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Abstract

Two firms engage in price competition to attract buyers located on a net-
work. The value of the good of either firm to any buyer depends on the number
of neighbors on the network who adopt the same good. When the size of
externalities increases linearly with the number of adoptions, we identify the
set of price strategies that are consistent with an equilibrium in which one of
the firms monopolizes the market. The set includes marginal cost pricing as
well as bipartition pricing, which offers discounts to some buyers and charges
markups to others. We show that marginal cost pricing fails to be an equilib-
rium under non-linear externalities but identify conditions for an equilibrium
with bipartition pricing to be robust against perturbations in the externalities
from linearity. The idea of bipartition pricing is then applied to the analysis
of platform competition in a two-sided market under local and approximately
linear externalities.
Key words: graphs, divide and conquer, price discrimination, two-sided mar-
kets, partition.
Journal of Economic Literature Classification Numbers: C72, D82.

1 Introduction

Goods have network externalities when their value to each user depends on the
adoption decisions of others. Externalities are important not only for consumption
goods but also for intermediate goods. As argued by Carvalho (2014), for example,
modern production is an intricate network of firms. In such a network, a single
supplier of inputs serves multiple downstream firms who are themselves linked with
each other in the form of mutual production of final products or technology transfers.
A downstream firm would find a higher value for the same inputs as used by other
downstream firms that are linked to it.
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Despite their importance in reality, our understanding of network externalities
is limited when those goods are supplied competitively. The objective of this paper
is to study price competition in the presence of such externalities: We formulate a
highly stylized model of price competition in which users located at the nodes of a
network experience positive externalities when their neighbors adopt the same good
or technology. In our model, two symmetric firms each supply goods or technologies
that are incompatible with each other. Users of either good experience larger positive
externalities when more of their neighbors in the network adopt the same good.
In stage 1, the two firms post prices simultaneously. The prices can be perfectly
discriminatory and negative, and are publicly observable. In stage 2, the buyers
simultaneously decide which good to adopt or not to adopt either.

When no network externalities are present, it is clear that the unique subgame
perfect equilibrium of this game has both firms offer c, the constant marginal cost of
production, to all buyers. We find that marginal-cost pricing is consistent with an
equilibrium with monopolization by one of the firms in an arbitrary network when
the externalities are linear in the number of neighbors adopting the same good. In
contrast with the case with no externalities, however, we show that various pricing
strategies are consistent with an equilibrium under linear externalities. In effect,
when both firms offer the same price vector z, it is consistent with a monopolization
equilibrium if the sum of markups and markdowns it entails for any subset of buyers
is less than or equal to (the factor of proportion times) the number of links they
jointly have with the complementary set. The latter quantity can be interpreted
as the aggregate externalities that these buyers could enjoy if they were connected
with the rest of the network.

With no markup and markdown to any buyer, marginal cost pricing is clearly an
equilibrium under linear externalities. When the externalities are non-linear, on the
other hand, we show that marginal cost pricing is consistent with an equilibrium
only when the buyer network is either a cycle or complete.1 We also show that
under non-linear externalities, there exists no equilibrium with monopolization in
which every buyer is charged the same price. These observations lead us to the
study of equilibrium pricing strategies that are robust against slight perturbations
in the externalities from linearity. Our central focus in this investigation is a class
of bipartition pricing, which entails price discrimination based on a binary partition
of the buyer set: Discounts are offered to the buyers in one subset but markups
are charged to the buyers in the other subset. Furthermore, the size of a markup
or markdown to any buyer is proportional to the number of his neighbors in the
other subset. We consider small perturbations in the externalities from linearity,
and define equilibrium pricing strategies under linear externalities to be robust if
there exists a non-degenerate set of approximately linear externalities under which
there exists an equilibrium pricing strategy that is “close” to the original pricing

1A network is complete if any pair of buyers are neighbors. A complete network implies the
existence of global externalities.
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strategy. We show that in a large class of networks, bipartition pricing given some
binary partition of buyers is in fact robust.

One important class of networks that admits a natural interpretation of robust
bipartition pricing identified above is bipartite networks in which the buyer set is
partitioned into two subsets and each buyer in one subset has neighbors only in
the other subset. Bipartite networks are a graph-theoretical representation of two-
sided markets that have received much attention in the literature: The two subsets
correspond to the two sides of the market such as buyers and sellers of a certain good,
and the two firms correspond to platforms that compete in offering marketplace to
them. In a robust bipartition equilibrium over a bipartite network, all users on
one side of the market are charged markups while all users on the other side are
offered discounts. Furthermore, the size of the markup or discount to each user is
proportional to the number of users on the other side of the market who are directly
connected to them. This is the first result that demonstrates that this popular
pricing strategy arises as an equilibrium of price competition under local network
externalities, and also identifies how the markups or markdowns are related to the
specification of those externalities.2

As mentioned above, the key assumption of our model is the ability of the firms
to perfectly price discriminate the buyers. This assumption is more likely satisfied
in intermediate goods markets with a limited number of participants than large
consumption goods markets. One good example is provided by the international
competition in the sales of infrastructures that has recently become a major form of
international trade. In a market for high-speed rails, for example, there are typically
a small number of firms capable of providing a system, a buyer is either a country
or a region and hence is also limited in number, and the good has externalities since
it is not simply a physical product but includes the operation and management
of the system: Countries contemplating the adoption of a high-speed rail would
be concerned with the rail system adopted by their neighbors if future connection
between their systems is anticipated.3

It is well recognized that games with adoption externalities possess multiple
equilibria. In our model, this corresponds to the potential multiplicity of Nash
equilibria (NE) in the subgame played by the buyers after the posting of the prices
by the firms. In the set of equilibria, our analysis makes use of two NE that are
extreme as follows: The A-maximal NE is one in which the set of buyers who choose

2The explanation offered for such a pricing strategy in the literature is typically based on a
monopoly platform which faces two sides with asymmetric price elasticities. Caillaud and Jullien
(2001) and Ambrus and Argenziano (2009) offer explanation for the pricing strategy under price
competition in a symmetric two-sided market with global externalities. See Section 2.

3The Association of the European Rail Industry (UNIFE) estimates that the average annual
market volume of rail supply amounts to 150 billion Euro in 2011-2013 (World Rail Market Study).
About 40% of the volume is in the form of management and maintenance of the system. The
largest market is in Asia, where India alone plans highspeed rail systems in five different routes.
Government-backed firms from Japan and China also compete fiercely for multiple rail routes in
South-East Asia.
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A is maximal in the sense that buyer i chooses A in it as long as he chooses A in
some NE. The B-maximal equilibrium is one in which the set of buyers who choose
B is maximal in the same sense. Our analysis builds on the assumption that the
buyers play the B-maximal equilibrium after any deviation by firm A, and the A-
maximal equilibrium after any deviation by firm B. We show that these behavioral
patterns support the broadest spectrum of equilibria of the firms’ price competition
game by minimizing the profitability of deviations.

The paper is organized as follows: After discussing the related literature in Sec-
tion 2, we formulate a model of price competition in Section 3. A leading example
is given in Section 4. Section 5 considers the subgame played by the buyers in
stage 2. Section 6 derives necessary conditions for an equilibrium in terms of the
firms’ payoffs. Section 7 provides a characterization of an equilibrium under linear
externalities and introduces bipartition pricing strategies. The possibility of uni-
form pricing and marginal cost pricing under non-linear externalities is discussed
in Section 8. Section 9 discusses the robustness of bipartition pricing strategies.
Application of the analysis to two-sided markets is discussed in Section 10. Section
11 concludes with a discussion. All the proofs are collected in the Appendix.4

2 Related Literature

This paper contributes to two strands of literature. First, it contributes to the
literature on network competition and two-sided markets through the introduction
of local network externalities. Beginning with Katz and Shapiro (1985), most work
on the topic supposes that the externalities are global in the sense that the adoption
decision of any single buyer affects all other buyers equally.5 In the context of two-
sided markets, this implies that the participation of any agent on one side of the
market equally affects the utility of all participating agents on the other side of the
market.6 In contrast, we suppose that the adoption decision of any buyer affects
only his neighbors on the network. In two-sided markets, our formulation implies
that the participation of any agent may have different effects on different agents on
the other side of the market.7

Second, it presents a general analysis of price competition between suppliers of
goods with local network externalities. Models of price competition under local
network externalities include Banerji and Dutta (2009), Bloch and Quérou (2013),
Blume et al. (2009) and Jullien (2011). Blume et al. (2009) and Bloch and Quérou

4While the main body of the paper focuses on equilibrium with market monopolization by one
of the firms, an equilibrium with market segmentation is discussed in the supplementary material.

5See Gabszewicz and Wauthy (2004), Hagiu (2006), Ambrus and Argenziano (2009), Blume et
al. (2009), Fjeldstad et al. (2010), Cabral (2011).

6See Armstrong (1998), and Laffont et al. (1998a,b).
7Ambrus and Argenziano (2009) analyze a market with global but asymmetric externalities in

which each agent may have a different utility function over the size of participation in the same
platform.
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(2013) study price competition under local network externalities when market seg-
mentation among the firms is exogenously given. Banerji and Dutta (2009) study
price competition using a graph representation of local externalities when there is
no price discrimination. A model of Stackelberg price competition by Jullien (2011)
is most closely related to the present model and entails a very general specification
of local externalities. Our specification of local externalities is more restrictive than
that in Jullien (2011), but allows us to derive an explicit characterization of an
equilibrium.8

The multiplicity of equilibria is often a central concern in games with network
externalities. Since the pioneering work of Dybvig and Spatt (1983), this concern
has led the literature to focus on such issues as implementing efficient or revenue
maximizing equilibria under complete and incomplete information, intertemporal
patterns of adoption decisions, as well as the validity of introductory pricing.9 As
mentioned in the Introduction, we abstract from the issue by supposing that when-
ever there is a deviating firm, the buyers coordinate on its least favorable NE. The
literature makes different assumptions in this regard. For example, Ambrus and
Argenziano (2009) assume that the agents’ actions satisfy correlated rationalizabil-
ity, which implies that they coordinate on the pareto-efficient alternative whenever
there is one, and Jullien (2011, Assumption 2) assumes that a change in price offer
by one firm to buyers outside its market segment does not affect the decisions of
those inside it.

One key idea used in the present paper is that of divide-and-conquer, which
has been studied by Segal (2003), Winter (2004) and Bernstein and Winter (2012)
among others in contracting problems in which a single principal offers a contract to
the set of agents whose participation decisions create externalities to other agents.10

3 Model

Two firms A and B compete for the set I = {1, . . . , N} of N ≥ 3 buyers. Adoption
of either firm’s good generates externalities to the buyers according to a buyer
network. Formally, a buyer network is represented by a simple undirected graph
G whose nodes correspond to the buyers, and adoption externalities exist between
buyers i and j if they are adjacent in the sense that there is a link between i and j.
When buyer j is adjacent to buyer i, we also say that j is i’s neighbor.

8Sundararajan (2003), Candogan et al. (2012) and Bloch and Quérou (2013) each study
monopoly pricing under local externalities.

9See Cabral et al. (1999), Park (2004), Sekiguchi (2009), Ochs and Park (2010), Aoyagi (2013),
Parakhonyak and Vikander (2013), among others. Rohlfs (1974) provides a very early treatment of
network externalities.

10A similar idea can be found in the study of an optimal marketing strategy under externalities
in Hartline et al. (2008). A marketing strategy determines the order in which the monopolist
approaches the set of buyers with private valuations as well as a sequence of contingent prices
offered to them. See also Aoyagi (2010).
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The buyer network G is connected in the sense that for any pair of buyers i and
j, there exists a path from i to j. That is, there exist buyers i1, i2, . . . , im, such that
i1 is adjacent to i, i2 is adjacent to i1, . . . , and im is adjacent to j. For any buyer
i in network G, denote by Ni the set of i’s neighbors in G. The degree di = |Ni| of
buyer i is the number of i’s neighbors. Define also M to be the number of links in
G. Since each link counts twice when aggregating the number of degrees in G, we
have M = 1

2

∑
i∈I di.

For r = 2, . . . , N − 1, the network G is r-regular if all buyers have the same
degree r, and regular if it is r-regular for some r. G is cyclic if it forms a single
cycle, and complete if every pair of buyers are adjacent to each other.

The value of either firm’s good to any buyer i is determined by the number of
neighbors of i who adopt the same good. We denote by vn ≥ 0 the value of either
good to any buyer when n of his neighbors adopt the same good. In particular,
v0 denotes the stand-alone value, or the value to any buyer of either good when
none of his neighbors adopts the same good. Implicit in this assumption is that the
two goods A and B are incompatible with each other since the value of either good
to any buyer is assumed the same whether his neighbor adopts the other good or
nothing. The value does not depend on the identity of a buyer or the identity of
the firm who supplies the good. The externalities are positive in the sense that vn

is increasing in n. Let d̄ be the highest degree in the network G: d̄ = maxi∈I di.
We will refer to the vector (v0, . . . , vd̄) as externalities and denote it by v. Denote
by VG the set of relevant externalities.

VG =
{
v = (v0, . . . , vd̄) : c ≤ v0 ≤ · · · ≤ vd̄

}
.

Each firm supplies the good at the constant marginal cost c ≥ 0 and no fixed
cost. We will assume throughout that c ≤ v0 so that the firms can serve even a
single buyer without making a loss.11 The firms can perfectly price discriminate
the buyers, and we let pi and qi denote the prices offered to buyer i by firm A and
firm B, respectively. The price vectors p = (pi)i∈I ∈ RN and q = (qi)i∈I ∈ RN

are quoted simultaneously and publicly observed. The buyers then simultaneously
decide whether to buy either good, or buy neither.

Buyer i’s action xi is an element of the set Si = {A,B, ∅}, where ∅ represents no
purchase. Each firm’s strategy is an element of RN , whereas buyer i’s strategy σi
is a mapping from the set R2N of price vectors (p, q) to Si. Given the price profile
(p, q), buyer i’s payoff under the action profile x is given by

ui(x, p, q) =

⎧⎪⎨
⎪⎩
v|{j∈Ni:xj=A}| − pi if xi = A,

v|{j∈Ni:xj=B}| − qi if xi = B,

0 if xi = ∅,
(1)

11See Footnote 23 for one implication of the violation of this assumption.
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Figure 1. Firm A’s price offer p makes the choice of A (1)
dominant for buyers 1 and 3 before it does so for buyer 2 (left),
and (2) dominant for buyer 2 before it does so for buyers 1 and 3.

If we denote by σ = (σi)i∈I the buyers’ strategy profile, the payoffs πA(p, q, σ) and
πB(p, q, σ) of firms A and B, respectively, under the strategy profile (p, q, σ) are
given by

πA(p, q, σ) =
∑

{i:σi(p,q)=A}
(pi − c), πB(p, q, σ) =

∑
{i: σi(p,q)=B}

(qi − c),

and buyer i’s payoff πi(p, q, σ) under the strategy profile (p, q, σ) is given by πi(p, q, σ) =
ui(σ(p, q), p, q).

A price vector (p∗, q∗) and a strategy profile σ = (σi)i∈I together constitute a
subgame perfect equilibrium (SPE) if given any price vector (p, q) ∈ R2N , the action
vector (σi(p, q))i∈I is a Nash equilibrium of the subgame following (p, q), and given
σ, the price vectors p∗ and q∗ are optimal against each other.

4 Leading Example

Consider the line network with three buyers 1, 2 and 3 in Figure 1.

• Is marginal cost pricing consistent with an equilibrium? Suppose that
both firms engage in marginal cost pricing: pc = qc = (c, c, c). If all buyers choose
B, hence, the payoffs to buyers 1, 2 and 3 equal v1−c, v2−c and v1−c, respectively.
Suppose now that firm A offers the price vector p = (p1, p2, p3) such that

v0 − p1 > max
{
v1 − c, 0

}
, v2 − p2 > max

{
v0 − c, 0

}
,

v0 − p3 > max
{
v1 − c, 0

}
.

(2)

For buyer 1, choosing A is strictly dominant since it yields at least v0 − p1 whereas
choosing ∅ yields 0 and choosing B yields v1 − c if his neighbor, buyer 2, chooses
B. The same reasoning applies to buyer 3. It follows that xi = A is the unique
outcome that survives the elimination of strictly dominated strategies for i = 1 and
3. Given this, however, buyer 2 finds A optimal since it yields v2 − p2, whereas ∅
yields 0 and B yields v0 − c. In other words, x2 = A is the unique outcome that
survives two rounds of elimination of strictly dominated strategies. If we give the
orientation i → j to the link between buyers i and j when i precedes j in this
iterative elimination process, then p satisfying (2) is depicted as in the left panel of
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Figure 1. Note that such a p induces all buyers to choose A as long as they choose
a rational response to the price offers. Hence, marginal cost pricing by both firms
can only be consistent with an equilibrium if no such deviation by firm A yields a
strictly positive payoff. The inequalities in (2) imply

∑
i (pi − c) < v2 + v0 − 2v1,

but firm A can bring its payoff arbitrarily close to v2 + v0 − 2v1 by offering p that
barely satisfies (2). In other words, there exists a profitable deviation p satisfying
(2) if

v2 − v0 + 2(v0 − v1) = v2 + v0 − 2v1 > 0. (3)

Suppose next that firm A offers the price vector p = (p1, p2, p3) such that

v1 − p1 > max
{
v0 − c, 0

}
, v0 − p2 > max

{
v2 − c, 0

}
,

v1 − p3 > max
{
v0 − c, 0

}
.

(4)

This time, buyer 2 finds x2 = A dominant in the first round of the iterative elim-
ination process, and buyers 1 and 3 find xi = A dominant in the second round of
the process. The orientation of the links hence is now given as in the right panel of
Figure 1. The inequalities in (4) imply

∑
i (pi− c) < 2v1− v2− v0, and by the same

logic as above, there exists a profitable deviation p satisfying (4) if

v0 − v2 + 2(v1 − v0) = 2v1 − v2 − v0 > 0. (5)

From (3) and (5), we see that marginal cost pricing is not an equilibrium if

2v1 − v2 − v0 �= 0, (6)

which is true for a generic specification of (v0, v1, v2). On the other hand, if the
externalities are linear in the sense that vd − v0 = hd for some h > 0 for every
d = 1, 2, . . ., then equality holds in (6). We can verify that under linear externalities,
marginal cost pricing is indeed consistent with an equilibrium. In this network,
hence, an equilibrium involving marginal cost pricing under linearity is not robust
against slight perturbations in externalities. We show that this observation on
marginal cost pricing extends to any network that is not a cycle or complete.

• Pricing strategies consistent with a monopolization equilibrium? Sup-
pose that the externalities are either linear or satisfy (3), and consider the price pair
(p∗, q∗) such that

p∗1 = q∗1 = v0 − v1 + c, p∗2 = q∗2 = v2 − v0 + c, and p∗3 = q∗3 = v0 − v1 + c. (7)

In other words, buyers 1 and 3 are offered markdowns from marginal cost c whereas
buyer 2 is charged a markup from c. Note that when the externalities are linear,
the price vectors in (7) reduce to p = q = (−h + c, 2h + c,−h + c) so that the size
of the markup or markdown equals the number of their neighbors who receive the

8



opposite treatment from the firms.12 Suppose that the buyers choose firm B under
this price pair σ(p∗, q∗) = (B,B,B), and that when firm A deviates from p∗ to p,
buyers choose A only when they find A iteratively strictly dominant under (p, q∗).
By (3), firm B’s payoff is positive under (p∗, q∗). Consider firm A’s price vector p
that makes A dominant for buyer 1 in the first round, then iteratively dominant for
buyers 3 and 2 in this order in subsequent rounds. p then must satisfy

v0 − p1 > max
{
v1 − q∗1 , 0

}
, v2 − p2 > max

{
v0 − q∗2, 0

}
,

v0 − p3 > max
{
v0 − q∗3 , 0

}
.13

Combining these inequalities together, we have∑
i

(pi − c) <
(
v0 + v2 − 2v1

)
+

∑
i

(q∗i − c) + (v1 − q∗2).

When the externalities are linear as defined above, the first two terms on the right-
hand side equal zero whereas the third term is < 0 as can be readily verified. It
follows that no such deviation p is profitable also when the externalities are approx-
imately linear. If, on the other hand, firm A’s price vector p makes A dominant for
buyers 2 in the first round and iteratively dominant for buyers 1 and 3 a subsequent
round as in the right panel of Figure 1, p satisfies

v1 − p1 > max
{
v0 − q∗1 , 0

}
, v0 − p2 > max

{
v2 − q∗2, 0

}
,

v1 − p3 > max
{
v0 − q∗3 , 0

}
.

These inequalities together imply that∑
i

(pi − c) < − (
v0 + v2 − 2v1

)
+

∑
i

(q∗i − c) = 0.

Hence, no such p is profitable either. We can indeed verify that firm A has no
profitable deviation, and conclude that the pricing strategies in (7) are consistent
with a monopolization equilibrium when the externalities are linear, or approxi-
mately linear and also satisfy (3). Put differently, the equilibrium price vector (p, q)
under linearity in (7) is robust against slight perturbations in externalities which
satisfy (3). This marks a sharp contrast with the marginal cost pricing equilibrium
discussed above.14

12This is a special case of the bipartition equilibrium introduced in Section 7.
13When buyer 1 finds A dominant in round 1, buyer 2 finds B dominated by ∅ in round 2 since he

has only one neighbor (i.e., buyer 3) who may choose B and hence v1−q∗2 < 0. This further implies
that buyer 3’s payoff from choosing B in any subsequent round of the iteration process equals v0−q∗3
instead of v1 − q∗3 , as indicated in the third inequality. With x2 = B not rationalizable for buyer
2, firm A can make x3 = A iteratively dominant for buyer 3 more easily (i.e., at a higher price
p3) than in the hypothetical scenario where x2 = B is rationalizable for buyer 2. However, it can
be shown generally that no deviation p by firm A is profitable if it eliminates B before A becomes
dominant. See the discussion after Proposition 7.2 in Section 7.

14We can also verify that there exists no equilibrium in which the two firms segment the market.
The supplementary material provides a necessary condition for the existence of such an equilibrium.
This condition fails in the network of this example.
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5 Nash Equilibrium in the Buyers’ Game

In this section, we fix the price vector (p, q), and consider an equilibrium of the
buyers’ subgame following (p, q) in which the set of actions of each buyer i equals
Si = {A,B, ∅}, and his payoff function ui is defined by (1). The simultaneous-move
game (I, S =

∏
i∈I Si, (ui)i∈I) among the buyers is one of strategic complementar-

ities given that any buyer’s incentive to choose A (resp. B) increases when more
buyers choose A (resp. B). As such, the buyers’ game typically has multiple equilib-
ria. Among them, we are interested in two pure Nash equilibria xA and xB that are
extreme in the set of buyers who choose either A or B. Formally, xA is A-maximal
in the sense that if y is any Nash equilibrium and if any buyer i chooses A in y (i.e.,
yi = A), then he also chooses A in xA (xAi = A). Likewise, xB is B-maximal in the
sense that if y is any Nash equilibrium and if any buyer i chooses B in y (yi = B),
then he also chooses B in xB (xBi = B).15, 16

Formally, if we defineDA (resp.DB andD∅) to be the set of buyers for whom xi =
A (resp. xi = B and xi = ∅) is iteratively dominant, and D ≡ DA ∪DB ∪D∅, then
any buyer i ∈ D must choose his iteratively dominant action in any NE. It follows
that any pair of NE may be different from each other only in the actions chosen
by buyers not in D. The A-maximal and B-maximal NE can then be constructed
by simply having all buyers for whom A and B are rationalizable choose A and B,
respectively, as seen in the following proposition.

Proposition 5.1 (Maximal NE) Define xA and xB by

xAi =

⎧⎪⎨
⎪⎩
A if xi = A is rationalizable,

B if xi = B is iteratively dominant,

∅ otherwise,

and

xBi =

⎧⎪⎨
⎪⎩
A if xi = A is iteratively dominant,

B if xi = B is rationalizable,

∅ otherwise,

Then xA and xB are the A-maximal and B-maximal NE, respectively.

We denote by σA the buyers’ strategy profile that chooses the A-maximal NE
for any price pair (p, q), and by σB the strategy profile that chooses the B-maximal
NE after any (p, q). It is clear from Proposition 5.1 that when the buyers play σB ,

15Formally, the game is supermodular when the set Si of actions of each buyer is endowed with
the ordering A � ∅ � B. The set of NE in a supermodular game has maximal and minimal elements
with respect to the partial ordering �S on S induced by �. See Topkis (1998).

16Any NE survives the iterative elimination of strictly dominated actions, and in a finite su-
permodular game, any strategy profile x that survives this process lies between xA and xB :
xA �S x �S xB. See Milgrom and Roberts (1990).
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the set of buyers who choose A under any (p, q) equals DA(p, q). Likewise, when
they play σA, the set of buyers who choose B equals DB(p, q):{

i : σB
i (p, q) = A

}
= DA(p, q), and

{
i : σA

i (p, q) = B
}
= DB(p, q).

Suppose now that the price vector (p∗, q∗) is given, and that we want to examine
if any deviation by firm A to an alternative price vector p is profitable. A different
deviation p will induce a different iterative elimination process, and as will be seen,
the exact order in which the buyers find the choice of A iteratively dominant under
the price vector (p, q∗) determines whether this deviation by firm A is profitable or
not. For this reason, our analysis requires the description of the iterative elimination
of dominated strategies in the buyers’ game in some more detail. For any product
subset S′ =

∏
i S

′
i ⊂ S of action profiles such that S′

i �= ∅, buyer i’s action xi ∈ S′
i is

(strictly) dominated in S′ (by another pure action) if there exists x′i ∈ S′
i such that

ui(xi, x−i) < ui(x
′
i, x−i) for every x−i ∈ S′

−i.

xi ∈ S′
i is dominant in S′ if any other action x′i ∈ S′

i is dominated in S′ (by xi). Let
S0 = S, and for k = 1, 2, . . ., let Sk

i be the set of buyer i’s k-rationalizable actions,
i.e., the actions that survive the elimination of all dominated strategies in Sk−1. If
xi is the unique k-rationalizable action for buyer i for the first time in the iteration
process (i.e., Sk−1

i � Sk
i = {xi}), we say that action xi is k-dominant. Since each

buyer has at most two dominated actions, the above process stops in or before 2N
rounds. Let then K be the last round of the iteration process: SK+1 = SK . Define

Dk
A = {i ∈ I : xi = A is k-dominant}, and

Rk
A = {i ∈ I : xi = A is k-rationalizable}. (8)

For any k ≥ 1, ∪k
�=1D

�
A is the set of buyers for whom xi = A is the unique k-

rationalizable action, and the set of buyers for whom xi = A is iteratively dominant
equals DA ≡ ∪K

k=1D
k
A. On the other hand, RK

A is the set of buyers for whom xi = A
is rationalizable. DB , D∅, RK

B and RK
∅ have similar interpretations. Since the above

iteration process depends on the price profile (p, q), we often write Dk
A(p, q) and so

on to make this dependence explicit.
For any i, define α1

i = 0 and β1
i = di. For k ≥ 2, define αk

i to be the number
of i’s neighbors j for whom xj = A is the unique (k − 1)-rationalizable action, and
βk
i to be the number of his neighbors j for whom xj = B is (k − 1)-rationalizable.

xi = A is the unique k-rationalizable action for buyer i if and only if the payoff
from choosing A along with αk

i of his neighbors is higher than that from choosing
B along with βk

i of his neighbors, or from choosing ∅. In other words, i ∈ ∪k
�=1D

�
A

if and only if

vα
k
i − pi > max

{
vβ

k
i − qi, 0

}
,

or equivalently,

pi < min
{
vα

k
i − vβ

k
i + qi, v

αk
i

}
. (9)
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If xi = A is k-dominant (i ∈ Dk
A) for buyer i and xj = A is either �-dominant

(j ∈ D�
A) for � > k or not iteratively dominant (j /∈ DA) for buyer j, we say that i

precedes j in the elimination process, and write i ≺(p,q) j or simply i ≺ j.17 When
buyers i and j are adjacent, the precedence relation ≺ induces an orientation of the
link between i and j: The link ij is given the orientation i → j if i ≺ j.

6 Subgame Perfect Equilibrium

We now turn to the original two-stage game including the firms. We first observe
that if a price vector (p∗, q∗) is sustained in some SPE, then it must be sustained in
an SPE in which the buyers choose an extreme response to either firm’s deviation.
Formally, a strategy profile σ of the buyers is extremal with respect to (p∗, q∗) if

σ(p, q) =

{
σB(p, q) if p �= p∗ and q = q∗,
σA(p, q) if p = p∗ and q �= q∗.

(10)

In other words, when firm A unilaterally deviates from p∗, then all buyers play the
B-maximal NE that least favors firm A, and when firm B unilaterally deviates from
q∗, then they play the A-maximal NE that least favors firm B.

Proposition 6.1 (Bang-bang property) (p∗, q∗) is an SPE price vector if and only
if (p∗, q∗, σ) is an SPE for σ that is extremal with respect to (p∗, q∗).

Consider next firm A’s best response p to B’s price q when the buyers play the
B-maximal strategy σB. We say that the set J of buyers is independent if no pair
of buyers in J are adjacent to each other.18 The following lemma shows that if p is
any “optimal” deviation by firm A, then Dk

A(p, q) is independent. In other words,
p is never optimal if there exists a pair of adjacent buyers who belong to the same
round of the elimination process. Intuitively, this is because making A dominant
for adjacent buyers i and j simultaneously requires offering lower prices to both of
them than making xi = A dominant for buyer i first, then making xj = A dominant
for buyer j next conditional on i choosing xi = A. For illustration, consider the line
network of Section 4. If firm A offers p that makes A dominant for buyers 1 and 2
simultaneously, then p must satisfy

p1 < min {v0 − v1 + q∗1, v
0} and p2 < min {v0 − v2 + q∗2, v

0}.
On the other hand, if it offers p′ that makes A dominant for buyer 1 first and then
buyer 2 next, p′ should satisfy

p′1 < min {v0 − v1 + q∗1, v
0} and p′2 < min {q∗2 , v1}.

It is clear that p′ can be taken so that p1 + p2 < p′1 + p′2.
17For simplicity, we define the precedence relationship only for A.
18J is also independent if it is a singleton.
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Lemma 6.2 (Strict precedence between adjacent buyers) Let the price vector (p, q)
be given and suppose that buyers i and j are adjacent. If i and j both find xi = xj =
A k-dominant for the same k under (p, q), then there is another price vector p′ such
that firm A’s payoff under (p′, q) is strictly higher than that under (p, q), and that i
precedes j under (p′, q): πA(p

′, q, σB) > πA(p, q, σ
B) and i ≺(p′,q) j.

Note that p may or may not entail strict precedence between non-adjacent buy-
ers. Note in general that firm A’s optimal deviation may be to make the choice of
A iteratively dominant for only a subset of buyers, and that the buyers may choose
A even if it is not iteratively dominant. In this sense, if we consider p that makes
A iteratively dominant for every buyer, then it gives a lower bound for firm A’s
deviation payoff. Formally, given the price vector q of firm B, p is firm A’s divide-
and-conquer (DC ) price vector against q if it (1) entails strict precedence between
every pair of adjacent buyers (“divide”), and (2) makes A iteratively dominant for
all buyers (“conquer”). If p is a DC price vector, hence, the entire buyer network G
is given an orientation → induced by the precedence relation ≺.

Let a price vector (p, q) be given. For any buyer i ∈ DA(p, q) and ≺≡≺(p,q),
define

s≺i = |{j ∈ Ni : j ≺ i}| (11)

to be the number of i’s neighbors who precede him in the elimination process. When
no confusion arises, we omit the dependence of s≺i on ≺ and simply write si. We
refer to si as buyer i’s in-degree and di − si as i’s out-degree.

In terms of the orientation → induced by ≺, buyer i’s in-degree is simply the
number of links directed toward i, and his out-degree is the number of links directed
toward i’s neighbors. Recall also that αk

i is the number of i’s neighbors for whom
xi = A is the unique (k − 1)-rationalizable action (i.e., {A} = Sk−1

i ), and βk
i is the

number of his neighbors for whom xi = B is (k− 1)-rationalizable (i.e., B ∈ Sk−1
i ).

Hence, if xi = A is k-dominant for buyer i (i.e., i ∈ Dk
A), then

si = αk
i and di − si ≥ βk

i .
19 (12)

In the example of Section 4, the sequence of in-degrees is given by (s1, s2, s3) =
(0, 2, 0) in the left panel of Figure 1 and (s1, s2, s3) = (1, 0, 1) in the right panel.
When ≺ induces an orientation to every link of the network G, then the sum of
in-degrees of all buyers and the sum of out-degrees of all buyers both equal the total
number M of links in G: ∑

i∈I
si =

∑
i∈I

(di − si) = M. (13)

Define now OG to be the set of all possible orientations → of the buyer network G. If
s = (s≺i )i∈I is the sequence of in-degrees for the relation ≺, then the corresponding

19Note that di − si > βk
i if i has a neighbor j for whom xj = B is not (k − 1)-rationalizable but

xj = A is not the unique (k − 1)-rationalizable action, i.e., if Sk−1
j = {A, ∅} or {∅}.
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sequence of out-degrees d − s ≡ (di − s≺i )i∈I equals the sequence of in-degrees for
the reverse relation ≺′ such that i ≺′ j if and only if j ≺ i.

By (9) and (12), a sufficient condition for the dominance of xi = A for i in (9)
is given by

pi < min
{
vsi − vdi−si + qi, v

si
}

= vsi − vdi−si +min
{
qi, v

di−si
}
.

(14)

By offering p that barely satisfies (14) for every i, hence, firm A captures all the
buyers (DA(p, q) = I) and achieves the profits arbitrarily close to∑

i∈I

(
vsi − vdi−si +min

{
qi, v

di−si
}
− c

)
. (15)

We hence have the following lemma that gives a lower bound for each firm’s equi-
librium payoff.

Lemma 6.3 (Lower bound on equilibrium payoffs) If (p∗, q∗, σ) is an SPE, then

πA(p
∗, q∗, σ) ≥ max

≺∈OG

∑
i∈I

(
vsi − vdi−si +min

{
q∗i , v

di−si
}
− c

)
,

πB(p
∗, q∗, σ) ≥ max

≺∈OG

∑
i∈I

(
vsi − vdi−si +min

{
p∗i , v

di−si
}
− c

)
.

(16)

Lemma 6.3 shows that a firm’s payoff from DC is closely linked to the value of∑
i∈I

(
vsi − vdi−si

)
. (17)

(17) is the key quantity referred to as firm A’s benchmark payoff given ≺. Since
c ≤ v0 ≤ vdi−si , (15) reduces to (17) when firm B engages in marginal cost pricing
qc = (c, . . . , c). The benchmark payoff can hence be interpreted as the maximal
payoff achieved by employing DC against marginal cost pricing.20

7 Linear Externalities

When there are no adoption externalities c ≤ v0 = · · · = vd̄, it is clear that a
subgame perfect equilibrium price (p∗, q∗) is unique and equal to the marginal cost:
p∗ = q∗ = (c, . . . , c). In this section, we will examine if and how this result can be

20Note that the benchmark payoff is determined by the relation ≺ alone and independent of the
particular price vector p.
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extended when the externalities increase linearly in the size of adoption. Specifically,
we say that the externalities v = (v0, . . . , vd̄) are linear if there exists h > 0 such
that

vd − v0 = dh for every d = 0, 1, . . . , d̄.

Linearity is a working assumption in many models of network externalities in the
literature.21 We first establish that marginal cost pricing survives as an equilibrium
under linear externalities.

Proposition 7.1 (MC pricing under linear externalities) Let G be an arbitrary
buyer network. If the externalities v are h-linear for some h > 0, p∗ = q∗ = (c, . . . , c)
is an equilibrium price vector.

To see the intuition behind Proposition 7.1, suppose that firm B monopolizes
the market under p∗ = q∗ = (c, . . . , c) and that the B-extremal NE σB is played
when firm A deviates. If firm A offers a DC price vector p, then by (15), its payoff
satisfies∑

i∈I
(pi − c) <

∑
i∈I

(
vsi − vdi−si +min

{
c, vdi−si

}
− c

)
=

∑
i∈I

(
vsi − vdi−si

)
⇐ c ≤ v0

= 0. ⇐ linearity and (13)

It can also be checked that firm A cannot profitably deviate by offering p that
attracts only a subset of buyers.

Unlike in the case of no externalities, however, there exists a large multiplicity
of equilibria in the price competition game with linear externalities. The following
proposition provides a complete characterization of the set of pricing strategies con-
sistent with a monopolization equilibrium when the two firms offer the same price
vector. For any J ⊂ I, denote by L(J) the number of links in J , and for any J ,
J ′ ⊂ I with J ∩ J ′ = ∅, denote by L(J, J ′) the number of links between J and J ′.

Proposition 7.2 Let G be an arbitrary buyer network and suppose that the exter-
nalities v are h-linear for some h > 0. Let z = (zi)i∈I be any price vector.

1) (p∗, q∗) = (z, z) is consistent with a monopolization equilibrium if∑
i∈J

(zi − c) ≤ hL(J, I \ J) for every J � I and
∑
i∈I

(zi − c) = 0. (18)

2) Suppose that v0 > c. If (p∗, q∗) = (z, z) is consistent with a monopolization
equilibrium, then z satisfies (18).

21See, for example, Caillaud and Jullien (2003), Ambrus and Argenziano (2009), Candogan et
al. (2012) and Bloch and Quérou (2013).
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One key step of the proof for Proposition 7.2(1) is Lemma A.2 in the Appendix
which shows that no deviation p is profitable unless it satisfies the following condi-
tion: Under (p, q∗), every buyer i has either xi = A as the unique k-rationalizable
action, or xi = B as one of the k-rationalizable actions. This point is illustrated in
the line network of Section 4. Suppose that firm B monopolizes the market with
the price vector q∗ satisfying q∗1, q

∗
3 < 0, q∗2 > v1 = v0 + h, and

∑
i (q

∗
i − c) = 0.

Suppose also that firm A deviates to p such that under (p, q∗), all three buyers find
A iteratively dominant with the precedence relationship 1 ≺ 3 ≺ 2 (as in the right
panel of Figure 1). Since buyer 1 finds x1 = B dominated in round 1, and since
q∗2 > v1, buyer 2 finds x2 = B dominated in round 2 so that it is not 2-rationalizable.
However, x2 = A is not 1- or 2-dominant and hence is not the unique 2-rationalizable
action for buyer 2. This p hence violates the above condition. Furthermore, β2

3 = 0
since buyer 3 has no neighbor for whom B is 2-rationalizable. It follows that p
should satisfy:

p1 < min {v0 − v1 + q∗1, v
0} = v0 − v1 + q∗1,

p3 < min {v0 − v0 + q∗3, v
0} = q∗3,

p2 < min {v2 − v0 + q∗2, v
2} = v2,

where the last equality holds since q∗2 > v1 > v0. It hence follows that p is not a
profitable deviation since

∑
i (pi−c) < v0−v1+v2+q∗1+q∗3−3c = (v0+h)−q∗1 < 0.

The above observation in turn implies αk
i + βk

i = di for every i and k since
every neighbor of i either has A as his unique (k − 1)-rationalizable action (who
counts towards αk

i ) or B as one of the (k − 1)-rationalizable actions (who counts
towards βk

i ).
22 This substantially simplifies checking the profitability of deviations

since the deviating firm’s payoff can be evaluated in terms of the indegrees and the
markups/markdowns imposed by firm B:

∑
i∈DA

(pi − c) <
K∑
k=1

∑
i∈Dk

A

(vαi − vdi−αk
i + q∗i − c) =

∑
i∈DA

(vsi − vdi−si + q∗i − c).

It is readily seen (Lemma A.1 in the Appendix) that
∑

i∈DA
(vsi−vdi−si) = −hL(DA, I\

DA) so that no deviation p is profitable against q∗ which satisfies (18) for J = DA.
The intuition behind Proposition 7.2(2) is rather simple: Suppose for example

that J = {i} and that q∗i > hL(J, I \J) = hdi. In this case, min {v0−vdi +q∗i , v
0} =

v0 and hence firm A can profitably attract buyer i (i.e., i ∈ DA(p, q
∗)) by offering

p with pi ∈ (c, v0) and pj = c for j �= i. This observation basically extends to the
case where |J | ≥ 2.

Among the large set of pricing strategies consistent with a monopolization equi-
librium identified in Proposition 7.2, we are interested in a particular class that

22Note that this equality fails in the example given since α2
3 + β2

3 = 0 < d3.
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entails price discrimination of buyers as follows. Specifically, consider price dis-
crimination based on a binary partition of the buyer set: Buyers in one subset are
charged markups and those in the other subset are offered discounts. Formally, a
bipartition of the set I of buyers is an ordered pair (I1, I2) of subsets I1, I2 ⊂ I such
that I2 = I \ I1. For any i ∈ I, denote by dki the number of his neighbors in set Ik:

d1i = |Ni ∩ I1|, and d2i = |Ni ∩ I2|.
We say that z = (zi)i∈I is a bipartition price vector given the bipartition (I1, I2) if

zi =

{
d2ih+ c if i ∈ I1,

−d1ih+ c if i ∈ I2.
(19)

Hence, every buyer in I1 is charged a markup and every buyer in I2 is offered
a markdown from c. Furthermore, the size of the markup or markdown to each
buyer is proportional to the number of his neighbors in the other subset. We can
also verify that the markups and markdowns sum up to zero:

∑
i∈I (zi − c) = 0.

A profile (p∗, q∗, σ) is a bipartition equilibrium with monopolization given (I1, I2)
if it is an SPE with monopolization by one of the firms and (p∗, q∗) = (z, z) for
some bipartition price vector z given (I1, I2). Proposition 7.3 below establishes the
existence of a bipartition equilibrium under linear externalities.

Proposition 7.3 (Bipartition equilibrium) Let G be an arbitrary buyer network and
suppose that the externalities v are h-linear for some h > 0. For any bipartition
(I1, I2) of the set I, let z be the bipartition price vector given (I1, I2). Then (p, q) =
(z, z) is consistent with a bipartition equilibrium.

Since the choice of the bipartition is arbitrary, the total number of bipartition
equilibria is still very large. It is interesting to note that the bipartition equilibrium
of Proposition 7.3 reduces to the marginal cost pricing equilibrium of Proposition
7.1 when the bipartition is given by (I1, I2) = (∅, I): In this case, no buyer has a
neighbor in the other subset, and hence a bipartition equilibrium entails offering the
marginal cost to every buyer.

8 Marginal Cost Pricing under Generic Externalities

We next consider the consequence of introducing some generic property of external-
ities. The externalities v = (v0, . . . , vd̄) are generic if for any orientation →∈ OG of
the buyer network,

d− s is not a permutation of s ⇒
∑
i∈I

(
vsi − vdi−si

)
�= 0. (20)

Since the sequence d − s of out-degrees for any orientation → equals the sequence
s of in-degrees for the reverse orientation as noted before, (20) implies that the
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benchmark payoff for some orientation is strictly positive as long as there exists an
orientation in OG for which s and d − s are not permutations of each other. The
externalities v satisfying (20) are indeed generic in the set VG of possible externalities
in G. The condition (6) of the leading example in Section 4 corresponds to (20). The
following lemma shows that under (20), the benchmark payoff is strictly positive for
some orientation if and only if the buyer network is neither cyclic nor complete.

Lemma 8.1 (Positivity of the benchmark payoff) If the buyer network G is neither
cyclic nor complete, then s and d − s are not permutations of each other for some
orientation → so that

max
→∈OG

∑
i∈I

(
vsi − vdi−si

)
> 0.

Lemma 8.1(1) is illustrated in Figure 2 for a regular network. The sequences of
in-degrees and out-degrees of buyers 1, 2 and 4 in the left panel equal

(s1, s2, s4) = (0, 1, 1), (d1 − s1, d2 − s2, d4 − s4) = (4, 3, 3),

respectively, whereas those in the right panel equal

(s1, s2, s4) = (0, 2, 0), (d1 − s1, d2 − s2, d4 − s4) = (4, 2, 4),

respectively. Since the sequences of in-degrees and out-degrees of all other buyers
are the same in both panels, we see that if s and d − s are permutations of each
other in the left-panel, they cannot be so in the right-panel, and vice versa.
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Figure 2. Illustration of Proposition 8.1(1) for a regular network

Suppose now that firm B monopolizes the market with uniform pricing q∗ (q∗1 =
· · · = q∗N ≥ c). In this case, since c ≤ v0 ≤ vdi−si by assumption, the second term
on the right-hand side of (15) is non-negative:∑

i∈I

(
min

{
qi, v

di−si
}
− c

)
≥ 0. (21)
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Since πA(p
∗, q∗, σ) = 0, Lemma 8.1 and (21) together imply that (16) is violated

for firm A, implying the impossibility of a monopolization equilibrium with uniform
pricing.23 As seen in the following proposition, further inspection of (21) shows that
the monopolizing firm must offer a markdown from c to some buyer and also charge
a markup above v0 to another buyer. Furthermore, the largest externalities in a
network cannot be too small compared with v0. The last condition is a non-trivial
restriction for networks in which the largest degree d̄ is small as in line networks.

Proposition 8.2 (No monopolization equilibrium with uniform pricing) Suppose
that the buyer network G is neither complete nor cyclic, and that the externalities
v are generic (20). Let (p∗, q∗, σ) be an equilibrium with monopolization by one
firm, say firm B: σ(p∗, q∗) = (B, . . . , B). Then mini q

∗
i < c, maxi q

∗
i > v0 and

vd̄ > 2v0 − c.

As depicted in Figure 2, there are networks that are not cyclic or complete, but
are symmetric with respect to every buyer. It follows from Proposition 8.2 that
those identical buyers must also face price discrimination.

We are now ready to state our main result in this section. Suppose that both
firms engage in marginal cost pricing p∗ = q∗ = (c, . . . , c) to all the buyers. By
Proposition 8.2, it cannot be consistent with a monopolization equilibrium unless
the network is complete or cyclic. On the other hand, it is indeed consistent with
a monopolization equilibrium in these classes of networks essentially because for
any precedence relation ≺, the associated sequences of indegrees and outdegrees are
permutations of each other.

Proposition 8.3 (MC pricing in cyclic and complete networks) Let a buyer net-
work G be given and the externalities v are generic (20). (p∗, q∗) = (z, z) for
z = (c, . . . , c) is consistent with a monopolization equilibrium if and only if G is
either cyclic or complete.

9 Robustness of a Bipartition Equilibrium

We now examine the robustness of the equilibrium under linear externalities against
slight perturbation in the externalities. To this end, we consider externalities that
are approximately linear: For h > 0, the externalities v = (v0, . . . , vd̄) are ε-close to
h-linear if

|vd − v0 − hd| < ε for d = 1, . . . , d̄.

23When c > v0, marginal cost pricing can be consistent with an equilibrium in some cases. In
the line network of Section 4, for example, if v0 < c ≤ 1

3
(2v1 + v2) and c ≥ max {v2 − 2(v1 −

v0), v1 − 1
2
(v2 − v0)}, then there exists an equilibrium with pc = qc = (c, c, c). Intuitively, this is

so because (21) fails when c > v0 so that a firm’s payoff from a DC price vector may never exceed
its benchmark payoff as defined in (17).

19



We also say that the (sequence of) externalities (v(n))n∈N approach h-linearity if for
any ε > 0, there exists n such that v(n′) is ε-close to h-linear for n′ ≥ n. Given h > 0,
an equilibrium (p, q, σ) under h-linearity is robust if there exists a non-degenerate
set V ∗ of externalities such that (i) V ∗ contains h-linear externalities, and (ii) for
every v ∈ V ∗, there exists an equilibrium (pv, qv, σv) such that (pv, qv) → (p, q) as v
approaches h-linearity from within V ∗ and that σv(pv, qv) = σ(p, q). The following
result readily follows from Propositions 8.2 and 8.3.

Proposition 9.1 (Non-robustness of MC pricing) Suppose that v0 > c and let
(p, q) = (z, z) for z = (c, . . . , c). Then the monopolization equilibrium (p, q, σ) under
h-linearity is robust if and only if the buyer network G is a cycle or complete.

In contrast with the non-robustness of MC pricing seen in Proposition 9.1, Propo-
sition 9.2 below identifies a sufficient condition for bipartition pricing to be robust.
Consider the set of precedence relations ≺ according to which every buyer in I1
precedes every buyer in I2:

i ≺ j if i ∈ I1 and j ∈ I2,

and let O∗
G be the corresponding set of orientations of the buyer network. For each

orientation →∈ O∗
G and each degree d = 1, . . . , d̄, define λ→

d to be “the number
of buyers whose indegree equals d” minus “the number of buyers whose outdegree
equals d”:

λ→
d = |{i : si = d}| − |{i : di − si = d}| and λ→ = (λ→

1 , . . . , λ→̄
d ). (22)

Clearly, λ→ = 0 if and only if s and d− s are permutations of each other under the
orientation →. The sufficient condition is described in terms of these vectors λ→.
A subset J ⊂ I is maximally independent if (1) it is independent (i.e., contains no
pair of adjacent buyers), and (2) there exists no J ′ � J that is independent.

Proposition 9.2 Let the network G be given, and (I1, I2) be the bipartition of the
set of buyers such that I1 is maximally independent. Suppose that h > v0 − c > 0.
The bipartition equilibrium (p, q, σ) under h-linearity is robust if no convex combi-
nation of the collection of vectors Λ ≡ {λ→ : λ→ �= 0, →∈ O∗

G} equals zero.

The interpretation of Proposition 9.2 is as follows: Since every buyer in I1 pre-
cedes every buyer in I2 according to any orientation in O∗

G, if →∈ O∗
G, then its

reverse is not an element of O∗
G. This is important since the non-robustness of the

marginal cost pricing equilibrium (Lemma 8.1 and Proposition 8.3) results from the
fact that the benchmark payoff under one orientation is always the negative of that
under the reverse orientation. It may however be the case that even within O∗

G,
there exists an orientation that generates the same sequence of indegrees (up to
permutations) as that generated by the reverse of some →∈ O∗

G. The condition
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that no convex combination of vectors in {λ→ : λ→ �= 0, →∈ O∗
G} equals zero in

particular excludes such a possibility.24

The following corollary presents easy-to-verify sufficient conditions for the re-
quirement in Proposition 9.2, and shows that a robust bipartition equilibrium exists
in a large class of networks.

Corollary 9.3 Suppose that the network G has a maximally independent set J ⊂ I
that satisfies one of the following conditions:

1) |J | > |J ′| for any independent set J ′ ⊂ I \ J .
2) maxi∈J di > maxi∈I\J di.

3) I \ J is independent.

If h > v0 − c > 0, then for the bipartition (I1, I2) = (J, I \ J), the bipartition
equilibrium under h-linearity is robust.

10 Two-sided Markets

An extremely clear-cut characterization of equilibrium pricing under approximate
linearity is obtained when we focus on an important class of networks known as
bipartite networks. A buyer network G is bipartite if there exists a bipartition
(I1, I2) such that the only links of G are between I1 and I2.

25 Any tree, which is
a network with no cycle, is bipartite. For example, the line network in Figure 1 is
bipartite with the partition I1 = {1, 3} and I2 = {2}. More generally, a network
is bipartite if and only if the length of every cycle is even. Bipartite networks are
the most fundamental class of networks in graph theory.26 A bipartite network is
complete if every buyer in I1 is adjacent to every buyer in I2. A complete bipartite
network is a graph-theoretical representation of a two-sided market with global
externalities that receives much attention in the economics literature. For example,
we can think of I1 as the set of sellers and I2 as the set of buyers of a certain good.
In this case, firms A and B are interpreted as the platforms that offer marketplace
to these sellers and buyers, and their prices are interpreted as participation fees
required for registration into their platforms. Under global externalities, the value
of a platform for an agent on one side of the market is monotonically increasing
in the number of agents on the other side of the market who adopt that platform.
Our characterization below applies also to two-sided markets with local externalities
where the value of a platform to any agent depends on whether the adopters of the
platform on the other side are linked to him or not.

24If the sequence of indegrees generated by →′ is the same as (a permutations of) that generated

by the reverse of →∈ O∗
G, then λ→ + λ→′

= 0.
25In other words, both I1 and I2 are independent. Condition (3) of Corollary 9.3 corresponds to

this case.
26See for example Bollobás (1998).
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Proposition 10.1 (Monopolization equilibrium in a two-sided market) Suppose that
the buyer network G is bipartite with the bipartition (I1, I2). Let h, v0 and c ≥ 0
satisfy h > v0 − c > 0. If the externalities v are sufficiently close to h-linear,
and

∑
i∈I1 (v

d2i − v0) ≥ ∑
i∈I2 (v

d1i − v0), then (p∗, q∗) = (z, z) is consistent with a
monopolization equilibrium if

z =

{
vd

2
i − v0 + c if i ∈ I1,

v0 − vd
1
i + c if i ∈ I2.

According to Proposition 10.1, the agents on one side are charged markups and
those on the other side are offered markdowns. Which side should be offered dis-
counts is determined by the inequality that compares the aggregate externalities
that each side enjoys when all agents on the other side adopt the same platform:
Markups are charged to the side that enjoys the larger aggregate externalities. This
pricing strategy is a natural extension of the bipartition pricing identified in Propo-
sition 7.3 given that the size of a markup/markdown to any buyer (divided by h)
approaches the number of his neighbors on the other side in the limit as the exter-
nalities approach linearity. Put differently, Proposition 10.1 shows the robustness
of bipartition pricing for a bipartite network.

The pricing strategy described in Proposition 10.1 has empirical support. While
the theoretical literature finds such a pricing strategy optimal when the platform
is a monopoly or when the externalities are global, Proposition 10.1 shows that it
is valid even when there is competition and when the externalities are local. In
particular, it is the first to identify the exact relationship between the externalities
and the direction and size of price discrimination.27, 28 The literature often discusses
global but asymmetric externalities in two-sided markets.29 In those models, the
network effect of the adoption decision of side 1 on side 2 is different from that of
side 2 on side 1. Such a model is replicated in the present framework by considering
a complete bipartite network with different numbers of buyers on each side. Which
side should receive discounts in such markets again depends on the specification of
externalities.

Figure 3 illustrates the markups and markdowns specified in Proposition 10.1
when

v4 − v0 ≥ 4(v1 − v0), (23)

27Local externalities are important in two-sided markets as well. Consider, for example, a sport
league selling sponsorship rights to firms while selling broadcasting rights to TV stations in different
countries. Potential sponsors would be interested in knowing which countries obtain the right given
the varying degrees of their interests in those markets.

28Alternative explanation of the markup-markdown scheme in two-sided markets is provided by
Bolt and Tieman (2008), and Parker and Van Alstyne (2005) among others.

29See, for example, Jullien (2011).
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so that I1 = {1} and I2 = {2, 3, 4, 5}. Buyer 1 at the hub is charged a markup
whereas all the buyers in the periphery are offered a discount. We can interpret the
discount to the peripheral buyers as a protection against the inducement from the
other firm. In fact, when (23) holds, it is relatively more difficult for the other firm,
say firm A, to induce the hub buyer to switch: When for example firm B engages
in marginal cost pricing qc = (c, . . . , c), firm A must pay buyer 1 more than v4 − v0

to make x1 = A 1-dominant, whereas he needs to pay just above 4(v1− v0) to make
xi = A 1-dominant for all peripheral buyers. When the inequality (23) is reversed,
then buyer 1 now receives a discount, whereas the peripheral buyers are charged
a markup. Again, which buyer(s) should be protected depends sensitively on the
specification of externalities.

2

3

4

5

1

v4 − v0

v0 − v1

v0 − v1

v0 − v1

v0 − v1

Figure 3. Equilibrium markups and markdowns on a star when
v4 − v0 ≥ 4(v1 − v0).

One interesting observation concerns how an equilibrium changes when a link
is added to or removed from a network. Suppose that the network G′ is obtained
from the original bipartite network G by adding a link between buyer i in I1 and
buyer j in I2. If buyer i is charged a markup and buyer j is offered a markdown in
G, the addition of the link typically only affects only the prices charged to buyers
i and j: With the new link, the price increases by approximately h for buyer i and
decreases by approximately h for buyer j. In some cases, however, the new link
may cause the regime shift in the pricing strategy. In other words, the addition
of a new link may cause I1 to be the side that receives a discount, and I2 to be
the side that is charged a markup. When 2(v1 − v0) + v4 − v0 < 3(v2 − v0) and
(v1 − v0) + (v4 − v0) > (v2 − v0) + (v3 − v0) in Figure 4, for example, the buyers in
I1 are charged markups in G but offered discounts in G′ which is obtained from G
by adding a link between 2 and 8.30

30As seen in this example, the regime shift can take place even when the externalities are
marginally decreasing or increasing.
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−h −h −h−4h
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I2

h h 2h4h

−2h −3h −h−2h

1 2 3 4

5 6 7 8

I1

I2

Figure 4. Regime shift with the addition of a link: G (left) and
G′ (right).

11 Discussion

The essential feature of the market for goods with network externalities is the mul-
tiplicity of equilibria. In the present context, this corresponds to the multiplicity of
equilibria in the buyers’ subgame. Our construction of an equilibrium is based on
the assumption that following any deviation by either firm, the buyers coordinate
on the extreme equilibrium that least favors the deviator. While this assumption
supports the broadest spectrum of equilibrium, it is not consistent with, for exam-
ple, the assumption that the buyers choose the Pareto efficient alternative whenever
there is one.31 Fundamental multiplicity of equilibria also exists in the pricing game
between the firms when the externalities are linear. In this case, any pricing strategy
is consistent with an equilibrium as long as the sum of markups and markdowns
(divided by the factor of proportion h) it entails for any subset of buyers does not
exceed the number of links they have with the rest of the network. Even if we re-
strict attention to bipartition pricing strategies, there is freedom in the choice of a
binary partition as well as in the choice of the partition element to which discounts
are offered. On the other hand, the entire set of equilibrium pricing strategies is
unknown under non-linear externalities. We have shown that marginal cost pricing
is no longer consistent with a monopolization equilibrium except in the two special
classes of networks under non-linear externalities. As for bipartition pricing, we
have identified conditions under which it is robust and in a bipartite network, have
uniquely pinned down the equilibrium pricing strategy under approximate linearity
that is “close” to robust bipartition pricing under linearity. These findings may
suggest that the number of equilibrium pricing strategies is fewer under non-linear
externalities than under linear externalities.

There are a number of interesting extensions of the present model including, for

31See Ambrus and Argenziano (2009) and also Jullien (2011). One related issue concerns what
happens when one of the firms, say firm A, is focal so that the buyers play the A-maximal NE
following any price offers. See Jullien (2011).
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example, the model with a general number of firms, firms with asymmetric exter-
nalities, or a positive degree of compatibility between the goods.32, 33 It would also
be interesting to consider alternatives to the assumptions of perfect price discrimi-
nation, public observability of prices, and perfect knowledge of the firms about the
network.34

Appendix

Proof of Proposition 5.1 We show that xA is a NE. It will be then clear that
xA is a A-maximal NE since any NE y must be rationalizable (i.e., y ∈ SK), and
since xAi = A whenever A is rationalizable. For buyer i ∈ D, xAi is dominant and
hence is optimal. If i has no dominant action (i /∈ D) and xi = A is rationalizable,
then xAi = A by definition. If

ui
(
xA

)
< 0 = ui

(
xi = ∅, xA−i

)
,

then ∅ would be rationalizable and dominate xi = A. If

ui
(
xA

)
< ui

(
xi = B,xA−i

)
,

then B would be rationalizable and dominate xi = A since buyer j �= i plays
xAj = B only if xj = B is iteratively dominant and plays xAj = A whenever A is

rationalizable. In either case, we would have A /∈ SK+1
i � SK

i , a contradiction.
If i has no dominant action (i /∈ D) and xi = A is not rationalizable, then the

set of rationalizable actions equals SK
i = {B, ∅} and xAi = ∅ by definition. If

0 = ui
(
xA

)
< ui

(
xi = A, xA−i

)
,

then A would be rationalizable, a contradiction. If

0 = ui
(
xA

)
< ui

(
xi = B,xA−i

)
,

then xi = B would be rationalizable and dominate xi = ∅ since buyer j �= i plays
xAj = B only if it is iteratively dominant. This is a contradiction to the fact that
xi = ∅ is rationalizable. �

32When there is small asymmetry in the marginal cost, the monopolization equilibrium survives
with the more efficient firm monopolizing the market.

33Endogenous determination of compatibility levels by the firms is one topic that has received
much attention in the literature. For example, Baake and Boom (2001) find in their model of global
network externalities that the firms always choose to offer compatibility in equilibrium.

34Price discrimination in the form of one full price and one discount price is studied in Candogan
et al. (2012). Pasini et al. (2008) formulate a two-sided market model in which firms only know the
degree distribution of the buyers.
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Proof of Lemma 6.2. Denote Dk
A = Dk

A(p, q) for k = 1, . . . ,K, and suppose that
adjacent buyers 1 and 2 both find x1 = x2 = A k-dominant (i.e., 1, 2 ∈ Dk

A(p, q))
for some k ≤ K. Then it follows from (9) that for i = 1, 2,

pi < min
{
vα

k
i (p,q) − vβ

k
i (p,q) + qi, v

αk
i (p,q)

}
.

Consider now p′ such that p′i = pi for i �= 2, and

p2 < p′2 < min
{
vα

k
2(p,q)+1 − vβ

k
2 (p,q) + q2, v

αk
2 (p,q)+1

}
. (24)

We then have

D�
A(p

′, q) = D�
A(p, q) for � ≤ k − 1, and Dk

A(p
′, q) = Dk

A(p, q) \ {2}.

Since 1 is adjacent to 2 (1 ∈ N2), in round k+1 of the iteration process under (p′, q),
we have,

αk+1
2 (p′, q) =

∣∣{j ∈ N2 : xj = A is k-dominant under (p′, q)
}∣∣ = αk

2(p, q) + 1,

and

βk+1
2 (p′, q) =

∣∣{j ∈ N2 : xj = B is k-rationalizable under (p′, q)
}∣∣ ≤ βk

2 (p, q).

It then follows from (24) that

p′2 < min
{
vα

k+1
2 (p′,q) − vβ

k+1
2 (p′,q) + q2, v

αk+1
2 (p′,q)

}
.

so that x2 = A is (k + 1)-dominant (2 ∈ Dk+1
A (p′, q)) by (9). This further implies

that DA(p
′, q) = DA(p, q). Hence

πA(p
′, q, σB) =

∑
i∈DA(p′,q)

(p′i − c) >
∑

i∈DA(p,q)

(pi − c) = πA(p, q, σ
B),

implying that p′ is a strictly better response to (q, σB) than p. �

Proof of Proposition 6.1. If (p∗, q∗, σ) is an SPE for σ which is extremal with
respect to (p∗, q∗), then (p∗, q∗) is clearly an SPE price vector. Conversely, suppose
that (p∗, q∗, σ̂) is an equilibrium for some strategy profile σ̂ of the buyers. Let σ be
the buyers’ strategy profile which (i) is extremal with respect to (p∗, q∗), and (ii)
chooses the same action profile as σ̂ on the path: σ(p∗, q∗) = σ̂(p∗, q∗). To show
that (p∗, q∗, σ) is an equilibrium, we derive a contradiction by supposing that firm
A has a profitable deviation p from p∗ against (q∗, σ):

πA(p, q
∗, σ) > πA(p

∗, q∗, σ). (25)
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By the definition of σ, only those buyers who have A as their iteratively dominant
action choose A: {i : σi(p, q∗) = A} = DA(p, q

∗). Define an alternative price vector
p′ of firm A as follows:

p′i =

{
pi if i ∈ DA(p, q

∗),
c otherwise.

We will show that if xi = A is iteratively dominant for buyer i under (p, q∗), then
it is also iteratively dominant under (p′, q∗): DA(p

′, q∗) ⊃ DA(p, q
∗). We will show

this by proving that ∪k
�=1D

�
A(p

′, q∗) ⊃ ∪k
�=1D

�
A(p, q

∗) and Rk
B(p

′, q∗) ⊂ Rk
B(p, q

∗)
for each k = 1, . . . ,K, where K is the number of the maximum number of iterations
under (p, q∗), and Rk

B is the set of buyers for whom xi = B is k-rationalizable as
defined in (8). Suppose first that k = 1. We have

i ∈ D1
A(p, q

∗) ⇔ v0 − pi > max {vdi − q∗i , 0}, (26)

i ∈ D1
A(p

′, q∗) ⇔ v0 − p′i > max {vdi − q∗i , 0}. (27)

If i ∈ D1
A(p, q

∗), then p′i = pi and hence (27) holds. It follows that D1
A(p, q

∗) ⊂
D1

A(p
′, q∗). On the other hand,

i ∈ R1
B(p

′, q∗) ⇔ vdi − q∗i ≥ max {v0 − p′i, 0}, (28)

i ∈ R1
B(p, q

∗) ⇔ vdi − q∗i ≥ max {v0 − pi, 0}. (29)

If i ∈ R1
B(p

′, q∗) and i ∈ DA(p, q
∗), (29) holds since then p′i = pi. Let i ∈ R1

B(p
′, q∗)

and i /∈ DA(p, q
∗). If v0 − pi > 0, then vdi − q∗i ≥ v0 − pi must hold since otherwise,

xi = A would be 1-dominant for i under (p, q∗), a contradiction. If v0−pi ≤ 0, then
vdi − q∗i ≥ 0 clearly holds by (28). It follows that (29) holds in both cases so that
R1

B(p
′, q∗) ⊂ R1

B(p, q
∗).

As an induction hypothesis, suppose that ∪�
κ=1D

κ
A(p, q

∗) ⊂ ∪�
κ=1D

κ
A(p

′, q∗) and
R�

B(p, q
∗) ⊃ R�

B(p
′, q∗) for � = 1, . . . , k − 1 for some k ≥ 2. We then have α̃k

i ≡
αk
i (p

′, q∗) ≥ αk
i (p, q

∗) ≡ αk
i and β̃k

i ≡ βk
i (p

′, q∗) ≤ βk
i (p, q

∗) ≡ βk
i for every i. Note

that

i ∈ ∪k
κ=1D

κ
A(p, q

∗) ⇔ vα
k
i − pi > max {vβk

i − q∗i , 0}, (30)

i ∈ ∪k
κ=1D

κ
A(p

′, q∗) ⇔ vα̃
k
i − p′i > max {vβ̃k

i − q∗i , 0}. (31)

Take any i ∈ ∪k
κ=1D

κ
A(p, q

∗). Given that p′i = pi for any such i, (31) holds since
α̃k
i ≥ αk

i and β̃k
i ≤ βk

i . It follows that i ∈ ∪k
κ=1D

κ
A(p

′, q∗). We hence conclude that
∪k
κ=1D

κ
A(p, q

∗) ⊂ ∪k
κ=1D

κ
A(p

′, q∗). On the other hand,

i ∈ Rk
B(p

′, q∗) ⇔ vβ̃
k
i − q∗i ≥ max {vα̃k

i − p′i, 0}, (32)

i ∈ Rk
B(p, q

∗) ⇔ vβ
k
i − q∗i ≥ max {vαk

i − pi, 0}. (33)

If i ∈ Rk
B(p

′, q∗) and i ∈ DA(p, q
∗), then p′i = pi so that (32) implies (33) since

α̃k
i ≥ αk

i and β̃k
i ≤ βk

i . Let i ∈ Rk
B(p

′, q∗) and i /∈ DA(p, q
∗). If vα

k
i − pi > 0, then
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vβ
k
i − q∗i ≥ vα

k
i − pi must hold since otherwise, xi = A would be k-dominant for i

under (p, q∗), a contradiction. If vα
k
i − pi ≤ 0, then vβ

k
i − q∗i ≥ vβ̃

k
i − q∗i ≥ 0 holds by

(32). It follows that (33) holds in both cases so that Rk
B(p

′, q∗) ⊂ Rk
B(p, q

∗). This
completes the induction step.

The above argument shows that πA(p
′, q∗, σ) = πA(p, q

∗, σ) since any buyer
i ∈ DA(p, q

∗) chooses A also under (p′, q∗) for the same price p′i = pi, and the
contribution to firm A’s payoff of any buyer i ∈ DA(p

′, q∗) \ DA(p, q
∗) equals zero

since p′i = c. Finally, {i : σ̂i(p
′, q∗) = A} ⊃ DA(p

′, q∗), and if σ̂i(p
′, q∗) = A and

i /∈ DA(p
′, q∗), then i’s contribution to firm A’s payoff equals zero since p′i = c.

It hence follows that πA(p
′, q∗, σ̂) = πA(p

′, q∗, σ) = πA(p, q
∗, σ). This, along with

πA(p
∗, q∗, σ̂) = πA(p

∗, q∗, σ) by the definition of σ, shows that if (25) holds, then p′

is a profitable deviation for firm A against (q∗, σ̂), which is a contradiction. �

Proof of Lemma 6.3. Let ε > 0 and orientation →∈ OG be given. Define the
price vector p = (pi)i∈I by

pi = min {vsi − vdi−si + q∗i , v
si} − ε. (34)

p is then a DC vector so that DA(p, q
∗) = I. Hence, firm A’s payoff under (p, q∗, σ)

satisfies
πA(p, q

∗, σ) =
∑
i∈I

(
min {vsi − vdi−si + q∗i , v

si} − ε− c
)
.

Since ε > 0 and →∈ OG are arbitrary, if (16) does not hold, then we would have a
contradiction πA(p, q

∗, σ) > πA(p
∗, q∗, σ). �

Proof of Proposition 7.1. Let p∗ = q∗ = (c, . . . , c). Let σ be the extremal
strategy profile with respect to (p∗, q∗) with σ(p∗, q∗) = (B, . . . , B) so that B mo-
nopolizes the market under (p∗, q∗). Now consider any deviation p �= p∗ by firm A
and write Dk

A = Dk
A(p, q

∗) (k = 1, . . . ,K). Since v0 − q∗i = v0 − c ≥ 0, xi = B
is never dominated by xi = ∅. Furthermore, if xi = A dominates xi = B, then
xi = A also dominates xi = ∅. If follows that for any i and k, either xi = A is the
unique (k−1)-rationalizable action (Sk−1

i = {A}) or xi = B is (k−1)-rationalizable
(B ∈ Sk−1

i ). Hence, for any i and k,

βk
i = di − αk

i .

It then follows from (9) that

pi < min
{
vα

k
i − vβ

k
i + q∗i , v

αk
i

}
≤ vα

k
i − vdi−αk

i + c.

Denote the number of links in J ⊂ I by L(J), and that between J and J ′ ⊂ I \ J
by L(J, J ′). We then have∑

i∈DA

di = 2L(DA) + L(DA, I \DA) and
∑
i∈Dk

A

αk
i = L(DA). (35)
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Hence, firm A’s payoff satisfies

πA(p, q
∗, σB) =

∑
i∈DA

(pi − c)

≤
K∑
k=1

∑
i∈Dk

A

(
vα

k
i − vdi−αk

i

)

= h
K∑
k=1

∑
i∈Dk

A

(
2αk

i − di

)
= −hL(DA, I \DA) ≤ 0.

Therefore, p is not a profitable deviation. �

Proof of Proposition 7.2 The proof uses three lemmas (Lemmas A.1, A.2, and
A.3) presented below.

1) Suppose that (18) holds. Let σ be extremal with respect to (p∗, q∗) and σ(p∗, q∗) =
(B, . . . , B). It follows from Lemma A.2 that if p is any profitable deviation, then
βk
i = di − αk

i for any i and k. Hence, if i ∈ DA(p, q
∗), pi must satisfy

pi < min
{
vα

k
i − vβ

k
i + q∗i , v

αk
i

}
≤ vα

k
i − vdi−αk

i + q∗i . (36)

Take any J ⊂ I and take any p such that DA(p, q
∗) = J . It then follows from

Lemma A.1 that

πA(p, q
∗, σ) =

∑
i∈J

(pi − c)

<
∑
i∈J

(vα
k
i − vdi−αk

i + q∗i − c)

≤ −hL(J, I \ J) + hL(J, I \ J) = 0.

Hence, firm A has no profitable deviation.

2) Suppose that (18) fails. Suppose that firm B monopolizes the market under
(p∗, q∗): σ(p∗, q∗) = (B, . . . , B). In view of Proposition 6.1, we may suppose that σ
is extremal with respect to (p∗, q∗). If

∑
i∈I (zi−c) = πB(p

∗, q∗, σ) < 0, then (p∗, q∗)
is clearly inconsistent with an SPE. Suppose then that

∑
i∈J (zi − c) > hL(J, I \ J)

for some J ⊂ I. By setting K = ∅ in Lemma A.3, we see that when the buyers play
the B-maximal NE σB , firm A can choose p so that DA(p, q

∗) = J and make its
payoff arbitrarily close to

r(J | ∅, q∗) ≥ −hL(J, I \ J) + min
{∑
j∈J

(q∗j − c), n(v0 − c) + hL(J, I \ J)
}
. (37)
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By assumption, the RHS of (37) is > 0, implying that there exists p such that
πA(p, q

∗, σB) > 0. Since σ is extremal with respect to (p∗, q∗), we have πA(p, q∗, σ) =
πA(p, q

∗, σB) > 0 = πA(p
∗, q∗, σ) so that p is a profitable deviation against q∗. �

Lemma A.1 Let the network G be given and suppose that the externalities are
h-linear for h > 0. Then for any (p, q) and DA = DA(p, q),

1

h

K∑
k=1

∑
i∈Dk

A

(
vα

k
i − vdi−αk

i

)
= −L(DA, I \DA).

Proof of Lemma A.1 The conclusion follows since vα
k
i − vdi−αk

i = h(2αk
i − di),∑K

k=1

∑
i∈Dk

A
αk
i = L(DA), and

∑K
k=1

∑
i∈Dk

A
di = 2L(DA) + L(DA, I \DA). �

Lemma A.2 Let the buyer network G be given. Suppose that the externalities v
are h-linear for h > 0. Let q∗ be any price vector satisfying∑

i∈J
(q∗i − c) ≤ hL(J, I \ J) for any J ⊂ I. (38)

If firm A’s price vector p is such that πA(p, q
∗, σB) ≥ 0, then the following holds

under (p, q∗): For any i ∈ I and k = 1, . . . ,K, either

(i) xi = B is k-rationalizable (i.e., B ∈ Sk
i ), or

(ii) xi = A is the unique k-rationalizable action (i.e., {A} = Sk
i ).

(39)

Furthermore, for any such p, αk
i + βk

i = di for every i and k.

Proof of Lemma A.2 Note that the second statement of the proposition follows
from (39): For any i ∈ I and k ≥ 2, every neighbor j of i has either xj = A as their
unique (k − 1)-rationalizable action or xj = B as one of the (k − 1)-rationalizable
actions. Hence, αk

i + βk
i = di.

Write Dk
A ≡ Dk

A(p, q
∗). We show that the failure of (39) implies πA(p, q

∗, σB) <
0. For simplicity, we suppose that (39) fails for a single i so that B /∈ Sk

i and
{A} �= Sk

i for some k. Let k ≥ 2 be the smallest such k so that B ∈ Sk−1
i and

B /∈ Sk
i . We must have vβ

k
i < q∗i since if vβ

k
i ≥ q∗i , for B /∈ Sk

i to take place,

xi = B must be dominated by xi = A in Sk−1 so that vα
k
i − pi > vβ

k
i − q∗i ≥ 0.

This, however, shows that xi = A also dominates xi = ∅ and hence is the unique
k-rationalizable action (Sk

i = {A}), which is a contradiction. For any j �= i, (39)
holds by assumption, and hence for any � = 1, . . . ,K,

j ∈ D�
A ⇒ S�−1

j �= {A} ⇒ B ∈ S�−1
j .
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Suppose first that i ∈ Dm
A for some m ≥ k. By the above observation, for any j

and � such that j ∈ D�
A, β

�
j is given as follows:

β�
j =

⎧⎪⎨
⎪⎩
dj − α�

j if j ∈ D�
A \Ni, or

if j ∈ Ni ∩D�
A and � ≤ k or � ≥ m+ 1,

dj − α�
j − 1 if j ∈ Ni ∩D�

A and k + 1 ≤ � ≤ m− 1.

(40)

Furthermore, since βm
i ≤ βk

i , if xi = A is m-dominant, then pi should satisfy

pi < min
{
vα

m
i − vβ

m
i + q∗i , v

αm
i

}
= vα

m
i . (41)

Using (40) and (41), we can evaluate firm A’s payoff under (p, q∗, σB) as follows:

πA(p, q
∗, σB) =

∑
j∈DA

(pj − c)

<
K∑
�=1

∑
j∈D�

A

(
min

{
vα

�
j − vβ

�
j + q∗j , v

α�
j

}
− c

)

≤
m−1∑
�=k+1

∑
j∈Ni∩D�

A

(
vα

�
j − vdj−α�

j−1 + q∗j − c
)

+
∑
�≤k

�≥m+1

∑
j∈Ni∩D�

A

(
vα

�
j − vdj−α�

j + q∗j − c
)

+

K∑
�=1

∑
j �=i

j∈D�
A

\Ni

(
vα

�
j − vdj−α�

j + q∗j − c
)

+
(
vα

m
i − c

)

(42)

Rewriting of (42) yields

πA(p, q
∗, σB) <

K∑
�=1

∑
j∈D�

A

(
vα

�
j − vdj−α�

j + q∗j − c
)

+

m−1∑
�=k+1

∑
j∈Ni∩D�

A

(
vdj−α�

j − vdj−α�
j−1

)
+ vdi−αm

i − q∗i

≤
m−1∑
�=k+1

∑
j∈Ni∩D�

A

(
vdj−α�

j − vdj−α�
j−1

)
+ vdi−αm

i − q∗i ,

(43)
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where the last inequality follows from Lemma A.1 and (38). Linearity then implies
that

πA(p, q
∗, σB) < vdi−αm

i − q∗i +
m−1∑
�=k+1

∑
j∈Ni∩D�

A

h

= v0 + h(di − αm
i )− q∗i + h

∣∣∣Ni ∩ ∪m−1
�=k+1D

�
A

∣∣∣ .
(44)

When m− 1 ≥ k + 1, (44) reduces to

πA(p, q
∗, σB) < v0 + h(di − αm

i )− q∗i + h(αm
i − αk+1

i )

= v0 + h(di − αk+1
i )− q∗i

= vβ
k+1
i − q∗i

≤ vβ
k
i − q∗i < 0.

(45)

The same inequality holds true also when m = k + 1 or m = k since αm
i = αk+1

i in
those cases.35 When i /∈ DA, (42) holds with m replaced by K + 1 and without the
last term vα

m
i − c ≥ 0 on the right-hand side. It follows that πA(p, q

∗, σB) < 0 in
this case as well. �

Suppose that the externalities are h-linear. Given firmB’s price vector q and disjoint
setsK, J ⊂ I of buyers, suppose that firmA offers p such that under (p, q), (i) xi = A
is iteratively dominant for i ∈ K ∪J , and (ii) the buyers in K precede the buyers in
J . Let rA(J | K, q) denote the supremum of firm A’s payoff from J when it chooses
a price vector p satisfying these conditions:

rA(J | K, q) = sup

{∑
i∈J

(pi − c) : K ∪ J = DA(p, q), i ≺ j if i ∈ K and j ∈ J

}
.

Lemma A.3 For any K and J ⊂ I such that K ∩ J = ∅, if we denote q̄i =
min {qi, vdi−dKi }, then

r(J | K, q) ≥ h
{
L(J,K)− L(J, I \ (K ∪ J))

}
+min

{∑
j∈J

(q̄j − c), n(v0 − c) + hL(J, I \ (K ∪ J))
}
.

(46)

Proof. We proceed by induction on the size of J . Take any J such that J = {j}
for any j ∈ I. Then j finds A dominant and is preceded by buyers in K if vd

K
j −pj >

35When m = k, αk+1
i = αm+1

i =
∣
∣Ni ∩ ∪m

�=1 D
�
A

∣
∣ =

∣
∣Ni ∩ ∪m−1

�=1 D�
A

∣
∣ = αm

i since i ∈ Dm
A implies

Ni ∩Dm
A = ∅ by Lemma 6.2.
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max {vdj−dKj − qj, 0} so that any pj with pj < vd
K
j − vdj−dKj + min {qj , vdj−dKj } =

vd
K
j − vdj−dKj + q̄j will ensure that j ∈ DA(p, q). Hence, (46) holds since

r({j} | K, q)

≥ vd
K
j − vdj−dKj + q̄j − c

= h
{
L({j},K) − L({j}, I \ (K ∪ {j}))

}
+min

{
q̄j − c, v0 − c+ hL({j}, I \ (K ∪ {j}))

}
.

Let n ≥ 1 be given, and suppose as an induction hypothesis that (46) holds for
every J such that |J | ≤ n. Take any J such that |J | = n+ 1. Suppose without loss
of generality that 1 ∈ J and let J−1 = J \ {1}. Note that r(J | K, q) satisfies

r(J | K, q) ≥ max
{
r({1} | K, q) + r(J−1 | K ∪ {1}, q),
r(J−1 | K, q) + r({1} | K ∪ J−1, q)

}
.

(47)

The first term on the right-hand side equals the bound when buyer 1 precedes buyers
in J−1, and the second term equals the bound when buyers in J−1 precede buyer 1.
By the induction hypothesis, we can evaluate each term on the right-hand side of
(47) as follows. First, since

r({1} | K, q) ≥ h
{
L({1},K) − L({1}, I \ (K ∪ {1}))

}
+ q̄1 − c,

and

r(J−1 | K ∪ {1}, q) ≥ h
{
L(J−1,K ∪ {1}) − L(J−1, I \ (K ∪ J))

}
+min

{ ∑
j∈J−1

(q̄j − c), n(v0 − c) + hL(J−1, I \ (K ∪ J))
}
,

we have

r(J | K, q) − h
{
L(J,K)− L(J, I \ (K ∪ J))

}
≥ q̄1 − c+min

{ ∑
j∈J−1

(q̄j − c), n(v0 − c) + hL(J−1, I \ (K ∪ J))
}
.

(48)

Next, since

r(J−1 | K, q) ≥ h
{
L(J−1,K)− L(J−1, I \ (K ∪ J−1))

}
+min

{ ∑
j∈J−1

(q̄j − c), n(v0 − c) + hL(J−1, I \ (K ∪ J−1))
}
,
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and

r({1} | K ∪ J−1, q) ≥ h
{
L({1},K ∪ J−1)− L({1}, I \ (K ∪ J))

}
+min

{
q̄1 − c, v0 − c+ hL({1}, I \ (K ∪ J))

}
,

we have

r(J | K, q) − h
{
L(J,K)− L(J, I \ (K ∪ J))

}
≥ min

{ ∑
j∈J−1

(q̄j − c), n(v0 − c) + hL(J−1, I \ (K ∪ J−1))
}

+min
{
q̄1 − c, v0 − c+ hL({1}, I \ (K ∪ J))

}
.

(49)

We now consider the following two cases separately. Let d̂j = |Nj \ (K ∪ J)| be the
number of j’s neighbors not in K ∪ J .

Case 1. If q̄j ≤ vd̂j for every j ∈ J , then∑
j∈J−1

(q̄j − c) ≤ n(v0 − c) + h
∑

j∈J−1

d̂j = n(v0 − c) + hL(J−1, I \ (K ∪ J)),

Substitution of this into (48) yields

r(J | K, q)− h
{
L(J,K)− L(J, I \ (K ∪ J))

}
≥ q̄1 − c+

∑
j∈J−1

(q̄j − c)

=
∑
j∈J

(q̄j − c).

Case 2. If q̄j > vd̂j for some j ∈ J , suppose without loss of generality that q̄1 > vd̂1

so that
q̄1 − c > v0 − c+ d̂1h.

First, if
∑

j∈J−1
(q̄j − c) > n(v0 − c) + hL(J−1, I \ (K ∪ J−1)), then it follows from

(49) that

r(J | K, q)− h
{
L(J,K)− L(J, I \ (K ∪ J))

}
≥ n(v0 − c) + L(J−1, I \ (K ∪ J−1))h+ v0 − c+ d̂1h

= (n+ 1)(v0 − c) + h
{
L(J−1, I \ (K ∪ J−1)) + L({1}, I \ (K ∪ J))

}
= (n+ 1)(v0 − c) + h

{
L(J, I \ (K ∪ J)) + L(J−1, {1})

}
≥ (n+ 1)(v0 − c) + hL(J, I \ (K ∪ J)).
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Next, if n(v0− c)+hL(J−1, I \ (K ∪J)) <
∑

j∈J−1
(q̄j − c) ≤ n(v0− c)+hL(J−1, I \

(K ∪ J−1)), then it follows from (48) that

r(J | K, q) − h
{
L(J,K)− L(J, I \ (K ∪ J))

}
≥ q̄1 − c+ n(v0 − c) + hL(J−1, I \ (K ∪ J))

> v0 − c+ d̂1h+ n(v0 − c) + hL(J−1, I \ (K ∪ J))

= (n+ 1)(v0 − c) + h
{
L(J−1, I \ (K ∪ J)) + L({1}, I \ (K ∪ J))

}
= (n+ 1)(v0 − c) + hL(J, I \ (K ∪ J)).

Finally, if
∑

j∈J−1
(q̄j − c) ≤ n(v0 − c) + hL(J−1, I \ (K ∪ J)), then it follows from

(48) that

r(J | K, q) − h
{
L(J,K)− L(J, I \ (K ∪ J))

}
≥ q̄1 − c+

∑
j∈J−1

(q̄j − c) =
∑
j∈J

(q̄j − c).

In all cases, we have shown that (46) holds for any J with |J | = n+1. This completes
the proof. �

Proof of Proposition 7.3. The proof uses Lemma A.4 presented below. Take
any bipartition (I1, I2) of the buyer set and let z be the corresponding bipartition
price vector. Define p∗ = q∗ = z and σ to be extremal with respect to (p∗, q∗) with
σ(p∗, q∗) = (B, . . . , B). Suppose that p �= p∗ is an arbitrary deviation by firm A.
By Lemma A.2, we may restrict attention to p such that

βk
i (p, q

∗) = di − αk
i (p, q

∗) for any i and k.

If i ∈ DA, then (9) implies that

pi < min
{
vα

k
i − vβ

k
i + q∗i , v

αk
i

}
≤ vα

k
i − vdi−αk

i + q∗i .

Furthermore, Lemma A.4 shows that

1

h

K∑
k=1

∑
i∈Dk

A

(
vα

k
i − vdi−αk

i + q∗i − c
)
= −L(DA, I1 \DA)− L(I2 ∩DA, I \DA) ≤ 0.

It hence follows that

πA(p, q
∗, σ) =

K∑
k=1

∑
i∈Dk

A

(pi − c) <

K∑
k=1

∑
i∈Dk

A

(
vα

k
i − vdi−αk

i + q∗i − c
)
≤ 0.

Therefore, no deviation p is profitable. �
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Lemma A.4 Let the network G be given and suppose that the externalities are h-
linear for h > 0. If (I1, I2) is any bipartition and q∗ = z for the bipartition price
vector z given (I1, I2) defined in (19), then for any p,

1

h

K∑
k=1

∑
i∈Dk

A

(
vα

k
i − vdi−αk

i + q∗i − c
)
= −L(DA, I1 \DA)− L(I2 ∩DA, I \DA).

Proof. It follows from Lemma A.1 and the definition of q∗ that

1

h

K∑
k=1

∑
i∈Dk

A

(
vα

k
i − vdi−αk

i + q∗i − c
)

= −L(DA, I \DA) +
∑

i∈DA∩I1
d2i −

∑
i∈DA∩I2

d1i .

(50)

Since ∑
i∈DA∩I1

d2i −
∑

i∈DA∩I2
d1i = L(I1 ∩DA, I2 \DA)− L(I2 ∩DA, I1 \DA), (51)

and

L(DA, I \DA) = L(I1 ∩DA, I1 \DA) + L(I1 ∩DA, I2 \DA)

+ L(I2 ∩DA, I \DA),

the right-hand side of (50) reduces to −L(DA, I1 \DA)− L(I2 ∩DA, I \DA). �

Proof of Lemma 8.1. 1) Suppose that G is neither cyclic nor complete. We will
consider the following two cases separately.

i) G is not regular.
Since G is not regular, we may suppose, with renaming of buyers if necessary,

that buyers 1 and 2 are adjacent, and that d1 = d̄ and d2 < d̄, where d̄ ≥ 2 is the
highest degree in G. Suppose further that buyer 3 is adjacent to 1 but not to 2. To
see that there exists such a buyer, suppose to the contrary that every neighbor of 1
(except 2) is also a neighbor of 2. Then 2 has at least d̄ neighbors, a contradiction.
Name other buyers arbitrarily. Consider first the orientation → that is induced by
the precedence relation ≺ such that

3 ≺ 1 ≺ 2 ≺ i for any i ≥ 4.

We then have

(s1, s2, s3) = (1, 1, 0) ,

(d1 − s1, d2 − s2, d3 − s3) =
(
d̄− 1, d2 − 1, d3

)
.

(52)
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If s is not a permutation of d − s, then we are done. Suppose then that s is
a permutation of d − s, and consider an alternative orientation →′ of G that is
induced by ≺′ which agrees with ≺ defined above everywhere except between 1 and
2:

3 ≺′ 2 ≺′ 1 ≺′ i for every i ≥ 4, and (i ≺′ j ⇔ i ≺ j) for i, j ≥ 4.

Let s′ = (s≺
′

i )i∈I be the sequence of in-degrees corresponding to this alternative
orientation →′. Then(

s′1, s
′
2, s

′
3

)
= (0, 2, 0) ,(

d1 − s′1, d2 − s′2, d3 − s′3
)
=

(
d2, d̄− 2, d3

)
.

(53)

We also have ∣∣∣{i ≥ 4 : di − si = 0
}∣∣∣ = ∣∣∣{i ≥ 4 : di − s′i = 0

}∣∣∣,∣∣∣{i ≥ 4 : si = 0
}∣∣∣ = ∣∣∣{i ≥ 4 : s′i = 0

}∣∣∣. (54)

The following two cases are considered separately.

a) d2 = 1.

In this case, (52) and (53 ) imply that∣∣∣{i ≤ 3 : di − si = 0
}∣∣∣ = ∣∣∣{i ≤ 3 : si = 0

}∣∣∣ = 1.

Hence, since d− s is a permutation of s, we must have

|{i ≥ 4 : di − si = 0}| = |{i ≥ 4 : si = 0}| .

It then follows from (54) that∣∣{i ≥ 4 : di − s′i = 0
}∣∣ = ∣∣{i ≥ 4 : s′i = 0

}∣∣ . (55)

However, ∣∣{i ≤ 3 : di − s′i = 0
}∣∣ ≤ 1 < 2 =

∣∣{i ≤ 3 : s′i = 0
}∣∣ . (56)

(55) and (56) together show that d− s′ cannot be a permutation of s′.

b) d2 ≥ 2.

In this case, we have d̄ ≥ 3 since d̄ > dj ≥ 2, and also∣∣∣{i ≤ 3 : di − si = 0
}∣∣∣ = 0 < 1 =

∣∣∣{i ≤ 3 : si = 0
}∣∣∣.

Hence, since d− s is a permutation of s,

|{i ≥ 4 : di − si = 0}| = |{i ≥ 4 : si = 0}|+ 1.
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It then follows from (54) that∣∣{i ≥ 4 : di − s′i = 0
}∣∣ = ∣∣{i ≥ 4 : s′i = 0

}∣∣+ 1. (57)

However, (52) and (53 ) imply that∣∣∣{i ≤ 3 : di − s′i = 0
}∣∣∣ = ∣∣∣{i ≤ 3 : s′i = 0

}∣∣∣− 2 (58)

(57) and (58) together imply that d− s′ is not a permutation of s′.

ii) G is r-regular with 2 < r < N − 1.
Since G is connected and not complete, we may suppose, with renaming if nec-

essary, that buyers 1 and 2 are adjacent, and that buyer 3 is adjacent to 2 but not to
1. To see that this is possible, suppose to the contrary that for any pair of adjacent
buyers i and j, any buyer k �= i adjacent to j is also adjacent to i. We then show
that G must be complete. Take any pair of buyers i and j. Since G is connected,
there is a path k1 = i → k2 → · · · → km−1 → km = j. Since k2 is adjacent to i = k1
and k3 is adjacent to k2, k3 is adjacent to i as well by the above. Now since k4 is
adjacent to k3, it is also adjacent to i. Proceeding the same way, we conclude that
j = km is adjacent to i = k1, implying that G is complete.

We now name buyers other than 1, 2, and 3 arbitrarily. For the orientation →
induced by ≺ such that

1 ≺ 2 ≺ 3 ≺ i for any i ≥ 4,

the associated sequence s = (s≺i )i∈I of indegrees satisfies

(s1, s2, s3) = (0, 1, 1) ,

(d1 − s1, d2 − s2, d3 − s3) = (r, r − 1, r − 1) .

If d − s is a not permutation of s, then we are done. Suppose then that d − s is a
permutation of s. We then must have∣∣∣{i : si = 0}

∣∣∣ = ∣∣∣{i : di − si = 0}
∣∣∣. (59)

Consider an alternative orientation induced by ≺′ that agrees with ≺ everywhere
except between 2 and 3:

1 ≺′ 3 ≺′ 2 ≺′ i for i ≥ 4, and i ≺′ j ⇔ i ≺ j for i, j ≥ 4.

If we denote by s′ = (s≺
′

i )i∈I the sequence of indegrees associated with ≺′, then it
satisfies (

s′1, s
′
2, s

′
3

)
= (0, 2, 0) ,(

d1 − s′1, d2 − s′2, d3 − s′3
)
= (r, r − 2, r) .
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Since r > 2, if (59) holds, then the same argument as in the non-regular case shows
that ∣∣∣{i : s′i = 0

}∣∣∣ �= ∣∣∣{i : di − s′i = 0
}∣∣∣,

implying that d− s′ is not a permutation of s′.

2) Suppose that G is cyclic, and let the orientation →∈ OG be given. Denote by
s = (s≺i )i∈I the sequence of indegrees associated with ≺. Let J2 = {i : si = 2} and
J0 = {i : si = 0}, and consider any distinct (and non-adjacent) buyers in J2 such
that there is no buyer in J2 on the shorter path between them. Clearly, there exists
exactly one buyer on that path who belongs to J0. It follows that |J2| = |J0|. Since
si = di − si = 1 for any buyer who is not in J2 or J0, s is a permutation of d− s.

Suppose next that G is complete, and let the orientation →∈ OG be given. If
we denote by s = (s≺i )i∈I the sequence of indegrees associated with ≺, then s is a
permutation of the sequence 0, 1, 2, . . . , N −1. Since di−si = (N −1)−si, it follows
that d − s is also a permutation of 0, 1, 2, . . . , N − 1. Hence, s is a permutation of
d− s. �

Proof of Proposition 8.2. Suppose that G is neither cyclic or complete, and
let (p∗, q∗, σ) be any SPE. By Lemma 8.1,

∑
i (v

si − vdi−si) > 0 for some →∈ OG.
Lemma 6.3 then implies that for any such →∈ OG,

πA(p
∗, q∗, σ) >

∑
i∈I

(
min {q∗i , vdi−si} − c

)
≥

∑
i∈I

(
min {q∗i , v0} − c

)
. (60)

Suppose now that firm B monopolizes the market: σ(p∗, q∗) = (B, . . . , B) so that
πA(p

∗, q∗, σ) = 0 and πB(p
∗, q∗, σ) =

∑
i (q

∗
i − c) ≥ 0. If mini q

∗
i ≥ c, then

πA(p
∗, q∗, σ) = 0 ≤ ∑

i

(
min {q∗i , v0} − c

)
, contradicting (60). If maxi q

∗
i ≤ v0,

then we have a contradiction to (60) since

πA(p
∗, q∗, σ) ≤ πB(p

∗, q∗, σ) =
∑
i

(q∗i − c) =
∑
i

(
min {q∗i , v0} − c

)
.

Note now that q∗i ≤ vdi−v0+c for every i since otherwise firmA can profitably switch

buyer i to A by p such that c < pi < v0−vdi+q∗i and pj = c for j �= i. If vd̄ ≤ 2v0−c,

then we have a contradiction to the above since maxi q
∗
i ≤ vd̄ − v0 + c ≤ v0. �

Proof of Proposition 8.3 Let p∗ = q∗ = (c, . . . , c), and suppose that σ is ex-
tremal with respect to (p∗, q∗) with σ(p∗, q∗) = (B, . . . , B).

1) G is a cycle.
Fix any deviation p �= p∗ by firm A and write Dk

A = Dk
A(p, q

∗). Since v0 − q∗i =
v0 − c ≥ 0, xi = B is never dominated by xi = ∅ for any buyer i. Furthermore, if
xi = A dominates xi = B, xi = A also dominates xi = ∅. It follows that for any i
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and k, either xi = A is the unique (k − 1)-rationalizable action ({A} = Sk−1
i ), or

xi = B is (k − 1)-rationalizable (B ∈ Sk−1
i ). Hence for any i and k,

βk
i = 2− αk

i .

Suppose now that xi = A is k-dominant (i ∈ Dk
A). Then we have by (9),

pi < min
{
vα

k
i − vβ

k
i + c, vα

k
i

}
= vα

k
i − v2−αk

i + c.

More specifically, i finds xi = A 1-dominant if pi < v0 − v2 + c, and k-dominant for
k > 1 either if (i) pi < c and exactly one of i’s two neighbors precedes i (αk

i = 1), or
(ii) pi < v2 − v0 + c and both his neighbors precede him (αk

i = 2). In particular, if
buyer i precedes both his neighbors, then i ∈ D1

A. Firm A’s payoff under (p, q∗, σ)
hence satisfies

πA(p, q
∗, σ) =

K∑
k=1

∑
i∈Dk

A

(pi − c)

< |D1
A|(v0 − v2) + (v2 − v0)

K∑
k=2

∣∣∣{i ∈ Dk
A : αk

i = 2}
∣∣∣ .

Since no buyer finds xi = A k-dominant for k ≥ 2 if neither of his neighbors precedes
him, the number of components (i.e, connected clusters of buyers) in ∪k−1

�=1 D
�
A is

less than or equal to that in D1
A for any k.36 It follows that

K∑
k=2

|{i ∈ Dk
A : αk

i = 2}| ≤ |D1
A|.

We can therefore conclude that πA(p, q
∗, σ) < 0.

2) G is complete.
Define Dk

A = Dk
A(p, q

∗) (k = 1, . . . ,K) as above. Denote by αk the number of
buyers who find xi = A k-dominant for 1, . . . , k − 1:

αk =

k−1∑
�=1

∣∣∣D�
A

∣∣∣ .
Since G is complete, for any buyer i, the number αk

i of i’s neighbors who precede
him equals αk. Furthermore, by Lemma 6.2, we only need consider p such that each
Dk

A contains a single buyer. (If Dk
A contains two or more buyers, then since G is

36A set J ⊂ I is connected if for any pair of buyers i, j in J , there exists a path within J between
i and j. For any k = 1 or 2, J ⊂ Ik is a component of Ik if it is connected and no L ⊂ Ik with
L � J is connected.
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complete, those buyers are adjacent.) Hence, without loss of generality, letDk
A = {k}

for each k = 1, . . . , N . Just as in the case of a cyclic network, q∗ = (c, . . . , c) implies
that βk

i = di − αk
i for any i and k. It follows that

pk < vα
k − vN−1−αk

+ c for k = 1, . . . ,K.

Firm A’s payoff under (p, q∗, σ) hence satisfies

πA(p, q
∗, σ) =

N∑
k=1

(pk − c) <

K∑
k=1

(
vα

k − vN−1−αk
)
. (61)

It can then readily be verified that the right-hand side is maximized when K = N
and that the maximum value equals zero. Hence, firm A has no profitable deviation.
�

Proof of Proposition 9.1. If G is either cyclic or complete, then (pv, qv) = (z, z)
is consistent with a monopolization equilibrium for any externalities v by Proposition
8.3. Conversely, suppose that G is neither cyclic nor complete. Note that if (pv, qv)
is sufficiently close to (z, z), then maxi q

v
i < v0 must hold since v0 > c. Proposition

8.2 then shows that (pv, qv) cannot be consistent with a monopolization equilibrium
unless the externalities are non-generic. �

Proof of Proposition 9.2 The proof uses Lemmas A.5 and A.6 presented below.
Given the externalities v, we begin by defining the price vector zv. As v approaches
h-linear externalities, this price vector zv approaches the bipartition price vector z
defined in (19). Fix any orientation →∈ O∗

G and let s = (s→i )i∈I . Let

ζ1 =
∑
i∈I1

(
vdi − v0

)
. (62)

Suppose that I2 consists of T components (I2t)t=1,...,T .
37 For each component I2t,

let

ζ2t = max
→∈O∗

G

∑
i∈I2t

(
vsi − vdi−si

)
, and ζ2 =

T∑
t=1

ζ2t. (63)

Define the set V ∗ of externalities by

V ∗ = {v : Δ ≡ ζ1 − ζ2 ≥ 0} .
V ∗ is non-degenerate as will be seen below, and contains the h-linear externalities
as one of its elements since then ζ1 = ζ2. Let now a price vector zv be defined by

zvi =

⎧⎨
⎩vd

2
i − v0 + c if i ∈ I1,

− ζ2t∑
j∈I2t

d1j
d1i + c. if i ∈ I2t.

(64)

37See Figure 5 and Footnote 36.
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I1

I2,1 I2,2

1 2 3 4

5 6 7 8

Figure 5. Components of I2: I2 = I2,1 ∪ I2,2.

In Figure 5, for example, ζ2,1 and ζ2,2 equal

ζ2,1 = v2 − v0 and ζ2,2 = max
{
v4 − v1 + v3 − v0, v2 − v1 + v5 − v0

}
,

and hence the price vector z is given by

zv1 = zv3 = v2 − v0 + c, zv2 = v3 − v0 + c, zv4 = v1 − v0 + c,

zv5 = zv6 = −1

2
ζ2,1 + c, zv7 = −1

2
ζ2,2 + c and zv8 = −2

3
ζ2,2 + c.

Note that as v approaches h-linear externalities, vd
2
i − v0 → d2ih, and

ζ2t∑
j∈I2t

d1j
→ h

so that zv → z for the bipartition price vector z defined in (19).
In what follows, we set p∗ = q∗ = zv and let σ be extremal with respect to

(p∗, q∗) with monopolization by firm B on the path: σ(p∗, q∗) = (B, . . . , B). By
construction, we have

πA(p
∗, q∗, σ) = 0 and πB(p

∗, q∗, σ) =
∑
i∈I

(zvi − c) = ζ1 − ζ2 ≥ 0.

We first note that the set V ∗ is non-degenerate under the stated condition of
Proposition 9.2. For this, define

εd = vd − v0 − dh for d = 1, . . . , d̄, and ε = (ε1, . . . , εd̄).

Note that

v ∈ V ∗ ⇔ λ→ · ε ≡ λ→
1 ε1 + · · ·+ λ→̄

d εd̄ ≤ 0 for every →∈ O∗
G.

To show that V ∗ is non-degenerate, hence, it suffices to show that the set defined
by the corresponding strict inequalities is non-empty:{

ε ∈ Rd̄ : λ→ · ε < 0 for every →∈ O∗
G such that λ→ �= 0

}
�= ∅.
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By Theorem 22.2 of Rockafellar (1997, p198), this holds if and only if no convex
combination of the collection of vectors {λ→ : λ→ �= 0, →∈ O∗

G} equals zero, as
required by the proposition.

The remainder of the proof shows that no deviation p by firm A is profitable
when v ∈ Z∗ is ε-close to h-linear, zv satisfies |zvi − zi| < ε for every i, and ε <

min { h
3N , v0−c

2 , h−v0+c
2d̄

}. By Lemma A.6, we may restrict attention to p for which

βk
i = di − αk

i for any i and k. In this case, if xi = A is k-dominant for buyer i (i.e.,
i ∈ Dk

A), then it should satisfy

pi < min
{
vα

k
i − vβ

k
i + q∗i , v

αk
i

}
≤ vα

k
i − vdi−αk

i + q∗i . (65)

We now proceed in the following steps.

1. Any profitable deviation p attracts at least one buyer in I1: I1 ∩DA �= ∅.
If DA ⊂ I2, then every neighbor of i ∈ DA should also belong to DA since
otherwise, L(I2 ∩DA, I \DA) ≥ 1 and hence πA(p, q

∗, σ) < 0 under approximate
linearity by Lemma A.5. Proceeding iteratively, every buyer who is connected
to i should belong to DA. Since the network G is connected, there must exist
j ∈ I1 ∩DA, a contradiction.

2. Any profitable deviation p attracts at least one buyer in I2 and all his neighbors:
I2 ∩DA �= ∅ and Ni ⊂ DA for i ∈ I2 ∩DA.

Since I1 is independent, if DA ⊂ I1, then

πA(p, q
∗, σB) <

K∑
k=1

∑
i∈Dk

A

(
vα

k
i − vdi−αk

i

)
+

∑
i∈DA

(q∗i − c) ⇐ (65)

=
∑
i∈DA

(
v0 − vdi

)
+

∑
i∈DA

(
vdi − v0

)
⇐ (62)

= 0.

It follows that if p is a profitable deviation, then I2 ∩DA �= ∅. If Ni \DA �= ∅ for
some i ∈ I2 ∩DA, there is a link between I2 ∩DA and I \DA. Since β

k
i = di−αk

i

for every i and k, πA(p, q
∗, σ) < 0 by Lemma A.5.

3. If p is any profitable deviation, then xi = A is 1-dominant for any buyer i ∈ I1
and is k-dominant for k ≥ 2 for any buyer i ∈ I2: D1

A ⊂ I1, and Dk
A ⊂ I2 for

k ≥ 2.

i) If i ∈ I2, then Sk
i ⊂ {A,B} for k = 1, . . . ,K.

If i ∈ I2, v
0 − q∗i = v0 + d1i h− c > 0 so that xi = ∅ is dominated by xi = B

in S0.
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ii) If i ∈ I1 ∩Dk
A for some k ≥ 2, then Ni ∩Dk−1

A �= ∅.
Suppose to the contrary that i ∈ I1 ∩Dk

A and Ni ∩Dk−1
A = ∅ for some i and

k ≥ 2. We then have αk−1
i = αk

i . Furthermore, since Sk−1
j ⊂ {A,B} for

every j ∈ Ni ⊂ I2 by (3i), j /∈ Dk−1
A implies that B ∈ Sk−2

j ⇒ B ∈ Sk−1
j . It

follows that βk−1
i = βk

i . Hence, if xi = A is not (k − 1)-dominant, then it
cannot be k-dominant since

vα
k−1
i − pi ≤ max

{
vβ

k−1
i − q∗i , 0

}
⇒ vα

k
i − pi ≤ max

{
vβ

k
i − q∗i , 0

}
.

This is a contradiction to i ∈ Dk
A.

iii) If I1 ∩Dk
A �= ∅ for some k ≥ 2, then p is not profitable.

Let k ≥ 2 and i ∈ I1 ∩ Dk
A. We have Ni ∩ Dk−1

A �= ∅ by (3ii). It then
follows that βk

i ≤ |Ni| − 1 = d2i − 1. By Lemma A.6, we conclude that
πA(p, q

∗, σB) < 0.

iv) If i ∈ I2 ∩D1
A, then p is not profitable.

Let i ∈ I2 ∩D1
A. Since I1 is maximally independent, there exists j ∈ Ni∩ I1.

For this j, we have β2
j ≤ |Nj | − 1 = d2j − 1 and hence πA(p, q

∗, σB) < 0 by
Lemma A.6.

v) If p is a profitable deviation, then D1
A ⊂ I1, D

k
A ⊂ I2 for k ≥ 2, Ni ⊂ DA for

i ∈ I2 ∩DA.

Suppose that πA(p, q
∗, σ) ≥ 0. By (3iii) and (3iv), we must have D1

A ⊂ I1
and Dk

A ⊂ I2 for k ≥ 2. By Step 2, Ni ⊂ DA for i ∈ I2 ∩DA. �

4. No deviation p is profitable.

By Step 3, we may restrict attention to p such thatD1
A(p, q

∗) ⊂ I1, andDk
A(p, q

∗) ⊂
I2 for k ≥ 2. By Steps 1 and 2, we may also suppose that I1 ∩DA �= ∅ and that
I2 ∩DA consists of components of I2 that are adjacent only to I1 ∩DA. Suppose
for simplicity that I2 ∩DA consists of a single component I2t of I2. Then

πA(p, q
∗, σB)

<
∑
i∈D1

A

(v0 − vd
2
i + q∗i − c) +

K∑
k=2

∑
i∈Dk

A

(vα
k
i − vdi−αk

i + q∗i − c) ⇐ (65)

=

K∑
k=2

∑
i∈Dk

A

(vα
k
i − vdi−αk

i )− ζ2t ⇐ (62) and (63)

≤ 0.

�
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Lemma A.5 Let the network G and the bipartition (I1, I2) of the buyer set be given.
For each ε > 0, take externalities v(ε) and the price vector q∗(ε) such that v(ε) is ε-
close to h-linear (h > 0), and that |q∗i (ε)−zi| < ε for every i for the bipartition price
vector z given (I1, I2). Then for ε > 0 sufficiently small, πA(p, q

∗(ε), σB) < 0 for any
p such that βk

i = di−αk
i for every i and k, and L(DA, I1\DA)+L(I2∩DA, I\DA) ≥ 1.

Proof. Let ε < h
3N . Take p such that βk

i = di − αk
i for every i and k. Then

πA(p, q
∗(ε), σB) =

K∑
k=1

∑
i∈Dk

A

(pi − c)

<

K∑
k=1

∑
i∈Dk

A

(
min

{
vα

k
i (ε)− vβ

k
i (ε) + q∗i (ε), v

αk
i (ε)

}
− c

)

≤
K∑
k=1

∑
i∈Dk

A

(
vα

k
i (ε)− vdi−αk

i (ε) + q∗i (ε)− c
)

<
K∑
k=1

∑
i∈Dk

A

(
vα

k
i (0)− vdi−αk

i (0) + q∗i (0)− c
)
+ 3|DA|ε

≤ −h+ 3|DA|ε < 0,

where next to the last inequality follows from Lemma A.4 and our assumption that
L(DA, I1 \DA) +L(I2 ∩DA, I \DA) ≥ 1, and the last inequality from our choice of
ε. �

Lemma A.6 Let the buyer network G and the bipartition (I1, I2) of the buyer set
be given. Take h, v0, and c ≥ 0 such that h > v0 − c > 0. For each ε > 0, take
externalities v(ε) and price vector q∗(ε) such that v(ε) is ε-close to h-linear, and
that |q∗i (ε)−zi| < ε for every i for the bipartition price vector z given (I1, I2) defined
in (19). Then for ε sufficiently small, if p is such that πA(p, q

∗(ε), σB) ≥ 0, then
the following holds for every i and k:

(i) xi = B is k-rationalizable (B ∈ Sk
i ), or

(ii) xi = A is the unique k-rationalizable action ({A} = Sk
i )

(66)

Furthermore, if p is any such price vector, then αk
i + βk

i = di for every i and k.
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Proof. Take ε < min { h
3N , v0−c

2 , h−v0+c
2d̄

}. First, since q∗i (ε) < zi+ ε = −d1i h+ c+

ε < v0 for i ∈ I2, (66) may fail only for i ∈ I1. For i ∈ I1, ε <
v0−c
2 implies that

vβ
k
i (ε) < q∗i (ε) ⇒ v0 + hβk

i − ε < c+ hd2i + ε

⇔ d2i − βk
i >

v0 − c− 2ε

h

⇒ d2i − βk
i ≥ 1.

(67)

Under the simplifying assumption that i ∈ I1 is the only buyer for whom (66) fails,
the same logic as in the proof of Lemma A.2 leads to the following inequality which
is the same as (43):

πA(p, q
∗, σB) <

K∑
�=1

∑
j∈D�

A

(
vα

�
j (ε) − vdj−α�

j (ε) + q∗j (ε)− c
)

+
m−1∑
�=k+1

∑
j∈Ni∩D�

A

(
vdj−α�

j (ε) − vdj−α�
j−1(ε)

)
+ vdi−αm

i (ε) − q∗i (ε)

≤
m−1∑
�=k+1

∑
j∈Ni∩D�

A

(
vdj−α�

j(ε) − vdj−α�
j−1(ε)

)
+ vdi−αm

i (ε) − q∗i (ε),

(68)

where this time, the second inequality follows from Lemma A.5 as ε < h
3N . Since

vdj−α�
j (ε) − vdj−α�

j−1(ε) < h+ 2ε,

and
vdi−αm

i (ε)− q∗i (ε) < v0 − c− h(d2i − di + αm
i ) + 2ε,

(68) implies

πA(p, q
∗(ε), σB) <

m−1∑
�=k+1

∑
j∈Ni∩D�

A

(h+ 2ε) + v0 − c− h(d2i − di + αm
i ) + 2ε. (69)

When m− 1 ≥ k + 1, (69) reduces to

πA(p, q
∗(ε), σB) < (αm

i − αk+1
i )(h+ 2ε) + v0 − c− h(d2i − di + αm

i ) + 2ε

= h(di − αk+1
i − d2i ) + v0 − c+ 2ε(αm

i − αk+1
i + 1)

= h(βk+1
i − d2i ) + v0 − c+ 2ε(αm

i − αk+1
i + 1)

≤ h(βk
i − d2i ) + v0 − c+ 2diε

≤ −h+ v0 − c+ 2diε.

By the same logic as in the proof of Lemma A.2, the same inequality holds true
when m = k + 1 or m = k, or when i /∈ DA. Since −h + v0 − c + 2diε < 0 by our
choice of ε, πA(p, q

∗(ε), σB) < 0 for any p that fails (66). �
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Proof of Corollary 9.3

1) Let e = (1, . . . , 1) ∈ Rd̄. Then e ·λ ≤ |J ′| − |I1| for any λ ∈ Λ, where J ′ is the
set that has the largest number of elements among independent sets which are
subsets of I2. By assumption, |J ′| − |I1| < 0 so that e · λ < 0 for any λ ∈ Λ.
It follows that for any convex combination

∑
k ζkλk of vectors (λk)k in Λ, we

have e ·∑k ζkλk =
∑

k ζk (e · λk) < 0 so that
∑

k ζkλk �= 0.

2) Let ê = (0, . . . , 0, 1) ∈ Rd̄. Then ê ·λ = −|{i ∈ I1 : di = d̄}| < 0 for any λ ∈ Λ.
It then follows from the same argument as above that no convex combination
of vectors in Λ equals zero.

3) When every component of I2 is a singleton, every orientation →∈ O∗
G yields

the same vector λ→ = λ so that Λ is a singleton. Hence, the condition is
satisfied. �

Proof of Proposition 10.1 Since I2 is independent, for each i ∈ I2, {i} is a
component of I2. Hence, ζ2t in (63) in the proof of Proposition 9.2 equals

ζ2t = vd
1
t − v0 for each t ∈ I2,

implying that the price vector p∗ = q∗ given in the proposition equals zv in (64).
Furthermore, the set V ∗ of externalities defined in the proof of Proposition 9.2 is
given by V ∗ = {v :

∑
i∈I1 (v

d2i −v0) ≥ ∑
i∈I2 (v

d1i −v0)}. Proposition 9.2 then shows
that for ε > 0 sufficiently small, if v ∈ V ∗ is ε-close to h-linear, then there exists an
equilibrium with p∗ = q∗ = zv. �
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Supplementary Material

(Not to be included in the paper.)

B Equilibrium with Market Segmentation

This section analyzes an equilibrium with market segmentation by the two firms
under linearity. We say that an equilibrium (p∗, q∗, σ) entails complete market
segmentation if every buyer chooses either A or B: i.e.,there exists a bipartition
(I1, I2) of the buyer set I such that I1, I2 �= ∅ and I1 = {i : σi(p

∗, q∗) = A} and
I2 = {i : σi(p∗, q∗) = B}.

The following proposition presents a sufficient condition for the non-existence of
an equilibrium with complete market segmentation. As can be readily verified, this
condition holds in the line network of Section 4.

Proposition B.1 (Non-existence of a complete segmentation equilibrium) Suppose
that the buyer network G is such that for any bipartition (I1, I2) of the set of buyers,∑

i∈I1

(
d1i − d2i

)
< 0, or

∑
i∈I2

(
d2i − d1i

)
< 0. (70)

Suppose that the externalities are h-linear for h > 0. Then there exists no equilib-
rium with complete market segmentation.

Proof. Suppose that for some bipartition (I1, I2) with I1, I2 �= ∅, there exists an
equilibrium (p∗, q∗, σ) such that buyers in I1 choose firm A, and buyers in I2 choose

firm B in equilibrium. For any j ∈ I1, v
d1j −p∗j ≥ max

{
vd

2
j − q∗j , 0

}
so that p∗j ≤ vd

1
j

and q∗j ≥ vd
2
j − vd

1
j + p∗j = (d2j − d1j )h+ p∗j . Suppose without loss of generality that∑

j∈I1

(
d1j − d2j

)
< 0. (71)

Suppose now that firm A offers a DC price vector p such that under (p, q∗), buyers
in I1 precede those in I2 in the elimination process. Since buyer i finds A dominant
if pi < min {vsi −vdi−si +q∗i , v

si}, firm A’s payoff from buyers in I1 is bounded from
below by

−L(I1, I2)h+
∑
j∈I1

(q∗j − c) ≥ −hL(I1, I2) +
∑
j∈I1

{
p∗j − c+ (d2j − d1j )h

}
= −hL(I1, I2) +

∑
j∈I1

(p∗j − c) + h
∑
j∈I1

(d2j − d1j ).
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On the other hand, by setting K = I1 and J = I2 in Lemma A.3 and noting that

q̄∗j = min {q∗j , vd
2
j } = q∗j for j ∈ I2, we see that firm A’s payoff from buyers in I2 is

bounded from below by

r(I2 | I1, q∗) ≥ hL(I1, I2) + min
{∑
j∈I2

(q∗j − c), |I2|(v0 − c) + hL(I2, I1)
}
.

Since (p∗, q∗, σ) is an equilibrium,
∑

j∈I2 (q
∗
j − c) ≥ 0 so that r(I2 | I1, q

∗) ≥
hL(I1, I2). It follows that firm A’s payoff from offering a DC price vector p sat-
isfies

πA(p, q
∗, σ) ≥

∑
j∈I1

(p∗j − c) + h
∑
j∈I1

(d2j − d1j ) >
∑
j∈I1

(p∗j − c) = πA(p
∗, q∗, σ),

which is a contradiction to our assumption that (p∗, q∗, σ) is an equilibrium. �
It remains an open question whether the existence of a bipartition (I1, I2) such

that
∑

i∈I1 (d
1
i −d2i ) ≥ 0 and

∑
i∈I2 (d

2
i −d1i ) ≥ 0 ensures the existence of a complete

segmentation equilibrium. It is, however, not difficult to show that MC cost pricing is
consistent with a complete segmentation equilibrium under h-linearity if there exists
a bipartition (I1, I2) such that d1i ≥ d2i for every i ∈ I1 and d2i ≥ d1i for every i ∈ I2.
In other words, (p, q, σ) is a complete segmentation equilibrium if (p, q) = (z, z) for
z = (c, . . . , c) and σ is extremal with respect to (p, q) with σi(p, q) = A for i ∈ I1
and σi(p, q) = B for i ∈ I2.

In what follows we show a slightly stronger condition on the network guarantees
the existence of a complete segmentation equilibrium when the externalities are
approximately linear. Specifically, we say that the buyer network is bi-cohesive if
there exists a bipartition (I1, I2) of the set I of buyers such that for m, n = 1, 2,
and m �= n,

|Ni ∩ In| ≥ |Ni ∩ Im| for every i ∈ In, and

|Ni ∩ In| > |Ni ∩ Im| for some i ∈ In.

Intuitively, in each element of a bipartition (I1, I2), there are core and peripheral
buyers: The core buyers are those who have strictly more neighbors in the same set
than in the other set, while the peripheral buyers have as many neighbors in the
same set as in the other set. The definition of a bi-cohesive network is a natural
extension of a cohesive set that is studied extensively in social network theory, and
is also closely related to the definition of a cohesive network proposed by Morris
(2000).38 A line of four or more buyers is bi-cohesive if I1 consists of at least two
buyers on the left, and I2 consists of at least two buyers on the right. The buyers on
the two ends can be taken as core buyers in this case. The regular network in Figure
2 is also bi-cohesive when we take I1 = {1, 2, 3, 4} and I2 = {5, 6, 7, 8}. Buyers 2 and

38See for example Seidman (1983) for the various definitions of a cohesive set. Morris (2000)
defines cohesion in terms of the ratio of neighbors in the same subset over those in the other subset.
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3 are core buyers for I1 and buyers 6 and 7 are core buyers for I2. More generally,
the following lemma describes a sufficient condition for a network to be bi-cohesive
based on the notion of connectedness.39 Two paths from i to j are disjoint if they
have no link in common. For any integer n, we say that a subset J ⊂ I is n-connected
if for any i, j ∈ J , there are n disjoint paths within J connecting i to j.

Lemma B.2 (Buyer clusters and bi-cohesiveness) A network is bi-cohesive if for
an integer n, there exist two n-connected disjoint sets of buyers J1 and J2 with |J1|,
|J2| ≥ 2 such that there exist at most n disjoint paths connecting J1 to J2.

Proof. Let m ≤ n be the number of disjoint paths connecting J1 and J2. By
Menger’s theorem, there exists a set L of m links such that removal of those links
separates J1 from J2. Denote L = {i1j1, . . . , imjm}, where ikjk is the link between
buyers ik and jk (k = 1, . . . ,m). Define I1 and I2 to be the sets of buyers that are
connected to J1 and J2, respectively, after the removal of links in L. Without loss of
generality, we name the links so that i1, . . . , im are connected to J1, and j1, . . . , jm
are connected to J2, after the removal of L. Take i1. If i1 ∈ J1, then i1 has at least
n neighbors in J1 ⊂ I1 and at most m neighbors in I2. If i1 /∈ J1, then i1 again has
at least as many neighbors in I1 as he does in I2 since otherwise, we would have a
smaller set L′ of links than L whose removal separates J1 from J2. If there is a buyer
in I1 other than i1, . . . , im, then he is a core buyer of I1 since he has no neighbor in
I2 by definition. If, on the other hand, there is no other buyer in I1 than i1, . . . , im,
then at least one of them is a core buyer: Since |J1| ≥ 2, m ≥ 2 so that at least
one of i1, . . . , im has strictly fewer neighbors in I2 than m, whereas he has at least
n ≥ m neighbors in J1 ⊂ I1. �

According to Lemma B.2, a network is bi-cohesive if there are at least two
“clusters” of buyers who are closely linked among themselves. Such clusters can be
a natural consequence of geographic and other proximity among some subsets of
buyers.

Proposition B.3 (Complete segmentation equilibrium under approximate linear-
ity) Suppose that G is bi-cohesive. For any h > 0, there exists ε > 0 such that if the
externalities are ε-close to h-linear, there exists an SPE (p∗, q∗, σ) in which buyers
in I1 choose firm A and buyers in I2 choose firm B. In this SPE, p∗i1 = c + δ and
q∗i1 = c − δ for a single core buyer i1 ∈ I1, p

∗
i2

= c − δ and q∗i2 = c + δ for a single
core buyer i2 ∈ I2, and p∗i = q∗i = c for any other buyer i, where

δ = max
≺∈OG

∑
i∈I

(
vsi − vdi−si

)
. (72)

39In social network theory, cohesiveness is often defined in terms of connectedness given that an
efficient algorithm exists for its computation.
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2 3 41

(δ,−δ) (−δ, δ)(0, 0) (0, 0)

Figure 6. Segmentation equilibrium on a line network (δ = |v2+
v1 − 2v0| > 0): A captures I1 = {1, 2} and B captures I2 = {3, 4}.
Indicated next to each buyer is the markup or markdown specified
by both firms: (p∗i − c, q∗i − c).

As seen, δ is the maximal benchmark payoff that is strictly positive under generic
externalities (Lemma 8.1). Each firm’s equilibrium payoff equals δ, while the sum
of the markups and markdowns over all buyers equals zero (i.e.,

∑
i (p

∗
i − c) =∑

i (q
∗
i − c) = 0). Figure 6 illustrates the equilibrium for the line network of four

buyers. As in Proposition 6.1, any deviation by either firm results in the play of
the extreme equilibrium that least favors the deviating firm. Note that the core-
periphery pricing strategy is a natural form of price discrimination: It charges a
markup to a core buyer of the own market segment who finds it more difficult to
unilaterally switch to the other firm because of the adoption decision of the majority
of his neighbors. To see that neither firm has an incentive to deviate, suppose that
firm A employs a DC price vector p. We can verify that βk

i (p, q
∗) = di − αk

i (p, q
∗)

for every i for whom xi = A is k-dominant. It follows that

πA(p, q
∗, σB) <

K∑
k=1

∑
i∈Dk

A

(
min

{
vα

k
i − vβ

k
i + q∗i , v

αk
i

}
− c

)

≤
K∑
k=1

∑
i∈Dk

A

(
vα

k
i − vdi−αk

i

)
⇐

∑
i

(q∗i − c) = 0

≤ δ = πA(p
∗, q∗, σ).

As noted above, MC pricing is consistent with a complete segmentation equilib-
rium in a bi-cohesive network. Since δ → 0 in (73) as the externalities approach
h-linearity, the pricing strategy of Proposition B.3 equals MC pricing in the limit.
Hence, we readily conclude that MC pricing under linearity is robust for a segmen-
tation equilibrium in a bi-cohesive network.

Corollary B.4 (Robustness of MC pricing for a segmentation equilibrium in a bi-
cohesive network) Suppose that the network G is bi-cohesive with bipartition (I1, I2),
and let (p, q) = (z, z) for z = (c, . . . , c) and σ be extremal with respect to (p, q) with
σi(p, q) = A for i ∈ I1 and σi(p, q) = B for i ∈ I2. Then the equilibrium (p, q, σ)
under h-linearity is robust.
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Proof of Proposition B.3. Let

δ = max
≺∈OG

∑
i∈I

(
vsi − vdi−si

)
.

When the externalities are ε-close to h-linear,∑
i∈I

(
vsi − vdi−si

)
=

∑
i∈I

{
(vsi − sih)−

(
vdi−si − (di − si)h

)
− h ((di − si)− si)

}
< 2Nε,

and hence
δ < 2Nε. (73)

Let (I1, I2) be the partition of the buyer set I, and let iA ∈ I1 and iB ∈ I2 be the
core buyers of the respective sets:

|NiA ∩ I1| > |NiA ∩ I2| and |NiB ∩ I2| > |NiB ∩ I1|.
We specify (p∗, q∗, σ) as follows:

(p∗i , q
∗
i ) =

⎧⎪⎨
⎪⎩
(δ + c,−δ + c) if i = iA,

(−δ + c, δ + c) if i = iB ,

(c, c) otherwise,

and

σ(p, q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(A, . . . , A︸ ︷︷ ︸

I1

, B, . . . , B︸ ︷︷ ︸
I2

) if (p, q) = (p∗, q∗),

σB(p, q) if p �= p∗,
σA(p, q) if p = p∗ and q �= q∗.

Note that πA(p
∗, q∗, σ) = πB(p

∗, q∗, σ) = δ.
We first show that the buyers’ action profile following (p∗, q∗) is a NE. If i ∈

I1 \ {iA}, then xi = A is a best response since

v|Ni∩I1| − pi = v|Ni∩I1| − c ≥ v|Ni∩I2| − c = v|Ni∩I2| − qi.

If i = iA, then |Ni ∩ I1| > |Ni ∩ I2| so that

v|Ni∩I1| − v|Ni∩I2|

=
(
v|Ni∩I1| − h|Ni ∩ I1|

)
−

(
v|Ni∩I2| − h|Ni ∩ I2|

)
+ h {|Ni ∩ I1| − |Ni ∩ I2|}

≥ h− 2ε.

Hence, if we take

ε̄ =
h

2(2N + 1)
, (74)
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then for any ε < ε̄, (73) implies that

v|Ni∩I1| − pi = v|Ni∩I1| − δ − c > v|Ni∩I2| + δ − c = v|Ni∩I2| − qi.

The symmetric argument shows that xi = B is a best response for each i ∈ I2
following (p∗, q∗).

We will next show that firm A has no profitable deviation. Let p be any deviation
by firm A, and Dk

A = Dk
A(p, q

∗). Suppose that i ∈ Dk
A. By Lemma 6.2, we may

assume that Ni ∩Dk
A = ∅. For any j ∈ Ni, we observe that

j /∈ ∪k−1
�=1 D

�
A ⇒ B ∈ Sk−1

j . (75)

We can see that (75) holds as follows: First, take j �= iB . Since then q∗j ≤ c ≤ v0,

xj = B is not dominated by xj = ∅. Hence, if xj = A is not dominant in S�−1 for
� = 1, . . . , k − 1 (i.e., j /∈ ∪k−1

�=1 D
�
A), then B ∈ Sk−1

j .

On the other hand, if j = iB , then qj = δ+ c. Since i ∈ Dk
A. i /∈ ∪k−1

�=1 D
�
A. Since

i �= iB , B ∈ Sk−1
i by the above. It follows that βk

j ≥ 1. Hence,

vβ
k
j − q∗j ≥ v1 − δ − c > v0 + h− ε− δ − c > 0.

Hence, (75) holds for any i, which in turn implies that βk
i = di − αk

i for any i and
k. Hence, by (9), if i ∈ Dk

A, then

pi < min {vαk
i − vdi−αk

i + q∗i , v
αk
i } ≤ vα

k
i − vdi−αk

i + q∗i .

Therefore, firm A’s payoff πA under (p, q∗) satisfies

πA(p, q
∗, σ) =

∑
i∈DA

(pi − c)

<
K∑
k=1

∑
i∈Dk

A

(
vα

k
i − vdi−αk

i + q∗i − c
)

≤
K∑
k=1

∑
i∈Dk

A

(
vα

k
i − vdi−αk

i

)
+ δ.

(76)

We will show that πA(p, q
∗, σ) ≤ 0 for any p by considering the following two cases

separately.
Suppose first that DA � I so that I \ DA �= ∅. Since the right-hand side of

(76) is continuous in ε, if we show that it is less then −h under exact linearity,
then πA(p, q

∗) < 0 holds under approximate linearity. Under exact linearity, (76)
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becomes

πA(p, q
∗, σ) <

K∑
k=1

∑
i∈Dk

A

(
vα

k
i − vdi−αk

i

)
+ δ

= h

K∑
k=1

∑
i∈Dk

A

(
2αk

i − di

)
.

Since
∑K

k=1

∑
i∈Dk

A
αk
i = L(DA) and

∑K
k=1

∑
i∈Dk

A
di = 2L(DA) + L(DA, I \DA),

we have
πA(p, q

∗, σ) < −hL(DA, I \DA) ≤ −h,

where the inequality follows since I \DA �= ∅.
Suppose next that DA = I. In this case,

∑
i∈DA

(q∗i − c) = 0 by definition so
that the definition of δ implies

πA(p, q
∗, σ) =

∑
i∈DA

(pi − c) ≤
K∑
k=1

∑
i∈Dk

A

(
vα

k
i − vdi−αk

i + q∗i − c
)
≤ δ = πA(p

∗, q∗, σ).

�
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