(θ) = − ε
n so that

ui(g(θi, θ−i), θi)−xi(θi) =
ε
n . If i reports θ

′
i such that i ∈ Gs′(θ

′
i, θ−i) for some

s′ ∈ S′(θ), then ui(g(θ
′
i, θ−i), θi) = 0 and xi(θ

′
i, θ−i) = v − ε

n or − ε
n depending

on whether i belongs to a strong component of D(θ′i, θ−i) or not. In either

case, ui(g(θ
′
i, θ−i), θi)− xi(θ

′
i, θ−i) ≤ ε

n so that misreporting is not a profitable

deviation.

The same argument as in the proof of Proposition 2 shows that Γ is uniquely

acceptable.

Proof of Lemma 1. Let Γ be a multiple group mechanism, and take any component

C of D(θ) with two or more agents. Define CF = {i ∈ C : θi = ∅} and CY =

{i ∈ C : θi ̸= ∅}. Since D(θ) contains no strong component, F (θ) and Y (θ) in the

definition of a multiple group mechanism satisfy F (θ)∩C ⊂ CF and Y (θ)∩C = CY .

Denote F (θ)∩C = {h1, . . . , hM}, and let (Ym(θ))Mm=1 be the corresponding partition

of CY according to g. By definition, if (Fk, Yk)
K
k=1 is any collection such that (Yk)

K
k=1

is a partition of CY , (Fk)
K
k=1 is a collection of distinct singleton subsets of CF , and

Yk ⊂ C;Fk
(Yk, θ) for every k, then

M ≤ K. (9)
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Since xi(θ) = − ε
n for every i ∈ CF and xi(θ) = v− ε

n for every i ∈ CY , the platform’s

payoff under (g, x) from the component C is given by

|CY | (v −
ε

n
− c)− |CF ∩ F (θ)| ( ε

n
+ c)− |CF \ F (θ)| ε

n

= |CY |(v − c)− |CF ∩ F (θ)|c− |C| ε
n
.

On the other hand, we claim that the first-best payoff for the platform under com-

plete information from the component C is given by

|CY |(v − c)− |CF ∩ F (θ)|c.

Let (F ∗, Y ∗) be the pair of disjoint subsets of C that solves (4). Since θi ̸= ∅ for

every i ∈ Y ∗ by definition, we have Y ∗ ⊂ CY . If Y ∗ ⊊ CY , let Y ′ = Y ∗ ∪ {i} for

i ∈ CY \ Y ∗ and F ′ = F ∗ ∪ {j} for j ∈ CF such that j ∈ θi. Since v − 2c > 0, we

then have

|Y ′|(v − c)− |F ′|c ≥ (|Y ∗|+ 1)(v − c)− (|F ∗|+ 1)c

= |Y ∗|(v − c)− |F ∗|c+ v − 2c

> |Y ∗|(v − c)− |F ∗|c,

which contradicts our assumption that (F ∗, Y ∗) maximizes (4). We hence have

Y ∗ = CY = C ∩ Y (θ). Denote F ∗ = {i1, . . . , iK} and note that there exists a

partition (Y ∗
k )

K
k=1 of CY such that Y ∗

k ⊂ C;ik(Y
∗
k , θ) for every k.15 Indeed, if we

define Y ∗
1 = C;i1(θ), and Y ∗

k = C;ik(θ) \ (∪k−1
ℓ=1 Y

∗
ℓ ) for k = 2, . . . ,K, then Y ∗

k ⊂
C;ik(Y

∗
k , θ) for every k.16 Since the collection ({ik}, Y ∗

k )
K
k=1 is such that (Y ∗

k )
K
k=1 is

a partition of CY , and Y ∗
k ⊂ C;(Y ∗

k , θ) for every k, we have by (9) that M ≤ K.

This shows that (C ∩ F (θ), C ∩ Y (θ)) maximizes (4) so that |Y ∗|(v − c) − |F ∗|c =

|C ∩ Y (θ)|(v − c)− |C ∩ F (θ)|c.
Under θ, hence, the platform’s payoff from the component C under the multiple

group mechanism is within |C| ε
n of the corresponding first-best payoff. Hence, the

difference in total payoff under θ is at most ε.

Proof of Proposition 7. Consider first the probability that D(θ) contains no pair

(i, j) of agents who are strongly preference-connected to each other (i.e., both links

i → j and j → i exist). We have

Pp(D(θ) contains no strongly preference-connected {i, j}) = (1− p2)(
n
2).

15It may be the case that Y ∗
k = ∅ for some k.

16Suppose to the contrary that there exists i ∈ Y ∗
k such that for any directed path from i to ik,

there exists j ̸= ik such that j /∈ Yk on the path. By definition, j ∈ ∪k−1
ℓ=1 Yℓ so that i ∈ Y ∗

ℓ for some

ℓ < k, which is a contradiction. We hence have Y ∗
k ⊂ C;ik (Y

∗
k , θ).
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If we let k = n2

τ2
, then k → ∞ as n → ∞, and the above probability can be evaluated

as

(
1− p2

)(n2) > (
1− τ2

n2

)n2

2
=

(
1− 1

k

) τ2k
2

=
((

1− 1

k

)k) τ2

2 → 1 as n → ∞.

We next consider the probability that D(θ) contains a strongly preference-connected

set of three or more agents. For this, consider an auxiliary undirected graph U(θ)

obtained from D(θ) by ignoring direction of links in D(θ) and if there are two links

i → j and j → i between i and j, replacing them by a single undirected link. Then

Pp(U(θ) contains an (undirected) link ij) = 1− (1− p)2 < 2p,

and hence the stated condition on τ implies (Diestel 2000, p. 248) that

Pp(U(θ) contains an (undirected) cycle of length ≥ 3) → 0 as n → ∞.

Since

Pp(G(θ) contains a directed cycle of length ≥ 3)

≤ Pp(U(θ) contains an undirected cycle of length ≥ 3),

we conclude that Pp(G(θ) has a directed cycle of length ≥ 3) → 0 as n → ∞. Com-

bining the above arguments, we have

Pp(G(θ) contains a strongly preference-connected set of agents) → 0 as n → ∞.
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