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Abstract

This paper uses a laboratory experiment to study the effect of the monitor-
ing structure on the play of the infinitely repeated prisoner’s dilemma. Keep-
ing the strategic form of the stage game fixed, we examine the behavior of
subjects when information about past actions is perfect (perfect monitoring),
noisy but public (public monitoring), and noisy and private (private monitor-
ing). We find that the subjects sustain cooperation in every treatment, but that
their strategies differ across the three treatments. Specifically, the strategies
under imperfect monitoring are both more complex and more lenient than
those under perfect monitoring. The results show how the changes in strate-
gies across monitoring structures mitigate the effect of noise in monitoring
on efficiency.
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1 Introduction

Many economic situations involve repeated interactions among players. While
the players can perfectly monitor other players’ past play in some of those inter-
actions, they often observe only noisy information about it (imperfect monitor-
ing). Imperfect monitoring is further classified into (imperfect) public monitoring,
where the noisy information is publicly observable, and (imperfect) private mon-
itoring, where it is only privately observed by each player. Under private moni-
toring, hence, the players do not even know what signals other players have ob-
served about their own play. For example, the classic model of collusion in a
quantity-setting oligopoly by Green & Porter (1984) is an instance of public mon-
itoring, where the firms publicly observe the market price that imperfectly signals
their quantity choices, whereas the model of collusion in a price-setting oligopoly
by Stigler (1964) is an instance of private monitoring, where the firms privately
observe the demand for their own good that imperfectly signals the other firms’
prices. While there is now extensive theory of repeated games in the three moni-
toring environments, there is little empirical work on what effects they have on the
players’ ability to cooperate/collude and their choice of repeated game strategies.
The scarcity of empirical work is in part attributed to the difficulty of obtaining
data in the field: publicly available data sets unlikely include the information the
firms use to collude in the repeated interactions, or information about other critical
parameters such as the discount factor and the conditional distribution of signals
given actions. In this light, a laboratory experiment offers a valuable alternative to
field research, and the objective of this paper is to explore subjects’ behavior in a
laboratory in the three distinct monitoring environments.

In our experiments, the subjects play the repeated prisoners’ dilemma (PD)
game in the three monitoring environments described as follows: In the perfect
monitoring treatment, at the end of each round, player i observes player j’s ac-
tion choice a j in that round. In the two imperfect monitoring treatments, player
j’s action a j generates a signal for player i, ωi. This signal is correct and equals
player j’s action a j with probability 1−ε, but is incorrect with probability ε, where
ε = 0.1. At the end of each round, in the public monitoring treatment, player i
observes the pair of noisy signals so generated, (ωi, ω j). In the private monitoring
treatment, he only observes ωi.1 The signal profile in the public monitoring treat-
ment is hence common knowledge since it is observed by both players, whereas no
event that is informative about a player’s action choice is common knowledge in
the private monitoring treatment. In order to focus on the effect of the difference

1Accordingly, the information observed by a player takes one of two values in the private moni-
toring treatment, whereas it takes one of four values in the public monitoring treatment.
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in the monitoring structures, we keep fixed other elements of the game as much as
possible: The three treatments have the same expected stage-payoffs and the same
continuation probability δ = 0.9, which is interpreted as the discount factor. Fur-
thermore, the payoffs in the perfect monitoring treatment are determined randomly
by the same probability distribution as in the imperfect monitoring treatments to
control for the effect of uncertainty.

Our first question concerns the ability of experimental subjects to sustain co-
operation in the three monitoring environments. Since previous laboratory exper-
iments find a positive level of cooperation under perfect and public monitoring,
our central focus is on the subjects’ ability to cooperate under private monitor-
ing. As Kandori (2002) notes, and by now is well recognized, private monitoring
implies the absence of common knowledge events: the players cannot simultane-
ously begin the punishment or return to cooperation based on their signals precisely
because those signals are private. This is in contrast to the perfect monitoring en-
vironment where the history of past actions is common knowledge, and the public
monitoring environment where the history of public signals is common knowl-
edge. In both these environments, play can be coordinated based on these common
knowledge events. From a theoretical perspective, cooperation in the absence of
common knowledge events is difficult. Unlike in the perfect and public monitor-
ing environments where cooperation can be sustained by simple strategies, existing
constructions of cooperative equilibria under private monitoring entail the play of
intricate strategies.2 Hence, it would not be surprising if laboratory subjects fail
to cooperate under private monitoring. We attempt to carefully isolate the effect
of the absence of common knowledge of histories by using the private monitoring
treatment that differs from the other treatments only in the monitoring structure.

We next examine if and how the subjects’ behavior in the three monitoring
environments differ. We approach this problem in two different ways: we first ex-
amine if their behavior after certain histories is different under different monitoring
structures, and then estimate their strategies and check whether the most popular
strategies are different across treatments. These analyses together help us answer
the following questions among others: How long back in history does a strategy
look when choosing actions? Is it lenient in the sense that it does not revert to
the punishment after a single bad signal, or forgiving in the sense that it returns to
cooperation after punishing the opponent? Our analysis also provides an indirect
test of the theory of private monitoring through the examination of responsiveness,
which is the difference in the likelihood of the cooperative action after two different

2In particular, randomization is used either to generate correlation and coordination of continu-
ation play (Sekiguchi (1997), Bhaskar & Obara (2002) and Bhaskar & van Damme (2002)), or to
make such coordination unnecessary, as in “belief-free” equilibria (Piccione (2002), Ely & Välimäki
(2002) and Ely et al. (2005)).
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signals about the opponent’s action choice.
Our findings can be summarized as follows. First, the cooperation rate under

private monitoring is comparable to those under perfect and public monitoring, and
significantly higher than that predicted in the one-shot environment. Furthermore,
the rate of coordination (either on (C,C) or (D,D)) is slightly lower under private
monitoring than under perfect and public monitoring, but significantly higher than
implied by independent action choices. These positive results on cooperation and
coordination are remarkable in view of the theoretical difficulties associated with
private monitoring. Second, the subjects play different strategies in the three treat-
ments. In particular, when we focus on the cooperative strategies that are found in
the most significant proportions in each treatment, none of them is lenient under
perfect monitoring, but all of them are lenient under public and private monitoring.
Although comparisons in terms of forgiveness are less conclusive, there is some
suggestive evidence that strategies used under private monitoring are not as forgiv-
ing as those under public monitoring. Furthermore, when the complexity of each
strategy is measured by the number of states in their finite automaton representa-
tion, the strategies under private monitoring are more complex than those under
perfect monitoring. These findings suggest that subjects find ways to cooperate
and coordinate using a different mechanism under each monitoring structure.

To examine the effects of increasing noise in monitoring on the subjects’ ability
to cooperate, we conduct additional treatments in which the noise level is doubled:
ε = 0.2.3 In these high-noise treatments, we observe a substantial drop in the level
of cooperation in all three monitoring environments. The levels of cooperation
in these high noise treatments are again comparable to one another, but are sta-
tistically indistinguishable from what can be expected in a one-shot PD. In other
words, despite the theoretical possibility for cooperation, the high noise treatments
with any monitoring structure fail to create dynamic incentives required to sustain
cooperation. This finding from the additional treatments indicates that the ability
to cooperate is sensitive to the environment, and can sometimes be more signifi-
cantly affected by the degree of randomness in outcomes than by the monitoring
structure. A deeper investigation of this merits further work.

The organization of the paper is as follows: In the next section, we give a brief
review of the literature. Section 3 formulates a model of repeated PD, Section 4
provides a theoretical background, and Section 5 describes the experimental de-
sign. The questions our analysis attempts to answer are listed in Section 6, and the
results are presented in Section 7. The findings from the high noise treatments are
discussed in Section 8. Section 9 concludes with a discussion.

3Recall that our perfect monitoring treatments entail random payoffs whose distribution depends
on ε. A larger ε hence implies larger uncertainty in payoff realizations.
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2 Related Literature

There is only indirect evidence from observational data as to whether repeated
interactions under private monitoring lead to cooperation. A meta study by Lev-
enstein & Suslow (2006) identifies joint sales agencies and industry associations
as mechanisms that help cartels through the collection and dissemination of infor-
mation. Harrington & Skrzypacz (2007, 2011) find that cartels for such products
as citric acid, lysine, and vitamins went to great lengths to make sales public in-
formation amongst members and also used inter-firm sales as a way to transfer
profits to sustain collusion. Their work suggests that when firms collude in private
monitoring environments, they make arrangements for making information public,
and also make side-payments, thus attesting to the difficulty of sustaining collusion
under private monitoring.

Our primary objective in this paper is to identify the pure effect of the moni-
toring structure while keeping other aspects of the game fixed as much as possible.
Although there is now a growing literature on repeated game experiments, we are
aware of no work that makes cross comparison of different monitoring structures
including private monitoring.4

Early experimental studies find some cooperation when subjects engage in re-
peated interactions under perfect monitoring.5 Further evidence of cooperation in
repeated games was provided by Engle-Warnick & Slonim (2004, 2006b,a), Dal Bó
(2005), Aoyagi & Fréchette (2009), and Duffy & Ochs (2009) in various settings
(these subsequent studies differ from the earlier ones in that they allow subjects to
play multiple repeated games). Dal Bó & Fréchette (2011) find in perfect moni-
toring games that cooperation rates by experienced subjects are 1) very low when
cooperation is theoretically infeasible, and 2) higher when it is theoretically feasi-
ble, and very high for certain parameter values. Furthermore, Dal Bó & Fréchette
(2017) find that in the repeated PD with perfect monitoring, the strategies used by
the majority of subjects are simple, and can be classified into one of 1) Always
D (defect), 2) grim-trigger, which begins with C (cooperate) but switches to D
forever following a defection, and 3) Tit-For-Tat (TFT), which begins with C and
thereafter mimics the other player’s action in the previous round.

4Experiments on infinitely repeated games address a number of different questions. They include,
to mention a few, Schwartz et al. (2000), Dreber et al. (2008) on modified PD, Cason & Mui (2014) on
a collective resistance game. Cooper & Kühn (2014) on the role of communication and renegotiation,
Fudenberg et al. (2014) on the relationship between behavior in the dictator game and that in an
infinitely repeated game, Cabral et al. (2014) on reciprocity, and Bernard et al. (2016) on a gift
exchange game. Other forms of dynamic games are studied by Battaglini et al. (2015) and Vespa
(2016).

5See Roth (1995). Early studies include Roth & Murnighan (1978), Murnighan & Roth (1983),
Feinberg & Husted (1993), Holt (1985), and Palfrey & Rosenthal (1994).
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On games with imperfect public monitoring, Aoyagi & Fréchette (2009) find
that subjects cooperate in an environment with a continuous public signal, and that
their payoff decreases with the level of noise in the public signal in line with the
theoretical prediction on the maximal symmetric perfect public equilibrium pay-
off.6 Fudenberg et al. (2012) study a model of repeated PD under imperfect public
monitoring that is close to our public monitoring treatment, and examine the effects
of stage payoffs and noise levels on subjects’ behavior. Fudenberg et al. (2012) find
no systematic difference in the levels of cooperation (initial and overall) as the level
of noise in public monitoring is increased (starting from perfect monitoring), but
that the subjects’ strategies under public monitoring are more lenient and more for-
giving than under perfect monitoring. They support this finding both by analyzing
specific histories and using the strategy frequency estimation method proposed in
Dal Bó & Fréchette (2011). These results prompt us to study the leniency and
forgiveness properties of strategies in the private monitoring environment.7

The present formulation of public monitoring differs from those in Aoyagi &
Fréchette (2009) and Fudenberg et al. (2012) in a few important ways. As men-
tioned above, the model of Aoyagi & Fréchette (2009) has a continuous public
signal whose distribution depends on the sum of the two players’ actions. This in
particular implies that statistical identification of a deviator is not possible in Aoy-
agi & Fréchette (2009) unlike in the present model where it is possible since the
public signal consists of two components that correspond to each player’s action
choice. This distinction is known to be very important theoretically. Fudenberg
et al. (2012) formulate the public signal in the same way as in the present paper,
but suppose that the public signal not only signals a player’s action choice, but also
determines his payoff. We instead suppose that a player’s payoff is determined by
his own action and the component of the public signal that corresponds to the other
player’s action.

To the best of our knowledge, Kayaba et al. (2016) offer the only other study
of private monitoring games in a standard setting.8 Kayaba et al. (2016) conduct

6Some, including Cason & Khan (1999), study repeated games with imperfect monitoring but do
not use random termination, which has become the standard procedure for implementing infinitely
repeated games in a laboratory since Roth & Murnighan (1978). See Fréchette & Yüksel (2017) for
some alternative termination methods and Sherstyuk et al. (2013) for alternative payment methods.

7Other related studies of infinitely repeated PD games with imperfect public monitoring include
Rojas (2012), Embrey et al. (2013), and Rand et al. (2015). Rojas (2012) is interested in comparing
behavior in an environment à la Green and Porter versus one à la Rotemberg and Saloner and thus
varies monitoring accordingly. Embrey et al. (2013) explores the explanatory power of renegotiation
proofness within an imperfect public monitoring environment with communication. Starting with the
public monitoring technology used in Fudenberg et al. (2012), Rand et al. (2015) study the impact of
revealing the intended play of each players; thus making the treatment one with perfect monitoring.

8Earlier experimental studies that featured private monitoring in repeated games did so in envi-
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experiments with two treatments that vary the accuracy of players’ private signal,
and compare behavior with predictions by focussing on a family of strategies they
refer to as generous TFT strategies which choose a mixed action as a function only
of the most recent signal (i.e., have memory-one), and play C with a higher proba-
bility after a c signal than after a d signal.9,10 There are a few important differences
between the present paper and Kayaba et al. (2016): First, our primary objective is
to examine the possible difference in behavior across different monitoring environ-
ments including private monitoring. For this purpose, our experiments are designed
so as to yield the clearest evidence. In particular, we consult the previous studies on
the topic and choose parameter values that allow us to statistically distinguish the
cooperation levels in repeated games (under perfect and public monitoring) from
that in the one-shot games.11 Second, it is recognized in this literature that there
are often important changes in behavior for inexperienced subjects. In view of this,
our analysis of subjects’ behavior focuses on what happens after they accumulate
experience.12 Third, in terms of the analysis, we do find that our subjects condition
behavior on histories longer than one round. Unlike Kayaba et al. (2016), we take
candidate strategies from a more general class than the memory-one class. Our re-
sults indicate that the complexity of strategies, such as memory length, is in fact a
key difference in the subjects’ behavior across different monitoring environments.

Closely related to repeated games with private monitoring are models of ran-
dom matching within a group where a group of players are matched in pairs to a
different partner every round. Monitoring is private—although a player perfectly
observes the action of his opponent in the current supergame, he does not observe
the actions taken in other pairs. Theoretically, regardless of the group size, coop-
eration can be sustained in equilibrium if δ is large enough through a contagious

ronments that do not lend themselves to exploring standard concepts from the theoretical work on the
topic. Holcomb & Nelson (1997) observe in a repeated duopoly model (without random termination)
that the experimenter’s manipulation of information about a subject’s quantity choice “does signif-
icantly affect market outcomes” (p.79). Feinberg & Snyder (2002) study the effect of occasional
manipulation of payoff numbers in a modified repeated PD (a third choice is added), and find less
collusive behavior when such manipulation is ex post not revealed than when it is.

9As seen in Section 4, these strategies form the building block of the belief-free equilibrium.
Fudenberg et al. (2012) (online Appendix) find none of the generous TFT strategies in significant
proportions in their strategy estimation for public monitoring games.

10Kayaba et al. (2016) has two treatments: a player’s private signal equals the other player’s action
with probability 0.9 in the high-accuracy treatment, and with probability 0.6 in the low-accuracy
treatments. In both treatments, g = ` = 2

9 according to our notation (page 8).
11This is important since for some payoff combinations and level of experience, positive cooper-

ation rates are observed in experiments in contradiction to the theoretical prediction. See Dal Bó &
Fréchette (2017).

12See also Dal Bó & Fréchette (2017). This issue is not addressed in Kayaba et al. (2016), who let
the subjects play only three supergames under each parametrization.

7



grim-trigger strategy that cooperates as long as all past interactions have resulted
in (C,C), but defects otherwise. Thus a single defection results in the breakdown
of cooperation through the contagion process. Duffy & Ochs (2009) find that even
when the group size is fairly small—as low as six—their subjects cannot sustain
cooperation in the random matching environment.13 Subsequent experiments by
Camera & Casari (2009), Camera et al. (2012), and Camera & Casari (2014) also
confirm that cooperation in the random rematching environment is fragile and is
possible only for very small groups, of size four. The difficulty of supporting co-
operation with random rematching in small groups naturally poses a question as to
whether players can sustain cooperation in bilateral interactions with private mon-
itoring.

3 Models of Repeated Prisoners’ Dilemma

Two players play a symmetric 2 × 2 stage-game infinitely often. The set of actions
for each player i is denoted Ai = {C,D}. Player i’s action ai ∈ Ai generates a signal
ω j ∈ {c, d} with noise ε = 0.1. The probability distribution of ω j conditional on ai

is given by Pr(ω j = c | ai = C) = Pr(ω j = d | ai = D) = 1 − ε. The two signals ω1
and ω2 are independent conditional on the action profile a = (a1, a2).

The payoffs of player i, in the imperfect monitoring treatments, depends on his
own action ai and the signal ωi about player j’s action, and denoted by gi(ai, ωi).
Player i’s expected stage-payoff ui is a function of the action profile a and is given
by

ui(a) =
∑
ωi∈A j

Pr(ωi | a j) gi(ai, ωi). (1)

We specify the function gi so that the expected stage game payoffs (u1, u2) form a
PD as follows:

C D
C 1 1 −` 1 + g
D 1 + g −` 0 0

(2)

In the perfect monitoring treatment, the expected stage game payoffs are also given
by the above table. Furthermore, in order to ensure commonality across treatments,
the realized payoffs under perfect monitoring given any action profile are random,
and have the same distribution as under imperfect monitoring. In our experiments,
the parameters g and ` > 0 are chosen to satisfy g = `.14

13Their results are replicated in Figure 5 in Appendix A.1.
14The equality g = ` implies that the expected payoff table has a benefit-cost form à la Fudenberg

et al. (2012). Namely, a player choosing C incurs cost g but gives benefit 1 + g to the other player,
whereas action D entails no cost or benefit. The same condition is referred to as separability in
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Under perfect monitoring, player i observes j’s action a j at the end of each
round. Under (imperfect) public monitoring, player i observes the signal profile
ω ≡ (ω1, ω2). Under (imperfect) private monitoring, player i only observes ωi.
Let xt

i denote player i’s information at the end of round t regarding events in the
round as described above.15 Player i’s history up to round t is the sequence ht

i =

(x1
i , . . . , x

t
i). Let Ht

i be the set of i’s histories up to t and let Hi = ∪∞t=1 Ht
i . Player

i’s (behavioral) strategy σi is a collection (σt
i)
∞
t=1 such that σ1

i ∈ ∆Ai and for t ≥ 2,
σt

i : Ht−1
i → ∆Ai, where ∆Ai is the set of probability distributions over Ai. Denote

by δ ∈ (0, 1) the common discount factor of the players, and let πi(σ) be player
i’s expected payoff in the repeated game under the strategy profile σ = (σ1, σ2).
Likewise, let πi(σ | hi) be i’s expected continuation payoff under σ following
history hi ∈ Hi.16 A strategy profile σ = (σ1, σ2) is a perfect Bayesian equilibrium
(PBE, or simply an equilibrium) of the repeated game if for i = 1, 2,

πi(σ | hi) ≥ πi(σ′i , σ j | hi)

for any alternative strategy σ′i and any private history hi ∈ Hi.17 Under perfect
monitoring, σ is a PBE if and only if it is a subgame perfect equilibrium (SPE).
Under public monitoring, a strategy σi is public if σt

i is a function only of the
public history (ω1, . . . , ωt) and not that of (a1

i , . . . , a
t
i). A PBE σ is a perfect public

equilibrium (PPE) if each σi is public. A PPE is strongly symmetric if σ1 and σ2
entail the same action after every public history.

4 Theoretical Background

This section collects some background material that is well recognized in the the-
oretical literature but is useful for the interpretation of our experimental results.

One essential observation concerns the relation between efficiency and the
severity of punishments. Under perfect monitoring, cooperation in every round on
the equilibrium path can be enforced by non-lenient and non-forgiving strategies

Kayaba et al. (2016). The benefit-cost (b/c) ratio is given by 1+g
g .

15As mentioned earlier, the payoffs in the perfect monitoring treatment are randomly generated.
Specifically, player i’s action ai generates a random signal ω j with the same distribution as under
imperfect monitoring, and j’s payoff is determined by his action a j and ω j. Player i observes a j

but not ω j or j’s payoff. In the case of perfect monitoring, xt
i hence includes the realizations of his

random payoff. See Section 5 for details of the actual implementation.
16Throughout, we consider the average discounted payoff, which equals the sum of discounted

stage payoffs multiplied by 1 − δ.
17Under public and private monitoring, every history of signals occurs with strictly positive prob-

ability under any history of actions. For this reason, we omit reference to beliefs when discussing a
PBE.
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such as the grim-trigger strategy. Since no bad signal is observed on the equilib-
rium path, leniency or forgiveness is immaterial for the efficiency of an outcome.
Under imperfect monitoring, on the other hand, bad signals arise even when both
players cooperate. To achieve efficiency, hence, the strategy must be lenient in
the sense that a punishment is started either only after the consecutive occurrence
of bad signals, or with a small probability after each occurrence of such a signal.
Furthermore, if the players are concerned with efficiency a posteriori, after the
punishment is triggered, then the strategy must be forgiving so that the cooperative
phase can be restored after a fixed number of rounds or after the occurrence of a
good signal during the punishment phase. However, the situation is significantly
more complex in the specific case of private monitoring. If player i believes that
his opponent j is playing a strategy that chooses C with probability one today but
is not lenient, then i’s strategy must be lenient: If i observes a bad signal today
and responds with D, then it will likely cause j to observe a bad signal and hence
revert to a punishment. On the other hand, if i is lenient and plays C instead, it
will likely keep j in the cooperative phase. After all, j does not know that i has
observed a bad signal, and since it is caused by the noise in monitoring, i might
as well ignore it. This reasoning excludes the possibility of an equilibrium that
entails the unconditional play of C on the path along with a non-lenient response to
a bad signal. Theory of private monitoring suggests that j’s strategy must be finely
adjusted in the level of leniency and forgiveness so that i has an incentive to play
C after a good signal and D after a bad signal.18

A more specific description of an equilibrium in each case is as follows. Under
perfect monitoring, mutual cooperation is an SPE outcome if δ ≥ g

1+g . For exam-
ple, if we denote by CC the action-signal pair (ai, a j) = (C,C), the grim-trigger
strategy Grim that begins with ai = C and plays C if ht

i = (CC, . . . ,CC) but plays
D otherwise, constitutes a symmetric SPE and generates the maximum payoff of
Vperfect = 1.

Under public monitoring, a pair (σG, σG) of grim-trigger strategies that revert
to the punishment when the history ht

i , (Ccc, . . . ,Ccc) is also a PPE for δ suf-
ficiently large and ε sufficiently small.19 However, such an equilibrium entails a
significant efficiency loss since permanent defection is triggered with probability
1−(1−ε)2 in every round.20 We can verify that among strongly symmetric PPE, the

18Under private monitoring with conditional independence as assumed in this paper, Matsushima
(1991) shows that the only equilibrium of the repeated game is the repetition of a one-shot NE if the
players’ strategies are restricted to the following type: i plays the same action after hi and h′i if his
belief about j’s private histories h j conditional on hi is the same as that conditional on h′i .

19As before, (ai, ωi, ω j) = (C, c, c) is abbreviated as Ccc. (σG, σG) is a PPE if (1 − 2ε)(1 − ε) −
ε(2 − ε)g ≥ 1−δ

δ
g.

20The equilibrium expected payoff under this grim-trigger strategy equals 1−δ
1−δ+δε(2−ε) , which equals
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highest payoff is achieved by a lenient strategy profile that triggers a punishment
with probability 1

ε(1−2ε−εg)
1−δ
δ g after a pair of bad signals ω = dd, and is given by

Vpublic = 1 −
ε

1 − 2ε
g, (3)

provided that ε < 1
2+g and δ > g

ε(1−2ε)+(1−ε)(1+ε)g .
In the case of private monitoring, the lack of common knowledge of histories

becomes a major obstacle for cooperation. As mentioned in the Introduction, two
approaches to the problem have been developed in the literature as detailed below.

The belief-based approach (Sekiguchi (1997); Bhaskar & Obara (2002)) at-
tempts to provide a proper incentive after each history by considering a mixture of
repeated game strategies. Specifically, consider a mixture between the grim-trigger
strategy Grim and the strategy AllD of choosing D always. Note that the contin-
uation strategy of such a mixed strategy after each history is either AllD or again
a mixture of Grim and AllD. The initial probability weights on Grim and AllD are
chosen so that after every history, it is incentive compatible to revert to AllD if and
only if a player observes a d signal.21 In one interpretation, when players are ran-
domly matched to play the repeated game as in our experimental setting, a mixed
strategy played by a single opponent corresponds to the population of opponents
playing different pure strategies.

The belief-free approach (Ely & Välimäki (2002); Piccione (2002)) supposes
that players play a behavioral strategy that makes the other player indifferent be-
tween C and D after every history. Specifically, player i’s strategy makes player
j indifferent between his actions independent of the history observed by player j.
This makes player j’s belief about player i’s (private) history irrelevant, and sub-
stantially simplifies the equilibrium analysis. This approach is useful since it yields
the only class of equilibria under private monitoring for which explicit character-
ization of behavior and payoffs is possible for a fixed discount factor. Based on
Ely & Välimäki (2002) and Piccione (2002), Appendix A.2 illustrates a memory-
one belief-free equilibrium in which the choice of a mixed action in every round
depends only on the signal realization of the previous round. One behavioral pre-
diction when the subjects play such an equilibrium is as follows. Let the respon-
siveness of a strategy be defined by the difference between the probability that a
subject cooperates (ai = C) after a good signal (si = c) and that after a bad signal
(si = d). As seen in equation (10) in Appendix A.2, it is expressed in terms of the

0.369 � 1 under our parameter values (δ = 0.9 and ε = 0.1).
21It is typically the case that with high discount factors, the players do not have an incentive to

switch to AllD when observing ωi = d. This is the case with our specification of δ = 0.9, and it is
necessary to lower the effective discount factor by partitioning the supergame into several segments
so that each segment is played only once in several rounds. See for example Sekiguchi (1997).
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underlying parameters as

Pr(at+1
i = C | ωt

i = c) − Pr(at+1
i = C | ωt

i = d) =
g

δ(1 − 2ε)(1 + g)
. (4)

In this equilibrium, hence, responsiveness increases with the noise level ε. This
belief-free strategy profile is an equilibrium not only under private monitoring
but also under perfect and public monitoring. Consequently, if the subjects play
the memory-one belief-free equilibrium in every monitoring treatment, then they
should exhibit the same responsiveness in both the public and private monitoring
treatments where ε = 0.1, and a lower responsiveness value in the perfect monitor-
ing treatment where ε can be interpreted as 0. We can also verify that the highest
payoff achieved by the class of memory-one belief-free equilibria is given by

Vprivate = 1 −
ε

1 − 2ε
g,

provided that ε < 1
2(1+g) and δ > g

(1−2ε)(1+g) .
22

5 Experimental Design

The original experiment has three treatments corresponding to the three monitoring
structures described above. The public and private monitoring treatments use the
payoff function gi(ai, ωi) given by

ai\ωi c d
C 46 8
D 54 16

(5)

The expected payoffs are then generated according to (1). Our perfect monitoring
treatment introduces the same random relationship between the payoffs and the
action profile as follows: for each action profile (ai, a j), player i’s payoff in the per-
fect monitoring treatment is generated by the lottery that yields gi(ai, ωi = a j) with
probability 1 − ε and gi(ai, ωi , a j) with probability ε. For example, when the ac-
tion profile is (C,C), each subject (independently) receives gi(C, c) with probability
1 − ε and gi(C, d) with probability ε so that

ui(C,C) = (1 − ε) gi(C, c) + ε gi(C, d),
22It happens to be the case that Vprivate = Vpublic in (3), which is derived under the assumption of

strong symmetry. While the belief-free equilibrium is not strongly symmetric, Vpublic can also be
interpreted as the highest belief-free equilibrium payoff under public monitoring. All the conditions
on ε and δ stated in this section hold in our experiments including the high-noise treatments discussed
in Section 8.
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Table 1: Summary Statistics
Treatments Subjects Sessions Subjects Supergames Rounds per Supergame Subject earnings (US$)

per session per session avg min max avg min max
Perfect 66 4 16, 18, 16, 16 11, 12, 19, 11 10.3 1 37 32.91 19.78 43.67
Public 68 4 18, 20, 14, 16 11, 11, 22, 11 10.1 1 37 34.87 23.40 48.12
Private 72 4 20, 18, 14, 20 12, 9, 19, 11 10.4 1 37 31.92 22.34 44.12

just like in the other two treatments. It follows that our three treatments have
exactly the same expected stage-payoff table. With our choice of ε = 0.1, it is
given by

a1\a2 C D
C 42.2, 42.2 11.8, 50.2
D 50.2, 11.8 19.8, 19.8

(6)

Note that the payoff matrix (6) is strategically equivalent to (2) for

g = ` =
5
14
≈ 0.357.23 (7)

In each of the three treatments, these parameter values ensure that there exist equi-
libria in which the players cooperate with strictly positive probability at least ini-
tially.

The experiments use a between-subject design so that each subject partici-
pates in one and only one treatment. Sessions were conducted at the CESS lab
at NYU.24 In each session, after the instructions are read aloud, subjects are ran-
domly and anonymously paired via computer with another subject to play a su-
pergame.25 All supergames in a session are simultaneously terminated after every
round with probability 0.1, and subjects are randomly rematched to play another
supergame.26 After each round t, subject i sees on his screen his own action choice
at

i and other information that varies across different monitoring structures: Under

23Simply apply the affine transformation 22.4 ui(a) + 19.8. The benefit-cost ratio mentioned in
Footnote 14 hence equals 1+g

g = 3.8.
24Subjects who had participated in previous experiments with randomly terminated games or a PD

as a stage-game were excluded.
25Instructions and screenshots can be found at http://cess.nyu.edu/frechette/print/Aoyagi 2016a inst.pdf.

In the experimental instructions, the term “match” is used in place of “supergame.” The experimental
interface was programed using z-tree (Fischbacher (2007)).

26The length of a supergame in each session of the perfect monitoring treatment was determined
by a random number generator whose seed is tied to the computer’s internal clock. Each session in
the other treatments then used the same sequence of supergames as the corresponding session in the
perfect monitoring treatment to control for the effect of the length of supergames on the evolution of
play. Dal Bó & Fréchette (2011) and Engle-Warnick & Slonim (2006b) both document the impact
of the length of supergames on behavior.
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perfect monitoring, i’s screen shows the opponent’s action choice at
j as well as the

realization of the random draw that determines i’s own payoff. Under public mon-
itoring, i’s screen shows the pair of signals (ωt

i, ω
t
j), and under private monitoring,

it just shows his signal ωt
i about the opponent’s action choice. In each case, sub-

ject i also sees the possible realizations of the payoff pair highlighted in the payoff

matrix.27 After every supergame, subjects are informed of the complete history of
choices and signals by both players to ensure that feedback is the same for all treat-
ments and that the only difference among them is the information structure within
a supergame. This process repeats itself until 75 minutes of play have elapsed;
the first supergame to end after that marks the end of a session. Four sessions of
each treatment were conducted. The supergames lasted between 1 and 37 rounds,
and averaged 10.3 rounds (close to the expected value of 10).28 The sessions were
approximately 1 hour and 40 minutes, and subjects earned between $19.78 and
$48.12 with an average earning of $33.21.29 These and other summary statistics
are provided in Table 1.30

6 Directions of Analysis

As discussed in the Introduction, we are primarily interested in answering the fol-
lowing questions: (1) Do subjects cooperate under private monitoring? If so, how
does the level of cooperation compare with those under public and perfect monitor-
ing? (2) Are there any differences in the subjects’ behavior in the three treatments?
We stress that presenting testable hypotheses is difficult given the lack of compre-
hensive theory about the equilibrium of private monitoring games. Although our
investigations are more of exploratory nature for this reason, we will relate the re-
sults to insights and predictions provided by the theory to the extent possible. In

27As mentioned in footnote 15, the realization of a random payoff under perfect monitoring is
privately observed as in the other cases. The screen also displays a table describing subject i’s history
ht−1

i = (x1
i , . . . , x

t−1
i ) up to round t − 1 within the supergame.

28The difference in the average number of rounds results from the variation in number of su-
pergames between sessions.

29Points are converted to dollars at a pre-announced exchanged rate. Since the earnings for the
first session of each treatment were slightly lower than expected (between $19.78 and $33.52 with an
average of $28.64), the minimum time of play was increased from 60 to 75 minutes and the exchange
rate was decreased from 0.01 to 0.0075 for the subsequent sessions.

30Given the difference in the number of supergames across treatments, the analysis uses data from
only the first kn supergames in session n of each treatment, where kn is the minimal number of
supergames in session n across treatments. For instance, since the second sessions of the three
treatments have 9, 11 and 12 supergames, only the first 9 supergames are used in the analysis. As
stated in footnote 26, the length of the kth supergame in session n is the same regardless of the
treatment.
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what follows we provide a set of questions that provide a guide for our analysis.

Question 1 (Cooperation and coordination) Is the level of cooperation and coor-
dination lower under private monitoring than under perfect or public monitoring?

Theory clearly suggests that it is significantly more difficult to sustain cooper-
ation under private monitoring since it requires the use of intricate mixed strategies
as seen in Section 4. The lack of a coordination device under private monitoring
also makes it difficult for the subjects to coordinate their actions beyond round 1.
These considerations suggest an affirmative answer to question 1.

We examine our second question on the constancy of behavior across the three
treatments from several different perspectives. Following the literature and as de-
scribed earlier, we say that strategies are lenient if they do not prescribe sure defec-
tion following a single bad signal, and forgiving if they return to cooperation after
having played defect.

Question 2 (Leniency and forgiveness) Are strategies more lenient and forgiving
under public and private monitoring than under perfect monitoring?

As mentioned in Section 4, efficiency considerations imply that strategies under
imperfect monitoring should be more lenient and forgiving than under perfect mon-
itoring. Indeed, previous work confirms this view under public monitoring. In the
perfect monitoring environment, Dal Bó & Fréchette (2017) find the grim-trigger,
which is not lenient, among one of the three most frequently observed strategies.
To the contrary, both Fudenberg et al. (2012) and Embrey et al. (2013) find that the
subjects’ strategies are more lenient and more forgiving in imperfect public moni-
toring environments. A similar observation can be made on the strategies that best
describe the subjects’ behavior in Aoyagi & Fréchette (2009): as noise in public
information increases, the range of a “bad” signal which causes transition from
the cooperation phase to the punishment phase shrinks, and the range of a “good”
signal which causes transition from the punishment phase to the cooperation phase
widens.31

Similar considerations with respect to mitigating efficiency losses associated
with a strategy such as grim-trigger apply to private monitoring, but additional
considerations also come into play. Under private monitoring, a strategy may be
more lenient than under perfect monitoring if a player believes that his opponent
plays C with high probability: in such a case a player will be reluctant to punish

31The signal space is continuous and the estimated strategies shift between the cooperation and
punishment phases based on a threshold on the public signal. Data of Aoyagi & Fréchette (2009)
show that this threshold decreases as noise increases.
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a bad signal since it increases the chance of a punishment from the opponent who
himself does not know that his choice was transmitted as a bad signal. The answer
to the question on forgiveness under private monitoring is more difficult to predict
since forgiveness, if any, takes place further down the history where it is difficult
to infer if the opponent is cooperative or punitive.

Question 3 (Memory length) Do strategies have longer memory under public and
private monitoring than under perfect monitoring?

An affirmative answer to this question is partially implied by the affirmative an-
swers to Question 2 on leniency since leniency requires the examination of history
over the past few rounds rather than just one.32

Question 4 (Responsiveness) Is the level of responsiveness lowest under perfect
monitoring and the same under public and private monitoring?

A memory-one belief-free strategy profile as described in Section 4 is an equi-
librium in every monitoring treatment we consider. If the subjects indeed play
such an equilibrium, their responsiveness as defined in (4) should be lower when
the monitoring is more accurate.

7 Results

We present our results on the original set of treatments in two parts. The first
part is a direct analysis of cooperation and coordination rates as well as action
choices conditional on some histories. The second part is an analysis based on the
estimation of strategies.

7.1 Cooperation Rates

Cooperation rates in the three treatments can be assessed visually in the two panels
of Figure 1. In light of the variation in the number of supergames across sessions,
the figure presents data in three categories: the first four supergames to the left, the
last four supergames to the right, and a single point in the middle (labeled “other”)
that corresponds to the average of the rates in all other supergames. As such, every
point in Figure 1 (with the exception of the middle point) represents the average of
four supergames, one from each session.

32As previously mentioned, leniency can be defined in terms of either the number of bad signals
before action D is chosen, or the probability with which action C is chosen after each bad signal. In
the latter case, more leniency does not necessarily imply longer memory.
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Figure 1: Cooperation Rates By Supergame

Observation 1 Subjects cooperate under perfect, public, and private monitoring.

Observation 1 on perfect monitoring replicates earlier results in the literature
and extends them to the environment with random payoffs. The round 1 coopera-
tion rate in the last four supergames is 65%, which is statistically different from 0
at the 1% level.33

Using no cooperation as a benchmark can be misleading since a positive degree
of cooperation is typically observed even in one-shot PD experiments. However,
the observed level of cooperation in our perfect monitoring treatment is substan-
tially higher than those in repeated PD experiments with similar payoffs but a lower
discount factor that does not support cooperation in equilibrium. In fact, the level
of cooperation here is similar to that observed by Dal Bó & Fréchette (2017) in per-
fect monitoring repeated PD for a sufficiently high discount factor, and far above

33Throughout the paper, unless stated otherwise, statistical tests are obtained by t-tests clustering
the standard errors by session using only the last four supergames. The clustering is to account for
potential session-effects. The interested reader is referred to Fréchette (2012). When results are
referred to as not statistically significant, it implies a p-value greater than 10%.
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that for a low discount factor.34, 35 Our finding is also in line with that of Rand
et al. (2015), who let subjects in a repeated PD experiment observe the intended
action choice of the other player, but introduce payoff randomness through errors
in the implementation of action choices: They find that cooperation rates in this
treatment are similar to those in the standard perfect monitoring treatment without
payoff randomness.

Turning now to public monitoring, we see in the left panel of Figure 1 that the
round 1 cooperation rate in the last four supergames is 73%, which is again statisti-
cally different from 0 at the 1% level. Positive cooperation in our experiments is in
line with the findings in the literature on various forms of public monitoring (Fu-
denberg et al. (2012), implementation errors in the subjects’ action choices; Aoyagi
& Fréchette (2009), one-dimensional continuous signal with infinite support that
does not statistically identify the deviator; Embrey et al. (2013), outcomes depend
probabilistically on the subjects’ action choices and the public signal is binary).

There is no statistical difference in the round 1 cooperation rates between per-
fect and public. On the other hand, a difference exists in cooperation rates over all
rounds. The right panel of Figure 1 shows that the cooperation rate over all rounds
in the last four supergames is 46% under perfect monitoring and 58% under public
monitoring. The rates are both statistically different from zero (p < 0.01), and
statistically different from each other (p < 0.01). The existing literature provides
no clear-cut conclusions on the comparison of overall cooperation rates between
public and perfect, and indicates the importance of the particular specification of
public monitoring. Fudenberg et al. (2012) report a small and non-significant in-
crease in overall cooperation rates when small noise is introduced into monitoring.
Rojas (2012) examines perfect and public monitoring under different pairs of the
continuation probability δ and the payoffs, and finds a mixed effect of monitoring:
Moving from perfect to public, cooperation rates increase in two (δ, payoff) treat-
ments but decrease in the other two treatments. Aoyagi & Fréchette (2009) report
a monotonically decreasing relationship between noise and all-round cooperation
rates.36

The key finding in Observation 1 is cooperation under private monitoring. We
see again in the left panel of Figure 1 that in the last four supergames, there is 61%

34See the Appendix A.3. In Dal Bó & Fréchette (2017), stage-payoffs are similar to those used
here, there is no randomness in outcomes, and cooperation is an SPE outcome if and only if δ ≥ 0.72.
As seen in Figure 6, cooperation rates for δ = 0.9 and δ = 0.5 diverge as the subjects accumulate
experience.

35See also the discussions after Observation 2 and in Section 8 for alternative ways to evaluate the
cooperation rates observed here in comparison with those in a one-shot PD.

36Aoyagi & Fréchette (2009) observe no statistical difference in round 1 cooperation rates in the
treatments where cooperation is theoretically feasible.
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cooperation in round 1, which is statistically different from 0 at the 1% level. The
cross comparison across treatments in terms of round 1 cooperation rates reveals
that the only difference is between public and private (p < 0.01), and that there is
no statistical difference between perfect and private.37 The right panel of Figure 1
shows that the cooperation rates over all rounds in the last four supergames are 46%
under private monitoring, which is again statistically different from zero (p < 0.01).
In terms of cooperation rates over all rounds, there is no statistical difference be-
tween perfect (46% cooperation) and private, or between public (58% cooperation)
and perfect, but public is higher than private weakly significantly (p < 0.1). These
observations, which answer Question 1, are summarized below:

Observation 2 All three monitoring structures yield strictly positive cooperation
rates. Whether in round 1 or in all rounds, cooperation rates under private monitor-
ing are lower than under public monitoring, but are not different from those under
perfect monitoring.

We should emphasize that Observation 2 is remarkable considering the the-
oretical difficulties in sustaining cooperation under private monitoring. A useful
comparison is with the level of cooperation in one-shot PD. Dal Bó & Fréchette
(2016) assemble a data set of 157,170 choices in 15 infinitely repeated and one-shot
prisoner’s dilemma experiments. Using their data set we estimate a probit regres-
sion of round one cooperation rates on the payoff parameters g and `, discount
factor δ, and indicators for subgame perfection and risk dominance (as defined in
Dal Bó & Fréchette (2011)).38 Using this regression, we can predict the level of
cooperation in one-shot PD under our parametrization. We find that the observed
round one cooperation rate in the private monitoring treatment is higher by 25%
(significant) than the prediction. A similar regression using only data from four
one-shot PD experiments with 11,038 choices also shows that the round one coop-
eration rate in our private monitoring treatment is higher by 43% (significant) than
the predicted value.39 This shows that Observation 2 cannot be simply explained
by social preferences or other behavioral hypotheses that are often used to explain
cooperation in one-shot PD.

37In addition to the description in footnote 33, statistical tests involving comparisons across treat-
ments control for the random sequence of supergames (the variable of interest is regressed on a
treatment dummy and on indicator variables for each random sequence). This is done to take into
account the potential correlations due to the fact that the realized lengths of supergames has been
shown to have an effect (albeit small) on choices (see for instance Dal Bó & Fréchette (2011)).

38This is estimated supergame by supergame.
39The test is a two sample t-test that allows to account for both the variance in the data of our

experiment, but also for the prediction error from the estimation on the meta data.
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Figure 2: Coordination Rates Implied by Independent Action Choice and Realized

As mentioned previously, the critical feature of private monitoring is the lack
of a common knowledge of histories that hinders coordination. In theory, players
can perfectly coordinate their actions under both perfect and public monitoring,
but not under private monitoring. Thus, it is interesting to see if the subjects in-
deed have difficulty coordinating their actions under private monitoring. Figure 2
extracts the first five rounds of each supergame in the three treatments and presents
the values of Pr

(
at = (C,C)

)
and Pr

(
at = (D,D)

)
as well as their sum. It also de-

picts the values of Pr(at
i = C)2 and Pr(at

i = D)2, which would be the coordination
rates should the subjects choose their actions independently. Coordination rates
Pr

(
at = (C,C) or (D,D)

)
are 0.722, 0.712, and 0.660 under perfect, public, and

private monitoring, respectively, and no statistical difference exists among them
according to the joint test of the three monitoring treatments. On the other hand,
pairwise comparison turns up a statistical difference not between perfect and pub-
lic, but between public and private (p < 0.1). However, the difference between

20



public and private is relatively small and it is surprising to see how much coordina-
tion is achieved under private monitoring after the initial round despite the difficulty
implied by the theory. When we compare Pr

(
at = (C,C)

)
and Pr

(
at = (D,D)

)
with

Pr(at
i = C)2 and Pr(at

i = D)2, respectively, we find that the former is always higher
except in the first round. In fact, the coordination rates Pr

(
at = (C,C) or (D,D)

)
are higher by 13 percentage points than Pr(at

i = C)2 +Pr(at
i = D)2 for all rounds af-

ter round 1, corresponding to a 41% difference for perfect and 84% for public. For
private, the rates are higher by 12 percentage points, corresponding to a 40% differ-
ence.40 This suggests that, to a certain extent, subjects have the correct expectation
about the other player’s action even under private monitoring.

Observation 3 Coordination rates under private monitoring are close to those un-
der perfect and public monitoring. In particular, they are positive and significantly
higher than the level implied by independent action choices.

7.3 Conditional Cooperation

In this subsection we explore further how cooperation rates vary with the action-
signal pair in the preceding round in each monitoring environment. We begin by fo-
cussing on cooperation rates conditional only on the signal in the preceding round.
Figure 3 shows the rates with which player i chooses at

i = C in round t ≥ 2 when
his signal in round t − 1 is c (labeled ωt−1

i = c), when it is d (labeled ωt−1
i = d),

and when t = 1 (labeled t = 1). Clearly, cooperation rates following a good signal
are much higher than following a bad one (p < 0.01 in all cases). Another striking
point is that this difference increases as the subjects accumulate experience. For
instance, in the first supergame, the difference in cooperation rates following the
two signals is between 23 and 26 percentage points in any treatment, whereas in
the last supergame, the corresponding difference is 59 percentage points under per-
fect monitoring, 51 percentage points under public monitoring, and 54 percentage
points under private monitoring.

Observation 4 In every treatment, the rate of the cooperative action C is higher
after a good signal c about the opponent’s action than after a bad signal d about it.

Figure 3 also shows that (1) responsiveness (the difference in cooperation rates
following a c signal and a d signal defined by (4)) varies across treatments, and that
(2) round one cooperation rates are about the same as cooperation rates following a
good signal under perfect and public monitoring, whereas they are different under

40The difference between actual and expected is statistically significant at the 1% level for perfect
and at the 10% level for public and private.
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Figure 3: Cooperation Conditional On the Previous Signal

private monitoring. If we suppose that the subjects play the memory-one belief-
free equilibrium described in Section 4, then responsiveness should in theory be
lowest under perfect monitoring at approximately 0.292, and about 0.365 under
either public or private monitoring. Our data show, however, that responsiveness
under perfect monitoring is higher than that under public or private monitoring: the
numbers are 0.354, 0.249, and 0.295 for the perfect, public, and private treatments,
respectively.41 A joint test reveals that responsiveness in the perfect monitoring
treatment is statistically different (p < 0.05) from that in the other two (answering
Question 4). Compared with the theoretical prediction in each case, the observed
responsiveness is significantly different (p < 0.01) in the private monitoring treat-
ment, different but not as significantly (p = 0.094) in the public monitoring treat-
ment, and not different in the perfect monitoring treatment.42 We also note that

41These numbers are obtained by first computing responsiveness for each subject. T-tests are
performed on these subject averages with clustering at the session level.

42Responsiveness is significantly higher under perfect monitoring than under public monitoring
(p < 0.01), and (insignificantly) higher under perfect monitoring than under private monitoring
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Table 2: Signal and Cooperation Rate Conditional On Previous Choice and Signal
Combination

perfect public private
Pr

(
at

i = C | Cc
)

0.946 0.922 0.921
Pr

(
at

i = C | Cd
)

0.414 0.553 0.469
Pr

(
at

i = C | Dc
)

0.223 0.470 0.351
Pr

(
at

i = C | Dd
)

0.114 0.135 0.105

responsiveness is rather sensitive to the choice of a specific sample. For instance,
although the same predictions should apply to all rounds after the first, if we com-
pute responsiveness in round 2 only, it is 0.181, 0.236, and 0.305 for perfect, public,
and private monitoring, respectively. Notice that responsiveness is now lower un-
der perfect monitoring than under public and private monitoring (not statistically
different however). The observed discrepancy from the theoretical prediction based
on the memory-one belief-free equilibrium may come from a number of different
sources. One important consideration is that strategies condition on events beyond
the most recent signal. This point is examined in more detail later.

While the above analysis only considers the action choice conditional on the
most recent signal, it may as well depend on one’s own action in the previous
round. The relationship between the action choice in the present round and one’s
own action choice and signal in the previous round is summarized in Table 2, where
(at−1

i , ωt−1
i ) = (C, c) is abbreviated as Cc, etc.

First note that cooperation rates across treatments are at similar levels when
the subjects previously cooperated and received a good signal (the first row) and
when they previously defected and received a bad signal (the fourth row).43 The
main differences are in the cooperation rates after Cd and Dc. Note that the higher
cooperation rate after Cd implies more leniency, whereas the higher rate after Dc
corresponds to more forgiveness. With this interpretation, strategies under public
monitoring exhibit more leniency and forgiveness than those under perfect moni-
toring (p < 0.1 and p < 0.01 repectively), and strategies under private monitoring
come somewhere in between both dimensions (the rates under private monitoring
following Dc are statistically different from those under perfect, p < 0.01, and

(p = 0.104). Furthermore, the levels are statistically different between public and private monitoring
(p < 0.05).

43However, they are nonetheless jointly statistically different following Cc (p < 0.01), but not
following Dd.
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public, p < 0.05; but not following Cd). Table 2 also shows that subjects under
private monitoring react to a negative signal more strongly when they cooperated:
the difference between the cooperation rates after Cc and after Cd is the largest in
this treatment.

Observation 5 In every treatment, the rates of cooperative action C vary substan-
tially with the signal in the previous round as well as the action-signal pair in the
previous round.

The analysis in this section, and Table 2 more specifically, ignores the possi-
bility that a subject in the public monitoring treatment may condition his behavior
on the public signal of his own action. This possibility under public monitoring is
examined in a subsection below.

7.3.1 Impact of the Public Signal about One’s Own Action

Momentarily restricting attention to public monitoring, we note that common knowl-
edge of public histories in this environment enables players to coordinate their be-
havior and simultaneously revert to the punishment or return to cooperation. Our
question in this subsection is if the subjects in our public monitoring treatment do
indeed use public signals as a coordination device. We examine this question by
considering pairs of player i’s private histories that differ from each other only in
the realization of ω j, i.e. the public signal corresponding to i’s own action.44 For
example, consider a pair of player i’s private histories hi and ĥi at the end of round
1 such that hi = (ai, ωi, ω j) = Ccc and ĥi = (ai, ωi, ω̂ j) = Ccd. In other words,
the public history is cc in one case, and cd in the other case, and i’s private ac-
tion C is the same across these private histories. In a perfect public equilibrium,
the continuation play of player i can differ across these histories, and more gener-
ally, it must differ across some such public histories. However, we find that this
is not the case. In fact, for no pair of such histories in round 1 do we find sig-
nificant difference in player i’s action choice in round 2. In order to examine i’s
action choice in a later round, we need to account for the possibility that it con-
ditions on what happened in two or more rounds ago. Because of data restriction,
we constrain our analysis to the relationship between i’s action choice in round t
and the public signals in rounds t − 1 and t − 2. More specifically, we consider
a pair of histories hi and ĥi such that hi = ((at−2

i , ωt−2
i , ωt−2

j ), (at−1
i , ωt−1

i , ωt−1
j )),

and ĥi = ((at−2
i , ωt−2

i , ω̂t−2
j ), (at−1

i , ωt−1
i , ω̂t−1

j )) with either (i) ωt−2
j , ω̂t−2

j and
ωt−1

j = ω̂t−1
j , or (ii) ωt−2

j = ω̂t−2
j and ωt−1

j , ω̂t−1
j . Namely, i’s action gives rise

44There are 863 such cases out of 8804 choices. However, the sample is much smaller when we
focus on the last four supergames.
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to two different public signals in round t − 1 or t − 2, but not both. Table 3 reports
the average rate of at

i = C following the most common histories.45 As seen, the
signal about one’s own action has no impact on the player’s action choice in all
but two comparisons.46 Caution is required for the interpretation of these results,
since it is based on a rather small sample, and there are also two instances where
behavior is conditioned on the signal about one’s own action. With this caution,
we summarize our findings as follows.

Observation 6 Subjects’ choices under public monitoring appear to ignore the
public signal of their own action in many instances.

If the subjects ignore the signal about their own action and do not use the public
signal as a coordination device, then the resulting play can be replicated under pri-
vate monitoring where they do not observe the signal about their own action.47 Ob-
servation 6 hence indicates the presence of a cooperation mechanism not discussed
in the public monitoring literature that identifies the public signal as a coordination
device, and also has a strong implication for a similar degree of cooperation under
private monitoring. Observation 6, however, is largely consistent with our strategy
estimation results where the most popular strategies under public monitoring are
those that condition only on the signal about the opponent’s action choice.48

7.4 Leniency and Forgiveness

Leniency and forgiveness (as they are documented here) require looking beyond
what happened in the previous round. Hence, we first examine whether the sub-
jects’ action choice depends on the event from two or more rounds ago. Table 7 in
Appendix A.4 presents the regression of a subject’s action choice in round three on
the outcomes of the first two rounds. The analysis separates the data between the
two cases where a subject chooses C or D in round 1, and includes as regressors
the subject’s own action choice in round 2, and his signal about the other player’s

45We count the number of observations for each combination of choices and signals in two con-
secutive rounds and take the four most common for each one of ωt−1

j and ωt
j. This results in at least

20 observations for each case.
46Of the two exceptions, a lower cooperation rate after hi = (Ccc,Ccc) than after ĥi = (Ccc,Cdc)

is rather surprising. One way to make sense of it is that some subjects try to take advantage of the
leniency of their opponents by defecting once in a while after a c signal, but is careful not to do so
after a d signal.

47In other words, such strategies under public monitoring are measurable with respect to the signal
about the opponent’s action, and can be implemented under private monitoring.

48On the other hand, the strategy estimation shows that the popular strategies under public and
private are different.
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Table 3: Impact of the Signal About One’s Own Action on Cooperation Rates

aiω jωi Signal (ω j)
t − 2 t − 1 c d
Ddd Dω jd 10.64 >∗ 5.42
Ddc Dω jd 9.52 ≈ 14.17
Ccc Cω jd 80.58 <∗∗ 92.00
Ccc Cω jc 96.25 ≈ 95.06

Dω jd Ddd 4.76 ≈ 5.42
Cω jd Ccd 46.00 ≈ 60.00
Cω jc Ccd 80.58 ≈ 87.10
Cω jc Ccc 96.25 ≈ 97.18

action choice in the first two rounds.49 As can be seen, for both public and pri-
vate monitoring, when a subject cooperates in round one, the opponent’s round
one choice has a statistically significant impact on the choice made in round three
(controlling for the outcome in round two).

To further investigate the question of leniency and forgiveness, we study be-
havior after some key histories that are possibly longer than one round.50

Figure 4 presents the cooperation rates after histories along which a subject has
consistently chosen at

i = C but has observed either one bad signal in the previous
round or two consecutive bad signals in the two previous rounds. In other words,
the height of the three points on the graph in the left panel corresponds to the values
of:

Pr
(
at

i = C | Cc, . . . ,Cc
)
,

Pr
(
at

i = C | Cc, . . . ,Cc,Cd
)
, and

Pr
(
at

i = C | Cc, . . . ,Cc,Cd,Cd
)
,

where the history ht−1
i such that (a1

i , ω
1
i ) = · · · = (at−1

i , ωt−1
i ) = (C, c) is abbreviated

as Cc, . . . ,Cc, etc.51 As can be seen, the drop in the cooperation rates following a
single d signal is most conspicuous under perfect monitoring, suggesting the use

49Analysis of the action choice in round 3 provides the cleanest evidence for the memory length.
To reduce the complexity of the regression, analysis in the public monitoring treatment is restricted
to the case where the public signal about the own action is correct in the first two rounds.

50See Fudenberg et al. (2012) for a similar exercise.
51The figure only considers action choices in rounds three and above to allow for the observation

of at least two signals.
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Figure 4: Cooperation Rates After d Signals When Cooperating (Left), and After
c Signals When Punishing (Right)

of non-lenient strategies by the subjects. The rates under private monitoring are
similar to those under public monitoring but slightly lower. There is a statistical
difference between perfect and either public or private (p < 0.01 and p < 0.05
respectively), but there is no statistical difference between the last two.52

Although identification of histories that are relevant to forgiveness is less straight-
forward, we select the following histories as relevant. For subjects who started by
cooperating: look at their first sequence of defection and compute the probability
that they cooperate when they observe one c signal or two consecutive c signals.
The height of the three points on the graph in the right panel of Figure 4 corre-

52This is established by regressing cooperation on dummies if there was one or two d signals and
interacted with a dummy for the type of monitoring (as well as indicators for the sequence of random
terminations).
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sponds to the values of

Pr
(
at

i = C | C∗, . . . ,C∗,Dd, . . . ,Dd
)
,

Pr
(
at

i = C | C∗, . . . ,C∗,Dd, . . . ,Dd,Dc
)
, and

Pr
(
at

i = C | C∗, . . . ,C∗,Dd, . . . ,Dd,Dc,Dc
)
,

where C∗ implies either Cc or Cd. As can be seen, there is more forgiveness under
perfect than public following one cooperate signal, but less following two (these
are jointly statistically different from each other p < 0.05). Directionally, the com-
parison between perfect and private is similar, but the rates following two c signals
are much closer than perfect and public are. On the other hand, the difference
between public and private is not statistically significant. However, ranking the
treatment in terms of forgiveness on the basis of this exercise is difficult since the
ranks vary following one versus two cooperate signals.

We should note, however, that the analysis in this section provides only a rough
measure of leniency and forgiveness as the strategies may condition on events be-
yond the previous two rounds. We perform a more direct analysis of leniency and
forgiveness in the next section by estimating strategies based on the subjects’ ac-
tion choices in all rounds of a supergame. Nonetheless, we can summarize the
evidence, which is a partial answer to Question 2, as follows:

Observation 7 Conditional on some key histories, the levels of leniency are such
that

public > private� perfect.

The ordering in terms of the forgiveness levels is not as clear except that after a
single good signal in a punishment phase, a return to cooperation is most likely
under perfect monitoring.

7.5 Estimation of Strategies

We now turn to the direct estimation of the subjects’ strategies. Our analysis is
based on the Strategy Frequency Estimation Method (SFEM) developed in Dal Bó
& Fréchette (2011). SFEM has now been used in multiple papers to estimate the
strategies in repeated games, and its use is supported by Fudenberg et al. (2012)
and Dal Bó & Fréchette (2017) who conduct Monte-Carlo simulations to evaluate
its performance, and in addition Dal Bó & Fréchette (2017) find that the strategies
identified as most popular by the SFEM are also the most popular strategies elicited
from the subjects using an alternative method.53 In essence, SFEM uses maximum

53Other papers using the SFEM in different contexts include Vespa & Wilson (2016) on dynamic
games and Bigoni et al. (2015) on continuous-time games.
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likelihood to estimate a mixture over a given set of strategies.54 The parameters
that are recovered represent the estimated fraction φk of strategy k in the set, and
the variance in the distribution of the error term. Instead of reporting the param-
eter capturing the variance in the error term, γ, we report the implied probability
β ≡ 1

1+exp
(
−1
γ̂

) that a cooperative action would be taken when it is prescribed by a

strategy. This gives an idea of how well the model fits the data since β → 1 as
γ → 0, and β→ 1

2 (a coin toss) as γ → ∞.
We consult previous studies that use SFEM in PD games to determine which

strategies to include. Specifically, we include all strategies that were found in a sta-
tistically significant proportion in any of the following papers: Dal Bó & Fréchette
(2011); Fudenberg et al. (2012) and their re-analysis of Dal Bó & Fréchette (2011)
and Dreber et al. (2008); Dal Bó & Fréchette (2017); Fréchette & Yüksel (2017);
and Embrey et al. (2013). The strategies included in our analysis are listed in Table
4 and their finite automaton representations are given in Appendix A.5.

Table 4: Properties of Strategies

Cooperative Responsive Lenient Forgiving Complexity

AllC X 1
AllD 1
CDDD 2
WSLS X X X 2
Sum2 X X X X 4
Grim X X 2
Grim2 X X X 3
Grim3 X X X 4
TFT X X X 2
2TFT X X X 3
TF2T X X X X 3
2TF2T X X X X 4
TF3T X X X X 4
STFT X X 2
SSum2 X X X 4

54Intuitively, the method can be described as looking for the strategy from some given set that best
explains the observed choices of a subject in multiple supergames. It then looks for the frequency of
each strategies in the entire sample. See Dal Bó & Fréchette (2011) for details.
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The three strategies in the top panel of Table 4 do not condition on the history:
“always cooperate” (AllC), “always defect” (AllD), and a strategy that cooperates
in the first round and defects in all other rounds (CDDD). Such strategies will be
termed non-responsive. All other strategies we consider are responsive in that tran-
sitions depend on signals. The second panel includes the well-known strategies of
“grim-trigger” (Grim) and “tit-for-tat” (TFT) as well as their variants that either do
not trigger a punishment after a single d or do not immediately return to coopera-
tion following a single c: Grim2, Grim3, TF2T, TF3T, 2TFT, and 2TF2T.55 Also
in the second panel is the Sum2 strategy that counts the numbers of good and bad
signals: It has an internal counter that is initially set equal to zero. The counter is
increased by 1 every time a good signal is observed and the current value is below
2, and is decreased by 1 every time a bad signal is observed and the current value is
above −2. The counter is unchanged in other cases. Sum2 plays C if the counter is
≥ 0 and D otherwise. Sum2 was first explored in Embrey et al. (2013). The second
panel also lists the “win-stay, lose-shift” strategy (WSLS, sometimes referred to as
“Pavlov” or “perfect tit-for-tat”) that is known to have some desirable properties
in environments with noise (Imhof et al. (2007)) but has almost never been found
in statistically significant proportions in previous experiments. Every strategy in
the second panel yields a sequence of (C,C)’s when matched against itself. On the
other hand, the third panel lists the suspicious versions of TFT and Sum2 (STFT
and SSum2) that start by defecting, and yield a sequence of (D,D)’s when matched
against itself. The check marks in Table 4 show whether these strategies are lenient
and/or forgiving.56 The last column of the table also shows the level of complexity
of each strategy by the scale 1-4: It equals the number of states required when they
are expressed as a finite automaton.57 A cooperative strategy is a strategy that starts
with cooperation and produces cooperation with positive probability in subsequent
rounds when matched against itself. When discussing leniency and forgiveness,
we focus on cooperative strategies that are responsive.

The results for perfect and public monitoring reproduce some results docu-
mented in the literature. First, under perfect monitoring, the majority of the data
can be accounted for by the three strategies: AllD, Grim, and TFT (Dal Bó &
Fréchette (2016)). Second, lenient and forgiving strategies are more popular under

55TFT in the imperfect monitoring environment starts by cooperating and then chooses C if and
only if ωi = c. In short, Grim-k is a variant of Grim that reverts to D after k consecutive d signals,
and m-TF-n-T is a variant of TFT that plays D in at least m consecutive rounds after n consecutive d
signals.

56Classification of leniency and forgiveness is applied only to responsive strategies. Note that
Sum2 and SSum2 are not lenient in all situations. For instance, they will play D after a single d
signal in the first round.

57See Rubinstein (1986).
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Table 5: Estimates of Proportion of Each Strategy

Perfect Public Private
AllC 0.024 0.196∗∗ 0.032

(0.032) (0.067) (0.038)
AllD 0.314∗∗ 0.191∗∗ 0.271∗∗

(0.062) (0.057) (0.077)
CDDD 0.000 0.000 0.000

(0.004) (0.025) (0.014)
WSLS 0.022 0.029 0.000

(0.045) (0.028) (0.040)
Sum2 0.000 0.114∗ 0.195∗∗

(0.007) (0.066) (0.056)
Grim 0.117∗∗ 0.035 0.0138

(0.050) (0.028) (0.040)
Grim2 0.046 0.000 0.090

(0.034) (0.000) (0.056)
Grim3 0.023 0.025 0.097∗∗

(0.038) (0.043) (0.035)
TFT 0.176∗∗ 0.000 0.075

(0.042) (0.034) (0.046)
2TFT 0.000 0.039 0.056

(0.000) (0.034) (0.066)
TF2T 0.108∗∗ 0.129∗∗ 0.062

(0.042) (0.059) (0.049)
2TF2T 0.079∗ 0.157∗∗ 0.000

(0.045) (0.068) (0.010)
TF3T 0.076∗ 0.059 0.061

(0.042) (0.074) (0.049)
STFT 0.015 0.000 0.032

(0.029) (0.045) (0.030)
SSum2 0.000 0.027∗ 0.014
γ 0.471∗∗ 0.474∗∗ 0.569∗∗

(0.040) (0.038) (0.042)
β 0.893 0.892 0.853
Cooperative 0.671 0.783 0.683
Noncooperative 0.329 0.217 0.317
Leniency Ratio 0.514 0.824 0.776
Forgiving Ratio 0.712 0.897 0.692
Complexity = 1 0.338 0.387 0.304
Complexity = 2 0.330 0.064 0.121
Complexity = 3 0.155 0.168 0.208
Complexity = 4 0.178 0.381 0.367
*** Stat. sig. at the 1%, ** 5%, and * 10% levels.
Top panel are unconditional strategies, 2nd panel

are responsive and cooperative, and 3rd panel
are responsive and noncooperative.

Bottom panels are total frequencies by feature.
The Leniency Ratio is the ratio, amongst cooperative and

responsive strategies, of lenient to lenient and non-lenient.
The Forgiving Ratio is the ratio, amongst cooperative and

responsive strategies, of forgiving to forgiving and non-forgiving.
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public monitoring than under perfect monitoring (Fudenberg et al. (2012)). Third,
despite its theoretical appeal, WSLS is not observed in any significant proportion
in any treatment. Fourth, as in Embrey et al. (2013), Sum2 is observed in a statisti-
cally significant proportion. In other words, our results show that the findings in the
literature are robust with respect to the specifications of perfect and public moni-
toring such as randomly generated payoffs for perfect monitoring, introduction of
noise into observation rather than into action choice under public monitoring, and
the cardinality and dimension of the signal space.

With respect to private monitoring, we first notice the prevalence of Sum2,
which was first documented in Embrey et al. (2013) in the public monitoring en-
vironment with a linearly ordered binary signal. Second, Grim and TFT are much
less popular than under perfect monitoring. In fact, TFT and all of its variants are
not very popular, and none of them is statistically significant individually (nor are
they jointly significant). Third, the lenient versions of Grim (Grim2 and Grim3) are
more popular than in any other treatment. Although Grim2 is not statistically sig-
nificant on its own, its frequency is relatively high at 9% and Grim2 and Grim3 are
jointly statistically significant (p < 0.01). This is in sharp contrast with perfect and
public monitoring, where neither of these two strategies is ever statistically signifi-
cant. Fourth, going from perfect to private, strategies become more lenient, but not
more forgiving: the ratio of lenient strategies (= lenient

cooperative & responsive ) is 78% under
private monitoring while it is 51% under perfect monitoring (p = 0.00). In fact, the
ratio of lenient strategies under private monitoring (78%) is similar to that under
public monitoring (82%) (p = 0.83 for the equality between public and private).
As for forgiveness, the ratio of forgiving strategies (= forgiving

cooperative & responsive ) is lower
under private monitoring (69%) than under public monitoring (90%) (insignificant
at p = 0.29). On the other hand, the forgiveness level under private monitoring
(69%) is similar to that under perfect monitoring (71%) (insignificant at p = 0.70).

This finding on forgiveness hence is at odds with the result of the reduced
form approach in Section 7.3 that the highest forgiveness level after a single c
signal was under perfect monitoring. The discrepancy may come from the fact
that the analysis in Section 7.3 is restricted to behavior after particular histories.
The conflicting findings are however partly reconciled by the observation that the
estimated fraction of the TFT variants that return to cooperation immediately after
a single c signal (TFT, TF2T, and TF3T) is higher (0.36 in total) under perfect
monitoring than under public monitoring (0.19) or private monitoring (0.20).

In relation to leniency and forgiveness, we find that the strategies become
more complex when monitoring becomes imperfect whether it is public or pri-
vate. Specifically, the estimated proportion of strategies which has just two states
in the automaton representation is higher under perfect monitoring (33%) than un-
der either public (6%, p < 0.01) or private (12%, p < 0.05) monitoring. Likewise,
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the estimated proportion of strategies with three or four states is one third under
perfect monitoring but slightly more than a half in both public and private monitor-
ing (p < 0.05 for both comparisons). The average number of states equals 2.172,
2.544, and 2.638 for perfect, public, and private, respectively.

Table 6: Top Strategies by Treatment

Monitoring
Popularity Perfect Public Private

1st AllD AllC AllD
2nd TFT AllD Sum2
3rd Grim 2TF2T Grim3

The most important differences across treatments can be gleaned by focusing
on the top three strategies in each treatment as listed in Table 6. Notice that the
top three strategies represent more than 50% in proportion in all three treatments.
While the non-cooperative strategy AllD is always very popular, characteristics of
cooperative strategies are markedly different in the three treatments. Under perfect
monitoring, both Grim and TFT are non-lenient. Under perfect monitoring, 2TF2T
is both lenient and forgiving. Under private monitoring, both Sum2 and Grim3 are
lenient, but the latter is non-forgiving. It is only under private monitoring that the
intuitive strategy of Sum2 that counts the numbers of c’s and d’s is in the top three.

The evidence with respect to the strategy used answers Question 2 and Ques-
tion 3 and is summarized in the following:

Observation 8 Strategies under public and private monitoring are more complex
than those under perfect monitoring. The increased complexity comes mainly from
the lenient and forgiving variants of TFT under public monitoring, and from the
lenient (but not forgiving) variants of Grim under private monitoring. Under both
public and private monitoring, Sum2, which counts the numbers of good and bad
signals and is sometimes lenient and forgiving, is important.

With these estimation results at hand, we now return to the most surprising
finding from our experiment: that the level of cooperation under private monitoring
is comparable to that under perfect and public monitoring. Although a complete
analysis of the mechanism behind this finding is beyond the scope of this paper,
we consider how the changes in strategies mitigate the effect of the change in the
monitoring structure. First, the fraction of subjects who mostly defect varies across
treatments: 19% under public monitoring, 27% under private monitoring, and 31%
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under perfect monitoring. In other words, the fraction of subjects adopting some
form of cooperative strategies is higher under imperfect monitoring. Ignore this
effect for the moment and fix the fraction of subjects that adopt the strategy AllD
of always defecting at 25%. We will study the effect of the choice of a cooperative
strategy adopted by the remaining 75%. As seen in Table 6, two of the most popular
cooperative strategies are TFT and Grim under perfect monitoring. If we assume
that the 75% of subjects who cooperate use either of these strategies, then the
average cooperation rate (given δ = 0.9) is 58% under perfect monitoring. If the
cooperative strategy under public and private monitoring were also given by either
TFT or Grim, then the average cooperation rate would be 42% in the case of TFT
(under both public and private, a drop of 16 percentage points), and it would be
23% (under public, a drop of 35 points) and 24% (under private, a drop of 34
points) in the case of Grim. On the other hand, if we suppose that the cooperative
strategy is 2TF2T under public monitoring and Sum2 under private monitoring (as
indicated in Table 6), then the cooperation rate is 57% under public monitoring and
56% under private monitoring.58 That is, the observed difference in the subjects’
strategies almost completely compensates for the effect of the monitoring structure
on cooperation rates. We can only speculate on the reason why the subjects adopt
different cooperative strategies under different monitoring structures, but as this
example shows, such changes can mitigate the effects of noise on cooperation rates.

8 High Noise Treatments

To study the impact of noise on cooperation under private monitoring, we con-
ducted additional treatments, again one for each monitoring structure. In particular
the noise is increased to ε = 0.2 as opposed to ε = 0.1 in the original treatments.
The original goal was to see whether the differences observed in the first set of
experiments in terms of strategies (in particular with respect to leniency and for-
giveness) would remain at this increased level of noise. As will become obvious,
the results for these treatments are not informative with respect to our original goal.
Hence, these are only briefly discussed here and details are provided in Appendix
A.6.

The round one cooperation rates in the three ε = 0.2 treatments are not statis-
tically different from one another, and more importantly, from the prediction for
a one-shot game based on previous PD experiments.59 These results indicate that

58Although the most popular cooperative strategy under public monitoring is AllC, we consider
2TF2T since efficiency is clearly unaffected by changes in the monitoring technology when a non-
responsive strategy such as AllC is considered.

59This is true either if the prediction is based only on the sample of one-shot game experiments
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there are little to no dynamic incentives to generate cooperation when ε = 0.2.
In summary, increasing noise in monitoring from ε = 0.1 to ε = 0.2 poses a

substantial difficulty to the subjects’ ability to cooperate, and this difficulty appears
to be caused by the randomness in the payoffs coupled with the larger value of
g = ` = 0.541.

Observation 9 Increasing noise from ε = 0.1 to ε = 0.2 lowers cooperation rates
in every monitoring treatment to levels similar to what is predicted in one-shot
PD. In particular, the level of cooperation under perfect monitoring with ε = 0.2 is
significantly lower than what is predicted under perfect monitoring without random
payoffs. There is no significant difference in the levels of cooperation among the
three high-noise treatments.

9 Conclusion

While theory suggests the importance of the monitoring structure on the play of
a repeated game, experimental work on the subject is still limited. This paper
presents one approach to the problem by comparing three major monitoring struc-
tures using the same PD as a stage game.

Our findings from the perfect and public monitoring treatments serve as ro-
bustness checks of earlier results in the experimental literature. Specifically, we
confirm the key findings from Fudenberg et al. (2012) that strategies become more
lenient and forgiving under public monitoring than under perfect monitoring. We
find this true under an alternative specification of each monitoring structure as well
as under an additional control on the expected stage game payoffs across the two
monitoring treatments.

The primary focus of our analysis is on the comparison of private monitoring
with perfect and public monitoring. While theory suggests the difficulty of co-
operation under private monitoring, we observe that the subjects maintain almost
the same level of cooperation under private monitoring as under perfect and public
monitoring. Even more surprisingly, the rates of coordination on either (C,C) or
(D,D) are significantly higher than the hypothetical rates that would be obtained
when the two players choose their actions independently at the observed rates. The
high levels of cooperative behavior in our private monitoring environment are in
sharp contrast with the findings of Duffy & Ochs (2009), that cooperation is hard
to sustain under random matching, even for relatively modest group sizes (see Sec-
tion 2). The difference suggests that experimental subjects find the constancy of a

from Dal Bó & Fréchette (2016) (the one indicated in Figure 7), or on the fitted relation used to form
the prediction for δ = 0.9 (see footnote 39).
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relationship with their partner more important than the monitoring structure when
it comes to the decision on whether to cooperate or not.

We should emphasize that our results do not imply that cooperation will emerge
whenever it is theoretically feasible. Indeed, low cooperation rates in our high-
noise treatments are indistinguishable from what is expected in one-shot games.
Hence, it is most appropriate to interpret our results as demonstrating that in some
private monitoring environments, cooperation is possible at a level comparable to
that under perfect and public monitoring. Our results also suggest that in order to
identify the environments conducive to cooperation, it is particularly important to
isolate the effect of monitoring from the effect of randomness in payoffs.60

In the case where dynamic incentives emerge, we also find differences in be-
havior under the three monitoring structures. Specifically, a reduced form approach
based on choices after key histories, and strategy estimation both reveal that the be-
havior is more lenient under private monitoring than under perfect monitoring. In
both cases, the leniency level is similar under private and public monitoring. On
the other hand, the comparison of forgiveness levels is less clear. While strategy es-
timation suggests similar forgiveness levels under perfect and private monitoring,
and a higher level under public monitoring, the reduced form approach suggests
the highest forgiveness level under perfect monitoring.

In relation to leniency and forgiveness, we find that the strategies become more
complex when monitoring becomes imperfect whether it is public or private. In
particular, the average number of states in the finite automaton representation in-
creases as we move from perfect to public, and from public to private. Under
private monitoring, Sum2, which is complex and uses four states, is found to be
one of the top three strategies. It is interesting to note that as in the public moni-
toring treatment of Embrey et al. (2013), where Sum2 is first observed, our private
monitoring treatment has the feature that the signal is binary and can be interpreted
as either good or bad.

We also confirm the finding of Kayaba et al. (2016), that responsiveness is
not necessarily consistent with the play of a memory-one belief-free equilibrium
across all treatments. Specifically, if subjects played the memory-one belief-free
equilibrium in all treatments, then the responsiveness level should be lowest under
perfect monitoring and the same under public and private monitoring. We observe
instead that the level under perfect monitoring is the highest. This implies at least
that such an equilibrium is not played in all treatments. Along with the results of
our strategy estimation, we suspect that the restriction to memory one is among the

60Perfect monitoring experiments in the literature with no randomness in outcomes find a substan-
tially higher level of cooperation. Similarly, Rand et al. (2015) find that randomness in outcomes
have at most a modest impact on behavior. On the other hand, Bereby-Meyer & Roth (2006) find
that randomness slows down (reinforcement) learning in one-shot PD and finitely repeated PD.
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reasons for the observed deviation.
A full account of the behavior reported in this experiment would require the

development of a new theory based on the combination of such elements as the
complexity cost of strategies, preference for efficiency, and the importance of in-
tentions. In this regard, a theory of action choice based on the mental state as
analyzed by Compte & Postlewaite (2008) may provide one direction for research.
The fact that the estimated strategies are more complex in a more complex envi-
ronment suggests that the complexity of a strategy is perceived as a cost by the
subjects. In other words, simple strategies are preferred so long as they entail no
efficiency loss. The Sum2 strategy is popular in the private monitoring treatment
perhaps because it is considered the simplest rule of thumb that works in the en-
vironment. Substantial rates of cooperation and coordination in every treatment
and leniency of strategies in the imperfect monitoring treatments both imply pref-
erence for efficiency. The higher responsiveness under perfect monitoring suggests
that the subjects have a stronger incentive to react to the opponent’s action when
his intention is clearer. The reaction can also be used to discipline the opponent
when there is little or no noise. We view these as interesting insights to guide future
theory work on repeated games.
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