
Collusion through Mediated Communication in Repeated Games

with Imperfect Private Monitoring†

Masaki Aoyagi‡
July 30, 1999

Revised: October 2, 2001

†I am very grateful to Mark Armstrong, V. Bhaskar, Michihiro Kandori and two referees of
this journal for helpful comments. Part of this research was conducted while I was visiting
the University College London. Their hospitality is gratefully acknowledged.
‡ISER, Osaka University, 6-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan. E-mail address:
aoyagi@iser.osaka-u.ac.jp.

1

Masaki Aoyagi
タイプライターテキスト
Economic Theory, 25, 455-475, 2005.

Masaki Aoyagi
タイプライターテキスト

Masaki Aoyagi
タイプライターテキスト

Masaki Aoyagi
タイプライターテキスト



Abstract

This paper studies repeated games with imperfect private monitoring when there exists

a third-party mediator who coordinates play by giving non-binding instructions to players

on which action to take and by collecting their private information. The paper presents a

Nash-threat folk theorem for a communication equilibrium based on such mediation when

monitoring is jointly ²-perfect in the sense that every player is almost perfectly monitored

collectively by other players.
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1. Introduction

Repeated games with imperfect private monitoring, where players’ actions in each

period give rise to noisy private signals instead of a publicly observable signal, provide an

accurate description of many competitive situations involving moral hazard. A frequently

cited example is the repeated Bertrand oligopoly where the competing firms may offer

secret price discounts to their customers (Stigler (1964)). When one firm offers such a

discount, other firms will experience a stochastic reduction in their demand level. There

is, however, no public signal which indicates this change. It is now well recognized that the

essential difficulty associated with private monitoring is the lack of a coordination device

on which play can be conditioned. To see this, note that the standard grim-trigger strategy

in repeated games with (imperfect) public monitoring starts punishment at a particular

realization of the public signal. In quantity setting oligopoly with publicly observed price,

for example, price below a certain threshold triggers punishment whether that is caused

by cheating of a cartel member or a poor market condition. It can be seen that without

a public signal, coordinated reversion to punishment at exactly the same timing would be

impossible.

When faced with the coordination problem, however, it is natural to expect that play-

ers attempt various forms of communication with one another. In fact, empirical findings

suggest that communication is a key component of many collusion schemes. Among oth-

ers, Scherer (1980) reports a number of anti-trust cases against “trade associations,” a

gathering of representatives from rival companies for the exchange of information.1 The

principal purpose of this paper is to analyze player communication in repeated games in

order to understand collusion and cooperation in the absence of public signals.

Matsushima (1991), Compte (1994, 1998), and Kandori and Matsushima (1998) are

the first to analyze player communication in repeated games with private monitoring.

These models assume that communication is public in the sense that players report their

private signals publicly and simultaneously. While public communication is a simple and

natural form of communication, there is no reason to believe that parties to a complex

collusion scheme do not employ a more sophisticated communication method. For example,

Doyle and Snyder (1999) study the interaction of the “Big 4” U.S. automakers during 1965-

1Genesove and Mullin (2001) give a detailed documentation of such meetings in the U.S.
sugar industry between 1927 and 1936.
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95 through a leading industry trade journal: The journal privately contacts each automaker

to elicit their monthly production plans up to six months ahead of actual production.

Upon publication, it privately contacts each producer again to obtain a revised plan for

publication in the next issue. The journal repeats this process and publishes a series

of revisions up to the month in question. This episode suggests not only the potential

complexity of a communication process but also the existence of a mediator who engages

in secret communication with firms.

In this light, this paper assumes the most general form of communication and exam-

ines its consequences. Formally, the paper analyzes mediated communication as proposed

by Myerson (1986) and Forges (1986), where a third-party mediator coordinates play.

Specifically, the mediator gives secret instructions to players on which action to play and

collects their private signals to determine future instructions. Following Forges (1986), we

refer to an equilibrium of such a mediation game as a communication equilibrium. The

critical difference between public and mediated communication is as follows: In the models

of public communication, players’ (possibly mixed) actions in each period are conditioned

only on the public reports of their signals. Under mediated communication, in contrast,

their actions are conditioned on secret instructions from the mediator and hence may be

correlated. In this sense, the relationship between equilibrium based on public communi-

cation and that based on mediated communication parallels the relationship between Nash

and correlated equilibrium in normal-form games.

We do not specify the nature of the mediator in our model. In some applications, it

would be natural to suppose that the role of mediation is performed by an individual or

organization such as the trade journal mentioned above. When taking this interpretation,

however, it should be noted that we have assumed away the incentive problem faced by the

mediator himself. In any event, the mediator’s task is to receive reports from the players

as inputs and give secret instuctions to them as outputs (with some randomization). In

particular, it should be noted that the mediator is not required to observe any information

first-hand. The scheme is set up so that he will obtain all the relevant information from

the players in an incentive compatible manner.

Along with mediated communication, this paper focuses on the possibility of joint

monitoring under private monitoring. Under public monitoring, every player is monitored
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by all other players through a common signal. Under private monitoring, on the other

hand, the relationship between a player and the identity and nature of his monitors takes

various forms. Ben-Porath and Kahnemann (1996) analyze a model of repeated games

in which each player’s action is perfectly monitored by some subset of his opponents.

Joint monitoring in their context is hence summarized by the identity of the monitors

of each player. In general, however, if a player has two or more monitors, then their

monitoring technologies may be different from each other: First, different monitors may

observe different aspects of his activity. For example, if the player is a middle manager of

any company, then his job would have many different aspects which are observed separately

by disjoint sets of people: His leadership qualities are monitored by his subordinates,

creative thinking by his boss, dedication to customer service by clients, etc. Comprehensive

assessment of his performance requires their joint inputs.2 Second, when monitoring is

imperfect, the monitors’ (noisy) signals may vary in accuracy, correlation with one another,

and so on, even if they are generated by a single action of the monitored player. In both

cases, monitoring would be most accurate when the monitors’ signals are jointly evaluated.

This paper presents a Nash folk theorem for communication equilibrium when moni-

toring is jointly ²-perfect in the sense that the collective assessment of the monitors’ signals

reveals the player’s action almost perfectly.

From a technical point of view, analysis of repeated games with communication under

almost perfect monitoring is important for two reasons: First, it will furnish robustness

to the theory of repeated games based on perfect monitoring against a slight perturbation

in the monitoring technology. As will be seen, the monitoring structure assumed in this

paper subsumes many natural and interesting classes of near perfect monitoring. Second,

games with almost perfect monitoring are the subject of the analysis which does not assume

player communication: Bhaskar and van Damme (1997), Ely and Valimaki (2000), Mailath

and Morris (1999), Obara (2000), Piccione (1999), Sekiguchi (1997, 1998) all discuss the

possibility of an efficient equilibrium under near perfect monitoring. Although one might

expect a comparable conclusion with communication, the existing analysis is not readily

applicable. As expalined below, mediated communication also restores and generalizes the

2An appraisal system based on this class of joint monitoring is known as “360-degree
feedback” in organization theory, and is gaining popularity in actual practice. (See, for
example, Fletcher (1997).)
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critical observation by Bhaskar and Van Damme (1997) in a game without communication.

In what follows, we illustrate how mediated communication is used to sustain coopera-

tion in our model. The general difficulty associated with public communication as modeled

by Kandori and Matsushima (1998) and Compte (1994, 1998) is the provision of a proper

incentive for truth-telling. It should be noted that truth-telling in public communication

requires each player’s continuation payoff to be either independent of his report, or depen-

dent also on reports from the other players. Otherwise, a player will always report the

signal that maximizes his continuation payoff regardless of his true signal. Unlike public

communication, mediated communication allows imperfect correlation of players’ actions

through secret instructions given to them by the mediator. A collusion scheme can exploit

this uncertainty. To be concrete, suppose that players want to sustain cooperation in the

repeated prisoners’ dilemma. Consider first the grim-trigger scheme in which the mediator

instructs each player to play “C” if no “bad” signal has been reported in the past, and

“D” otherwise. While this is a natural extension of the standard grim-trigger strategy

under public monitoring, it does not work under private monitoring: If player i expects

the other player j to play C as instructed, then i does not want to report a bad signal

truthfully since he knows that every bad signal is just an error, and that truthful revelation

would end cooperation prematurely. If player j knows that i would never report a bad

signal, however, then j has no incentive to choose C in the first place. The problem is

that the incentive for truth-telling cannot be ensured when a player is certain about the

other player’s action. Consider now a variation of the above grim-trigger scheme where the

mediator’s instruction is “D” with small but positive probability during the cooperation

phase. Reversion to the punishment phase takes place if and only if player i reports a bad

signal when the instruction to player j was “C,” or i reports a “good” signal when the

instruction to j was “D” (i 6= j). Each player now finds it optimal to report his signal

truthfully: If the signal is bad, then it is likely that the other player has been instructed

to play D.

It is instructive to compare the above logic to that used in Ben-Porath and Kahnemann

(1996). In their basic model, each player i is perfectly monitored by two or more players.

The monitors are induced to tell the truth through the punishment inflicted on them in
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the event that their reports about i are incompatible with one another.3 Although it is

tempting to apply this logic to the imperfect monitoring environment considered in the

present paper, a straight extension encounters the same kind of difficulty as described

above. If player i is expected to play action C with probability one, then any monitor who

receives a bad signal about i will not report it truthfully because he knows that it is an

error in his observation and expects other monitors to report good signals about i with

high probability. Anticipating this, player i will deviate to D. As will be seen, this problem

is avoided if the signals reported by i’s monitors are matched against the instruction given

to i, rather than against each other.

The comparison of results available under mediated and public communication is as

follows: First, in two-person games, the folk theorems of Compte (1998) and Kandori

and Matsushima (1994, 1998) both place certain restrictions on the stage-game payoffs

along with the informational condition known as conditional independence.4 While these

results do not require near perfect monitoring, Compte (1998) demonstrates that the set

of (perfect public) equilibrium payoffs is in general strictly smaller than the set of feasible

payoffs above the one-shot Nash equilibrium point (regardless of the level of monitoring

and the discount factor). No restriction on stage-payoffs is necessary for our result. Second,

in games with three or more players, the folk theorems of Compte (1994) and Kandori and

Matsushima (1998) require that the probability distribution of private signals satisfy the

“distinguishability conditions,” which enable players to statistically identify a potential

deviator. While these conditions do not imply near perfect monitoring and are generically

satisfied if the number of signals is sufficiently large (compared to the number of actions)

and if monitoring is “global” in the sense that every player is monitored by every other

player, they are not necessarily implied by jointly ²-perfect monitoring as assumed in this

paper. For example, they fail to hold if some player is monitored by only one other player.

The logic behind the use of mediated communication is most closely related to the

observation by Bhaskar and van Damme (1997), who note that for a player’s private signal

to be a useful indicator of the opponent’s action, the opponent must be randomizing his

actions. The technical aspect of the analysis in this paper bears some resemblance to that

3For example, one monitor reports a good signal while the other reports a bad signal.
4Conditional independence requires the players’ signals to be independent of each other
conditional on their action profile.
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of Aoyagi (2000), which studies public communication under imperfect private monitoring

when the private signals are correlated. While there may be no exogenous correlation

between private signals in the current framework, correlation is endogenously generated

between the actions and the players’ private signals through the mediator’s instructions.

While the discussion of this paper is totally embedded in the repeated game framework, the

importance of mediated communication is noted in other contexts as well. In particular,

Mitusch and Strausz (2000) examine the role of a mediator in a principal-agent problem

and show that the random instructions by the mediator can be used to alleviate the

commitment problem faced by the principal.

The organization of the paper is as follows. The next section gives a formal description

of a communication game in an infinitely repeated game setting. Section 3 describes jointly

²-perfect monitoring with some examples. The folk theorem is presented in Section 4.

Section 5 compares public and mediated communication.

2. Communication Games

Our formulation of a communication game is essentially identical to that of Myerson

(1986) and Forges (1986). It is, however, specifically adapted to the infinitely repeated

environment studied in this paper.

The set I = {1, . . . , n} of n players and a mediator interact over an infinite number
of periods. Denote by Ai the finite set of player i’s actions and by A =

Q
i∈I Ai the set of

action profiles. The set of player i’s mixed actions is denoted ∆Ai.
5 Action profile a ∈ A

stochastically determines each player i’s private signal si, which is an element of the finite

set Si. The probability of signal profile s = (si)i∈I ∈ S under action profile a ∈ A is

denoted by P (s | a).6 Player i’s stage-payoff function is given by gi : A→ R, and the set

of feasible payoff vectors is denoted by

V = co {(gi(a))i∈I : a ∈ A},

where co denotes the convex hull. A communication game is a repeated game in which the

mediator gives secret instructions to players on which action to take before each stage-game,

5For any set A, ∆A denotes the set of probability distributions over A endowed with an
appropriate σ-algebra.
6Throughout, s̃ denotes a random variable and s its realization. Where no confusion arises,
the event s̃ = s is expressed simply as s.
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and then collects reports on their private signals at the end of each period. Specifically,

it is characterized by the set Qi of possible instructions to player i, and the set Ri of his

reports (i ∈ I).7 Write Q =
Q
i∈I Qi and R =

Q
i∈I Ri. In general, no restrictions will

be placed on the nature of the instruction: It may be a summary of information on the

history of play that the mediator has collected, or a suggestion as to which action should

be taken based on such information.

Player i’s action rule λi : Qi → ∆Ai chooses the mixed action as a function of the

current instruction from the mediator, and his reporting rule µi : Qi × Ai × Si → ∆Ri

specifies the mixed report as a function of the instruction as well as his own action and

signal. Denote by Ci the set of pairs (λi, µi) of player i’s action and reporting rules.

Player i’s communication history after period t is a sequence of the mediator’s in-

structions to him and his own reports in periods 1, . . . , t. On the other hand, player i’s

private history after period t is a sequence of his own actions and private signals in periods

1, . . . , t.

Player i’s (behavioral) strategy σi :
S∞
t=0

©
(Qi×Ri)t× (Ai×Si)t

ª→ ∆Ci determines

the probability distribution over pairs of action and reporting rules (λi, µi) as a function of

his communication and private histories. Player i’s strategy σi is simple if it is a function

of his communication histories alone.

On the other hand, the mediator’s choice of instructions is captured by the (behavioral)

mediation strategy τ :
S∞
t=0 (Q×R)t → ∆Q, which determines a (mixed) instruction profile

to all players as a function of their communication histories.

The players have a common discount factor δ ∈ (0, 1), and player i’s (average) dis-
counted repeated game payoff Vi(σ, τ, δ) (normalized by (1− δ)) under the strategy profile
(σ, τ) is defined in the usual manner. A communication equilibrium is a strategy profile

(σ, τ) such that Vi(σ, τ, δ) ≥ Vi(σ
0
i, σ−i, τ, δ) for each σ0i and i ∈ I.8 A communication

equilibrium (σ, τ) is simple if each σi (i ∈ I) is simple.

7If the set of possible instructions or reports depends on the history of play, Qi or Ri can
be redefined to be the union of all such sets.
8In Myerson (1986), a communication equilibrium is the mediation strategy τ itself if the
profile σ∗ of honest and obedient strategies forms a Nash equilibrium under τ . Although we
will indeed consider such an equilibrium in Section 4, the present definition is convenient
for the discussion in Section 5.
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3. Jointly ²-Perfect Monitoring

Given ² ≥ 0, monitoring is jointly ²-perfect if for every i ∈ I, there exists a partition
Ω−i = {Ω−i(ai)}ai∈Ai of S−i such that

P (s̃−i ∈ Ω−i(ai) | ai, a−i) ≥ 1− ² for every (ai, a−i) ∈ A.

With jointly ²-perfect monitoring, hence, player i’s action ai gives rise to a signal profile

in Ω−i(ai) with high probability. In other words, i’s action is almost perfectly monitored

by other players when their private signals are jointly evaluated. Note that this definition

does not preclude the possibility that a player is monitored only by a proper subset of his

opponents.9

A special case of the above definition is as follows: Monitoring is ²-perfect if for every

i ∈ I and j 6= i, there exists a partition Ωj = {Ωj(ai)}ai∈Ai of Sj such that

P (s̃j ∈ Ωj(ai) for every j 6= i | ai, a−i) ≥ 1− ² for every (ai, a−i) ∈ A.

With ²-perfect monitoring, therefore, each player almost perfectly monitors the action

profile of all other players. By letting Ω−i(ai) =
Q
j 6=i Ωj(ai), it can be seen that ²-

perfection implies joint ²-perfection. The two notions coincide in two-person games. ²-

perfect monitoring is canonical if for each j ∈ I, sj = (s1j , . . . , sj−1j , sj+1j , . . . , snj ), s
i
j ∈ Ai

(i 6= i), and

(1) P (s̃ij = ai for every j 6= i | ai, a−i) ≥ 1− ² for every (ai, a−i) ∈ A.

In a canonical model, hence, the set of player j’s signals is isomorphic to the set of action

profiles of all other players.

Suppose that monitoring P is jointly ²-perfect with partitions {Ω−i}i∈I . For each
i ∈ I and s−i ∈ S−i, define a∗i (s−i) to be the unique action ai ∈ Ai of player i such that
s−i ∈ Ω−i(ai). In other words, we have

s−i ∈ Ω−i(a∗i (s−i)) for every i ∈ I and s−i ∈ S−i.
9For example, if player j does not monitor player i, then choose the partition Ω−i of S−i
so that each Ω−i(ai) is a cylinder set with base Sj . This way, j’s signal will be ignored.
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Jointly ²-perfect monitoring (P, {Ω−i}i∈I) is consistent if for every j ∈ I, sj , rj ∈ Sj ,
aj ∈ Aj , and i 6= j,

X
a−i−j

X
s−i−j

P (sj , s−i−j | ai = a∗i (sj , s−i−j), aj , a−i−j)(2)

≥
X
a−i−j

X
s−i−j

P (sj , s−i−j | ai = a∗i (rj, s−i−j), aj , a−i−j).

Consistency is used to derive the optimality of truth-telling when the players report their

signals to the mediator. While the direct interpretation of this condition is somewhat

difficult, it permits some intuitive sufficient conditions as discussed below.

First, it can be verified that the standard class of ²-monitoring (1) is consistent.

Proposition 1. For ² ≥ 0 small, if monitoring is ²-perfect and canonical, then it is

consistent.

Proof: See the Appendix.

Next, jointly ²-perfect monitoring (P, {Ω−i}i∈I) is congruent if for each i ∈ I and
s−i ∈ S−i,

P (s−i | ai = a∗i (s−i), a−i) = max
ai∈Ai

P (s−i | ai, a−i) for any a−i ∈ A−i.

In other words, given any signal profile s−i, i’s action a∗i (s−i) maximizes the probability

of s−i regardless of the action profile of other players. Put differently, congruency asserts

that the inference by i’s monitors about his most likely action depends only on i’s action

and not on others’.10 It can be readily verified that congruency implies consistency, and

that the two conditions coincide in two-person games. Congruency is easy to check in

actual problems.

For illustration, suppose that in a two-person game, the set of actions is given by

Ai = {C,D} and the set of signals is given by Si = {0, 1, 2} (i = 1, 2). Assume that the

10In this sense, it would not be unreasonable to include congruency as part of the definition
of ²-jointly perfect monitoring.

11



probability distribution of s̃j is as follows (j 6= i):
aj aj aj

C D C D C D

C 1− ² 1− ² C 2²/3 ²/3 C ²/3 2²/3
ai ai ai
D ²/3 2²/3 D 1− ² 1− ² D 2²/3 ²/3

P (s̃j = 0 | a) P (s̃j = 1 | a) P (s̃j = 2 | a)

Figure 1

As seen, s̃j = 0 strongly indicates ai = C, while s̃j = 1 strongly indicates ai = D, both

regardless of j’s own action. Indeed, monitoring is ²-perfect with Ωj(ai = C) = {0, 2}
and Ωj(ai = D) = {1}. This distribution, however, violates congruency (and consistency)
since i’s action that maximizes the probability of s̃j = 2 changes with j’s own action as

P (s̃j = 2 | ai = C, aj = C) < P (s̃j = 2 | ai = D, aj = C), but

P (s̃j = 2 | ai = C, aj = D) > P (s̃j = 2 | ai = D, aj = D).

In the above example, monitoring fails to be congruent (or consistent) because of the

existence of a signal which occurs with small probability under any action of player i. The

following proposition shows that joint ²-perfection implies congruency if each signal profile

s−i occurs with probability ≥ ² under some ai.

Proposition 2. Suppose that monitoring is jointly ²-perfect. If for every i ∈ I, s−i ∈ S−i
and a−i ∈ A−i,

max
ai∈Ai

P (s−i | ai, a−i) ≥ ²,

then monitoring is congruent.

Proof: See the Appendix.

Since the above inequality holds automatically when there is no noise (i.e., ² = 0), it

immediately follows from Proposition 2 that monitoring is congruent whenever it is jointly

0-perfect.

The following are some examples of jointly ²-perfect monitoring.

Example 1: Monitoring is locally ²-perfect if for every i ∈ I, there exists a non-empty set
Ei ⊂ I \ {i} such that for each j ∈ Ei, there exists a partition Ωj = {Ωj(ai)}ai∈Ai such
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that

P (s̃j ∈ Ωj(ai) for every j ∈ Ei | ai, a−i) ≥ 1− ² for every (ai, a−i) ∈ A, and
P (s−Ei | a) = P (s−Ei | a0i, a−i) for every s−Ei ∈ S−Ei , a ∈ A, and a0i ∈ Ai.

Namely, each player i is ²-perfectly monitored by every player in some subset Ei, but no

other player observes i’s action. This would be the case, for example, in network economies

where player i is monitored by another player j if and only if i is linked to j. Ben-Porath

and Kahneman (1997) analyze games with locally 0-perfect monitoring.11

In games with three or more players, the distinguishability conditions of Kandori

and Matsushima (1998) are implied by (global) ²-perfection (1) as long as ² > 0 is small

enough. As seen below, however, they are not necessarily implied by joint ²-perfection.

To see this with local ²-perfection, suppose that monitoring is locally ²-perfect, and that

there exists i ∈ I such that Ei = {j} for some j ∈ I. That is, player j is the only
monitor of player i, and no other player receives a signal about i’s action. Given any

signal profile s−i−j ∈ S−i−j of players other than i and j, it is straightforward to verify
that P (s−i−j | a) = P (s−i−j | a0i, a−i) for every a ∈ A and a0i ∈ Ai. This violates condition
(A2) of Kandori-Matsushima (1998).

Example 2: Suppose that a monopolist (player 0) sells his product to a large number of

consumers (players 1, . . . , n). The monopolist’s effort (action) in the production process

stochastically determines the product qualities that are privately observed by the con-

sumers. Even if each consumer’s signal is noisy, joint evaluation of all their signals reveals

the monopolist’s action with high accuracy by the law of large numbers (provided that

those signals are independent across consumers conditional on the monopolist’s action).

For concreteness, suppose that the monopolist has two actions high (H) and low (L),

and that the quality of the good delivered to each consumer i is either 0 or 1: A0 = {L,H}
and Si = {0, 1} (i = 1, . . . , n). The probability distribution P is such that s1, . . . , sn are

independent conditional on a0 and for every i = 1, . . . , n,

P (si = 1 | a0 = H, a−0) = P (si = 0 | a0 = L, a−0) = γ for any a−0 ∈ A−0,
11As pointed out in the Introduction, however, there exists a difference between the logic
behind the construction of an equilibrium in this paper and that in Ben-Porath and Kah-
neman (1997).
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where γ is a constant. We assume that γ > 1/2 so that si = 1 and si = 0 represent high

and low quality, respectively. Define

Ω−0(a0 = H) =
n
s−0 ∈ S−0 :

nX
i=1

si ≥ n
2

o
, Ω−0(a0 = L) =

n
s−0 ∈ S−0 :

nX
i=1

si <
n

2

o
.

It directly follows from the law of large numbers that for any γ > 1/2 and ² > 0, we can

take n large enough so that monitoring of the monopolist is jointly ²-perfect. To see that

it is also consistent, note that

a∗0(s−0) =
½
H if s−0 ∈ Ω−0(H),
L if s−0 ∈ Ω−0(L),

We have for any s−0 ∈ S−0,

P (s−0 | a0 = a∗0(s−0), a−0) ≥ P (s−0 | a0, a−0) for any (a0, a−0) ∈ A.

This shows that monitoring is congruent.

Example 3: Suppose that player i has an ni-dimensional (ni ≥ 2) action, and the kth
dimension of his action is closely monitored by player k in the set Ei ⊂ I \ {i}. Formally,
let ai = (a

1
i , . . . , a

ni
i ) ∈ Ai =

Qni
k=1 A

k
i and Sk = A

k
i for each k ∈ Ei, and suppose that

P (s̃k = a
k
i for every k ∈ Ei | ai, a−i) ≥ 1− ² for every (ai, a−i) ∈ A.

For example, if player i is a middle manager subject to the 360-degree feedback system

mentioned in the Introduction, then Ei is a collection of i’s subordinates, peers, boss,

clients, and so on. If i is an assistant professor whose job is to teach and to do research,

then Ei would consist of his colleagues and students.

4. Nash Folk Theorem

In what follows, we fix a Nash equilibrium me ∈ Qi∈I ∆Ai of the stage-game and

normalize the associated stage-payoff gi(m
e) to zero for every player.

Theorem 1. Take any v∗ ∈ V such that v∗i > 0 for every i ∈ I. For any ξ > 0, there

exists ² > 0 such that the following holds if monitoring is jointly ²-perfect and consistent:

14



For δ sufficiently close to one, there exists a communication equilibrium (σ∗, τ) with the

payoff vi(δ) = Vi(σ
∗, τ, δ) satisfying |vi(δ)− v∗i | < ξ for every i ∈ I.

The proof of the theorem is based on the following construction. Suppose first that

for some integer T , the entire repeated game is partitioned into T separate “component

games”: Component game 1 consists of periods 1, T + 1, 2T + 1, . . ., component game 2

consists of periods 2, T + 2, 2T + 2, . . ., and so on. Actions taken in each period affect

continuation play in the same component game only.12

The mediation strategy τ is the grim-trigger type in each component game: The game

begins in the cooperation phase, and reverts to the punishment phase after some history.

In any period during the cooperation phase, the mediator first chooses whether or not any

player will be monitored in that period. He then randomly chooses an action profile for

all players to play. If an action profile a = (ai)i∈I is chosen, the instruction ai is given

to player i. If some player i is chosen to be monitored in some period t, the reports are

examined at the end of t. Specifically, the mediator checks if the reports collected “match”

the instruction given to i. The punishment phase begins for this component game if and

only if there is a mismatch. The same review process is repeated at the end of every period

in the cooperation phase. Given this τ , the strategy profile σ∗ is specified as follows: Let

µ∗i be player i’s reporting rule that reports his private signal truthfully, and λ∗i be the

action rule that obeys the mediator’s instruction. Let σ∗i be player i’s honest and obedient

strategy that plays the combination c∗i = (λ∗i , µ
∗
i ) for any pair of communication and

private histories. It is clear that the strategy profile σ∗ is simple.

The mediation strategy τ is formally described as follows. Let T be an integer and

suppose that the sets of instructions and reports are given by Qi = Ai∪{NE} and Ri = Si,
respectively, where “NE” stands for (one-shot) “Nash equilibrium.” Consider the follow-

ing (partitioned) grim-trigger mediation strategy τ with the cooperation and punishment

phases:

a) If the game is in the cooperation phase in some period t, choose the instructions for

period t as follows:

12The idea of a partitioned repeated game originates with Ellison (1994) and is used by
Sekiguchi (1997).
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i) The mediator first determines whether or not any player will be monitored in period

t. Let m(t) = i if player i is to be monitored, and m(t) = φ if no monitoring is to take

place. The probability that any single player is monitored equals η ∈ (0, 1/n). (Hence, the
probability that monitoring takes place equals nη.)

ii) If monitoring is to take place in period t (i.e., m(t) ∈ I), the mediator chooses an action
profile from A according to the uniform probability distribution θ:

θ(a) =
1

|A| for any a ∈ A.

On the other hand, if no monitoring is to take place in period t (i.e, m(t) = φ), then the

mediator chooses an action profile from A according to the probability distribution ω such

that

v∗i =
X
a∈A

ω(a)gi(a) for every i ∈ I.

The monitoring decisions as well as the choice of action profiles are independent across

periods. Whether monitoring is performed or not, if a ∈ A is the chosen action profile,

then player i receives the instruction qi(t) = ai. It should be noted that such an instruction

indicates neither the absence of the monitoring activity nor the identity of the monitored

player (if any).13

b) If the game is in the punishment phase in period t, the instruction for period t is “NE”

for every player.

c) The transition of the phases in each component game is determined as follows: Given

the instruction profile q and the report profile r in period t, let the random variable f̃ = 1

if

(3) m̃ = i and r̃−i /∈ Ω−i(q̃i) for some i ∈ I,

and f̃ = 0 otherwise. In other words, f̃ = 1 indicates that some player i is monitored, and

that the report profile of others does not match the instruction given to i. Note that in

terms of a∗i : S−i → Ai defined in Section 3, r̃−i /∈ Ω−i(q̃i) is equivalent to

q̃i 6= a∗i (r̃−i).
13Note, however, that it may indicate the presence of the monitoring activity.
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The cooperation phase continues in this component game if f̃ = 0, and the punishment

phase begins otherwise. The same review process is repeated at the end of every period

as long as the game is in the cooperation phase.

It will be shown below that τ coupled with the honest and obedient strategy profile

σ∗ is a communication equilibrium, and that the equilibrium payoff is close to v∗i with an

appropriate choice of ², δ and T . With slight abuse of notation, we use P (· | c) to denote
the probability distribution of (m̃, f̃ , q̃, s̃) under the profile c in the cooperation phase of

τ . (Note that the dependence on τ is suppressed.)

The following lemma provides the key observation that the honest reporting rule µ∗i
is optimal combined with any action rule λi.

Lemma 1. Suppose that monitoring is jointly ²-perfect and consistent. Then for any j ∈ I
and any pair (λj , µj) of action and reporting rules,

P (f̃ = 0 | λj , µj, c∗−j) ≤ P (f̃ = 0 | λj , µ∗j , c∗−j).

Proof: See the Appendix.

To see the logic behind Lemma 1, suppose for simplicity that n = 2. If player j has

received signal sj about player i, j needs to choose his report rj so as to maximize the

probability of the correct match rj ∈ Ωj(qi) through the inference of the instruction qi
given to player i. Given that the choice of an action profile by the mediator is uniform

(conditional on monitoring being under way), congruency implies that i has most likely

been instructed to play a∗i (sj). Since sj ∈ Ωj(a
∗
i (sj)), truth-telling is indeed optimal.

When congruency fails as in Figure 1, j’s incentive in reporting is affected by his own

action aj because the most likely action of i given sj = 2 changes with aj . This implies

that Lemma 1 would not hold.

We now examine each player’s incentive to obey the instruction. First, let vi(δ)

denote player i’s payoff from (σ∗i , τ) in any component game. Since the payoff from every

component game is the same, the average discounted payoff in the entire repeated game

Vi(σ
∗, τ, δ) equals vi(δ) as well. Given that the effective discount factor in each component

game is given by δT , vi(δ) satisfies the following recursive equation:

(4) vi(δ) = (1− δT ) gηi + δT P (f̃ = 0 | c∗) vi(δ),
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where gηi = (1 − nη)v∗i + nη
P

a∈A θ(a)gi(a). Let α = P (f̃ = 1 | c∗) be the (ex ante)
probability that the report does not match the instruction when every player obeys the

instruction and reports their signal truthfully. It follows from joint ²-perfection that

(5) α = η
X
i∈I

X
a∈A

θ(a)P (s̃−i /∈ Ω−i(ai) | a) ≤ nη².

Since P (f̃ = 0 | c∗) = 1− α, solving (4) for vi(δ) yields

(6) vi(δ) =
(1− δT ) gηi
1− δT (1− α) .

Suppose next that player i is given the instruction q̃i = ai in the cooperation phase but

deviates to a0i ( 6= ai). Given consistencty, no combinatorial deviation in the action and

reporting rules is profitable if no deviation in the action rule alone is profitable (Lemma

1). Let λi be i’s pure action rule such that λi(ai) = a
0
i. Player i’s expected continuation

payoff from playing ci = (λi, µ
∗
i ) is bounded from above by

(1− δT ) ḡi + δT P (f̃ = 0 | q̃i = ai, ci, c∗−i) vi(δ),

where ḡi = maxa∈A gi(a). On the other hand, when i obeys the instruction, his payoff is

bounded from below by

(1− δT ) g
i
+ δT P (f̃ = 0 | q̃i = ai, c∗) vi(δ),

where g
i
= mina∈A gi(a). Therefore, no one-step deviation is profitable if

(7) δT
n
P (f̃ = 1 | q̃i = ai, ci, c∗−i)− P (f̃ = 1 | q̃i = ai, c∗)

o
vi(δ) ≥ (1− δT )(ḡi − gi).

In the Appendix, it will be shown that this inequality holds and that vi(δ) is close to v
∗
i

for a sufficiently large δ when T is appropriately chosen.

Example 4: Suppose that the stage-game is the prisoners’ dilemma with Ai = {C,D},
Si = {0, 1}, and the expected stage-payoff function gi : A→ R depicted below (x, y > 0,

and x− y < 1).
a2

C D

C 1, 1 −y, 1 + x
a1

D 1 + x,−y 0, 0

Figure 2
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The probability distribution P is such that for some ² ∈ (0, 1/2), P (s̃j = 0 | aj , ai = C) ≥
1 − ² and P (sj = 1 | aj , ai = D) ≥ 1 − ² for each aj ∈ Aj . It follows that monitoring is
²-perfect with Ωj(ai = C) = {0} and Ωj(ai = D) = {1} (i 6= j). Since ² < 1/2, consistency
(congruency) holds by Proposition 2.

Consider now a communication equilibrium in which the efficient action profile (C,C)

is to be sustained (i.e., ω(C,C) = 1). We examine i’s incentive to obey the instruction

qi = C. The instantaneous gain from the deviation to a0i = D is given by

ḡi(C)− gi(C) = (1 + x)
1− 3η/2
1− η − 1− (3 + y)η/2

1− η =
x− (3x− y)η/2

1− η .

Also, the difference in the (interim) probabilities of a mismatch in reporting (given qi = C)

when i chooses a0i = D and when he chooses ai = C satisfies q− p ≥ (1−2²)η
1−η . On the other

hand, when the players are honest and obedient, the ex ante probability of a mismatch

satisfies α ≤ 2²η by (5), and the ex ante stage-payoff equals gηi = 1−η+ η
2 (x−y). As seen

in the proof of Theorem 1, there exists a communication equilibrium with payoff vi > 1−ξ
(ξ > 0) for a sufficiently large discount factor if

ḡi(C)− gi(C)
(q − p)(v∗i − ξ) + ḡi(C)− gi(C)

<
gηi − v∗i + ξ

gηi − (1− α)(v∗i − ξ)
.

This is implied by

ξ > η − η

2
(x− y) + 2²

1− 2²
n
x− η

2
(3x− y)

o
.

Since η > 0 can be taken arbitrarily small, we conclude that under ²-perfection, there

exists a communication equilibrium with payoff

vi ≥ 1− 2²

1− 2² x

provided that the players are sufficiently patient. When x = 1, for example, vi = .75 is

sustained as an equilibrium payoff if ² < .1, and vi = .95 is sustained if ² < 0.0238. Note

in particular that the specification of the joint distribution of s = (s1, s2) is not important

for this conclusion.

5. Public vs. Mediated Communication
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In this section, we compare public and mediated communication in a simple two-

person game. We define a public communication game to be a communication game in

which the mediation strategy τ is restricted so that instructions to all players are always

the same: q̃1 = · · · = q̃n. A public equilibrium is a simple communication equilibrium of a

public communication game. As mentioned in the Introduction, players’ actions in public

equilibrium are conditioned on the public reports of their private signals only. A public

equilibrium is perfect if it induces a public equilibrium after every communication (public)

history. Public communication under private monitoring is studied by Matsushima (1991),

Kandori and Matsushima (1998), Compte (1998), and Aoyagi (2000), among others.

Consider now the following two-person normal-form game: The buyer (player 1)

chooses whether to buy from the seller (player 2) or not. The seller, on the other hand,

chooses either high or low effort, which stochastically determines the quality of the good

(high or low). Formally, let A1 = {B,N} and A2 = {H,L} denote the sets of ac-
tions, and S1 = {l, h} and S2 = A1 denote the sets of signals. Player 1’s action B

(resp. N) represents his choice to buy (resp. not to buy) from player 2, and 2’s action

H (resp. L) represents his choice of high (resp. low) effort. Player 1’s signals l and h

correspond to “low” and “high” qualities, respectively. The probability distribution is

such that P (s̃2 = B | a1 = B, a2) = P (s̃2 = N | a1 = N, a2) = 1 for any a2 so

that player 2 perfectly monitors player 1, while P (s̃1 = l | a1, a2 = L) ≥ 1 − ² and
P (s̃1 = h | a1, a2 = H) ≥ 1 − ² for any a1 so that player 1 ²-perfectly monitors player
2 regardless of his own action.14 Note that s1 and s2 are conditionally independent in

the sense that P (s1, s2 | a) = P (s1 | a)P (s2 | a) for any a ∈ A. The stage-payoffs are
such that g1(B,L) < g1(N,L) = 0 ≤ g1(N,H) < g1(B,H) and g2(N,H) ≤ g2(N,L) =
0 < g2(B,H) < g2(B,L). It follows that the profile (a1, a2) = (N,L) is the one-shot

Nash equilibrium, and that (a1, a2) = (B,H) is efficient. Figure 3 depicts the set V of

feasible payoffs when g1(N,H) = g1(N,L) and g2(N,H) = g2(N,L). By Theorem 1, any

strictly positive payoff is approximated by a simple communication equilibrium payoff if ²

is sufficiently small and δ is sufficiently large.

14An alternative (and perhaps more natural) assumption is that player 1 (²-perfectly)
monitors 2’s action only when he chooses to buy. While it violates the conditions of jointly
²-perfect monitoring, it is not difficult to accommodate this alternative assumption into
our theorem for this particular game.
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As seen in both Compte (1998) and Kandori and Matsushima (1994, 1998), the folk

theorems based on public communication in general two-person games support only a

subset of the individually rational payoffs. The problem is particularly serious in two-

person games. Specifically, Compte (1994) proves a theorem that demonstrates the limit

of equilibrium payoffs based on public communication. His theorem applied to the above

game shows that no perfect public equilibrium sustains an outcome close to the efficient

outcome (g1(B,H), g2(B,H)) regardless of the level of monitoring ². Formally, let

W = {(w1, w2) : w1 = g1(a) and w2 = max
a02∈A2

g2(a1, a
0
2) for some a = (a1, a2) ∈ A},

and

V 2 = {(v1, v2) : v1 ≤ w1 and v2 ≥ w2 for some w ∈ coW}.

The set V 2 is the shaded region in Figure 3. Note in particular that (g1(B,H), g2(B,H)) /∈
V 2.

Proposition 3. (Compte (1998)) Suppose that 0 < P (s̃1 = l | a1,H) < P (s̃1 = l |
a1, L) < 1 for a1 ∈ A1. Then every perfect public equilibrium payoff vector belongs to the

set V 2 for any ² > 0 and δ.

The proof is included in the Appendix for the reader’s convenience.15

One interesting application of the current analysis concerns the problem of “coordi-

nated boycott” as studied by Klein and Leffler (1980). When a single seller plays this

game against many buyers, Klein and Leffler (1980) argue that the seller’s incentive to

exert high effort can be maintained by the threat of coordinated boycott by the buyers.

The seller is prevented from cheating any single buyer since information about the quality

of each individual good is shared by all the buyers. Implicit in their logic, therefore, is the

assumption that each buyer willingly reveals the quality of their good to others including

the seller. The above discussion suggests, however, that public communication does not

yield the desired conclusion.

The key to the success of mediated communication is the inducement of truth-telling

by the buyer through the seller’s choice of low effort with positive probability. In other

15Compte’s (1998) result applies to any two-person games with conditionally independent
signals.
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words, the buyer has no incentive to report the low quality and give up all future surplus

if he believes that the seller chooses high effort with probability one. As mentioned in

the Introduction, this is the essence of the observation made by Bhaskar and van Damme

(1997). A related observation can also be found in the analysis of a reputation game

between a seller and buyers by Mailath and Samuelson (1998), who argue that the seller’s

incentive to maintain his reputation is strongest when there is a substantial probability

that he is the “inept” type who never exerts high effort.

Appendix

Proof of Proposition 1: For every i ∈ I, set

a∗i (s−i) = s
i
i−1.

(For i = 1, let s10 = s1n.) Take any i ∈ I and j 6= i. If j 6= i − 1, then (2) holds with
equality since a∗i (sj , s−i−j) = a

∗
i (rj , s−i−j) for any sj , rj ∈ Sj by the above specification

of a∗i . Suppose that j = i − 1. If rij = sij , then (2) holds with equality again. Suppose

hence that rij 6= sij . For any aj ∈ Aj , we haveX
a−i−j

X
s−i−j

P (sj , s−i−j | ai = a∗i (sj , s−i−j), aj , a−i−j)

≥ P (sj , s̃k = (aj , s−j−kj ) for every k 6= i, j | ai = sij , aj , a−i−j = s−i−jj )

≥ 1− ²,

and X
a−i−j

X
s−i−j

P (sj , s−i−j | ai = a∗i (rj , s−i−j), aj , a−i−j)

=
X
a−i−j

X
s−i−j

P (sj , s−i−j | ai = rij , aj , a−i−j)

≤ |A−i−j ||S−i−j |².

Therefore, (2) holds if ² ≤ (1 + |A−i−j ||S−i−j |)−1. //

Proof of Proposition 2: Let P be jointly ²-perfect with partitions {Ω−i}i∈I . Take
any s−i ∈ S−i and a−i ∈ A−i, and suppose that

max
ai∈Ai

P (s−i | ai, a−i) ≥ ².
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If P (s−i | ai = a∗i (s−i), a−i) < maxai∈Ai P (s−i | ai, a−i), then there exists ai 6= a∗i (s−i)

such that P (s−i | ai, a−i) ≥ ². Since s−i ∈ Ω−i(a∗i (s−i)), it follows that P (s̃−i ∈
Ω−i(a∗i (s−i)) | ai, a−i) ≥ ². Since Ω−i(ai) ∩ Ω−i(a∗i (s−i)) = φ, this further implies

P (s̃−i ∈ Ω−i(ai) | ai, a−i) < 1− ², contradicting the joint ²-perfection of P . //

Proof of Lemma 1: Recall that a∗i (s−i) is defined to be the unique ai ∈ Ai such that
s−i ∈ Ω−i(ai). Consider the event f̃ = 0 that no mismatch in reporting is registered. Fix
any action rule λj of player j. When player j uses the honest reporting rule µ

∗
j along with

λj , the probability of the above event is given by

P (f̃ = 0 | λj , µ∗j , c∗−j) = P (m̃ = φ)

+
X

a−j∈A−j
s−j∈S−j

P (m̃ = j)P (q̃−j = a−j , q̃j = a∗j (s−j) | m̃ = j)

× P (s−j | λj(a∗j (s−j)), a−j)

+
X
i6=j

X
a−i∈A−i
s−i∈S−i

P (m̃ = i)P (q̃−i = a−i, q̃i = a∗i (s−i) | m̃ = i)

× P (s−i | ai = a∗i (s−i),λj(aj), a−i−j),

where the first term on the right-hand side corresponds to the event that no player is mon-

itored, the second to the event that j himself is monitored, and the third to the event that

some other player is monitored. Suppose now that player j uses an alternative reporting

rule µj . In this case, reports about i are “correct” if and only if qi = a∗i (µj(sj), s−i−j)

provided that the signal profile is (sj , s−i−j). The probability of the event f̃ = 0 is hence

given by

P (f̃ = 0 | λj , µj , c∗−j) = P (m̃ = φ)

+
X

a−j∈A−j
s−j∈S−j

P (m̃ = j)P (q̃−j = a−j , q̃j = a∗j (s−j) | m̃ = j)

× P (s−j | λj(a∗j (s−j)), a−j)

+
X
i6=j

X
a−i∈A−i
s−i∈S−i

P (m̃ = i)P (q̃−i = a−i, q̃i = a∗i (µj(sj), s−i−j) | m̃ = i)

× P (s−i | ai = a∗i (µj(sj), s−i−j),λj(aj), a−i−j).
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Since P (m̃ = i) = η and P (q | m̃ = i) = 1/|A| for any i ∈ I and q ∈ A, we have

P (f̃ = 0 | λj , µ∗j , c∗−j)− P (f̃ = 0 | λj , µj , c∗−j)

=
η

|A|
X
i6=j

X
a−i∈A−i
s−i∈S−i

n
P (s−i | ai = a∗i (s−i),λj(aj), a−i−j)

− P (s−i | ai = a∗i (µj(sj), s−i−j),λj(aj), a−i−j)
o

=
η

|A|
X
i6=j

X
aj∈Aj
sj∈Sj

" X
a−i−j∈A−i−j
s−i−j∈S−i−j

n
P (s−i | ai = a∗i (s−i),λj(aj), a−i−j)

− P (s−i | ai = a∗i (µj(sj), s−i−j),λj(aj), a−i−j)
o#
.

The desired conclusion follows since consistency implies that the quantity in the square

brackets on the right-hand side is greater than or equal to zero. //

Proof of Theorem 1: Let

p = P (f̃ = 1 | q̃i = ai, c∗) and q = P (f̃ = 1 | q̃i = ai, ci, c∗−i)

denote the (interim) probabilities of a mismatch when player i obeys the instruction q̃i =

ai, and when he disobeys and plays λi(ai) = a0i instead, respectively. Joint ²-perfection

implies that

p =
X
j∈I

X
a−i∈A−i

P (s̃−j /∈ Ω−j(aj) | ai, a−i)P
¡
q̃−i = a−i, m̃ = j | q̃i = ai

¢
(a1)

≤ ².

On the other hand, q is given by

q =
X

a−i∈A−i
P (s̃−i /∈ Ω−i(ai) | a0i, a−i)P

¡
q̃−i = a−i, m̃ = i | q̃i = ai

¢
+
X
j 6=i

X
a−i∈A−i

P (s̃−j /∈ Ω−j(aj) | a0i, a−i)P
¡
q̃−i = a−i, m̃ = j | q̃i = ai

¢
,

where the first term on the right-hand side corresponds to the event that player i himself is

monitored, while the second corresponds to the event that some other player is monitored.
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Since for any j ∈ I,

P (q̃−i = a−i, m̃ = j | q̃i = ai)
=

P (q̃ = a | m̃ = j)P (m̃ = j)P
j0∈I P (q̃i = ai | m̃ = j0)P (m̃ = j0) + P (q̃i = ai | m̃ = φ)P (m̃ = φ)

∈
∙
η

|A| ,
1

|A−i|n
¸
,

it follows from joint ²-perfection that

(a2) q ≥ (1− ²) η

|Ai| .

For any ξ > 0, take η small enough so that |gηi − v∗i | < ξ/2 for every i ∈ I. It then follows
from (6) that vi(δ) ≤ gηi < v∗i + ξ for every i ∈ I. Take ² > 0 small enough so that Lemma
1 holds and that

max
i∈I

ḡi − gi
(q − p)(v∗i − ξ) + ḡi − gi

< min
i∈I

gηi − v∗i + ξ

gηi − (1− α)(v∗i − ξ)
.

This is possible since as ² → 0, α → 0 by (5), p → 0 by (a1), and q > 0 is bounded away

from zero by (a2). We now take δ < 1 large enough so that for any δ > δ, there exists an

integer T such that

(a3) max
i∈I

ḡi − gi
(q − p)(v∗i − ξ) + ḡi − gi

≤ δT < min
i∈I

gηi − v∗i + ξ

gηi − (1− α)(v∗i − ξ)
.

The right inequality of (a3) and (6) together imply that vi(δ) > v∗i − ξ. On the other

hand, the incentive constraint (9) follows from the left inequality of (a3). This completes

the proof of the theorem. //

Proof of Proposition 3: Let

V p = {v = (v1, v2) : v is a perfect public equilibrium payoff vector}.

Take any perfect public equilibrium and let v = (v1, v2) be the corresponding payoff vector.

By the standard argument, there exist an action profile a ∈ A, a reporting rule µi :

Ai × Si → Ri, and the continuation payoff function wi : R→ V p such that

(a4) vi = (1− δ)gi(a) + δ
X
r∈R

P (r | a, µ)wi(r),
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and

(a5) vi ≥ (1− δ)gi(a0i, aj) + δ
X
r∈R

P (r | a0i, aj , µ0i, µj)wi(r) for any (a0i, µ
0
i) (j 6= i).

Take any i ∈ I and ri ∈ Ri, and consider i’s deviation to the “constant” reporting rule µ0i
such that µ0i(ai, ·) ≡ ri. We have by (a5),

(a6) vi ≥ (1− δ) gi(a) + δ
X
rj∈Rj

P (rj | a, µj)wi(ri, rj).

Since (a4) under conditional independence can be written as

vi =
X
ri∈Ri

P (ri | a, µi)
n
(1− δ)gi(a) + δ

X
rj∈Rj

P (rj | a, µj)wi(ri, rj)
o
,

it follows from (a6) that for every ri ∈ Ri with P (ri | a, µi) > 0,

vi = (1− δ)gi(a) + δ
X
rj∈Rj

P (rj | a, µj)wi(ri, rj).

This further implies that if P (ri | a, µi) > 0 and P (r0i | a, µi) > 0, thenX
rj∈Rj

P (rj | a, µj)wi(ri, rj) =
X
rj∈Rj

P (rj | a, µj)wi(r0i, rj).

Let ā2 ∈ argmaxa02∈A2
g2(a1, a

0
2). Since P (r1 | a, µ1) > 0 if and only if P (r1 | a1, ā2, µ1) >

0 for any (a, µ1) by assumption, it follows from the above observation that

(a7) v1 = (1− δ) g1(a) + δ
X
r1∈R1

P (r1 | a1, ā2, µ1)
X
r2∈R2

P (r2 | a, µ2)w1(r1, r2).

On the other hand, consider player 2’s deviation to (ā2, µ̄2) such that P (r2 | a1, ā2, µ̄2) =
P (r2 | a, µ2) for every r2. We have by (a5),

(a8) v2 ≥ (1− δ) g2(a1, ā2) + δ
X
r1∈R1

P (r1 | a1, ā2, µ1)
X
r2∈R2

P (r2 | a, µ2)w2(r1, r2).

It follows from (a7) and (a8) that for ν = (ν1, ν2) with ν1 ≥ 0 and ν2 ≤ 0,

ν · v ≤ (1− δ) ν · ¡g1(a), g2(a1, ā2)¢
+ δ

X
r1∈R1

P (r1 | a1, ā2, µ1)
X
r2∈R2

P (r2 | a, µ2) ν · w(r1, r2),
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where · denotes the inner product. If we let k(ν,W ) = supw∈coW ν · w, then the above
implies that for any v = (v1, v2) ∈ V p,

ν · v ≤ (1− δ) k(ν, V 2) + δk(ν, V p).

Taking the supremum over v ∈ V p on the left-hand side, we obtain k(ν, V p) ≤ k(ν, V 2).
Since this is true for any ν with ν1 ≥ 0 and ν2 ≤ 0, and since V 2 is unbounded in the
direction −ν, we conclude that V p ⊂ V 2. //
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